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DIFFERENTIABILITY OF INVARIANT CIRCLES FOR
STRONGLY INTEGRABLE CONVEX BILLIARDS

NOBUHIRO INNAMI

Abstract. Let C be a closed convex curve of class C2 in the plane. We consider

the domain bounded by C a billiard table. Assume that the convex billiard of

C is integrable and satisfies a certain property. The property is that the limiting

leaves are either closed curves or discrete points in the phase space. Then the set

of points with irrational slopes make invariant circles of class C1. If the sets of

points with rational slopes do not make invariant circles, then they contains two

invariant circles such that they are of class C1 except at finitely many points in

C.

1. Introduction

Let C be a simple closed and strictly convex curve of class Ck, k ≥ 2, with length L

in the Euclidean plane E and let c : R → E be its representation with respect to the

arclength, namely |ċ(s)| = 1 for all s ∈ R where R is the set of all real numbers. Let

x = (xj)j∈Z be a sequence of points in C where Z is the set of all integers. We say

that ∪∞
j=−∞T (xj−1, xj), or briefly x, is a billiard ball trajectory if the angle between

the tangent vector v to C at xi and the oriented segment T (xi−1, xi) from xi−1 to

xi is equal to the one between v and T (xi, xi+1) for all i ∈ Z.

A billiard ball trajectory x = (xj)j∈Z in C is represented by a sequence s =

(sj)j∈Z of real numbers such that xj = c(sj) and sj < sj+1 < sj + L for all j ∈
Z and the sequence s = (sj)j∈Z will be considered a configuration {(j, sj)}j∈Z in

the configuration space X = Z × R ⊂ R2. Every configuration {(j, sj)}j∈Z is

identified with a broken line passing through {(j, sj)}j∈Z in R2. For convenience,

sj is considered to be (j, sj) in X. A configuration s = (sj)j∈Z for x is determined

uniquely up to the difference pL (p ∈ Z).
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We call Ω = C × (−1, 1) the phase space which is the set of all pairs (x, u)

for x ∈ C and u ∈ (−1, 1). Let x0, x1, x2 ∈ C and (x0, x1, x2) the billiard ball

trajectory. Let θ0 (resp., θ1) be the angle between the segment T (x0, x1) from x0 to

x1 (resp., T (x1, x2)) and the tangent vector to C at x0 (resp., x1). Set u0 = cos θ0
and u1 = cos θ1. Define a billiard ball map φ : Ω → Ω as φ(x0, u0) = (x1, u1). The

billiard ball map is an example of a monotone twist map ([14]). Let x̄ = (x0, u0) ∈ Ω

and φj(x̄) = (xj, uj) for all j ∈ Z. Then, the sequence x = (xj)j∈Z is a billiard ball

trajectory. Any billiard ball trajectory is given in this way.

A convex billiard is said to be integrable if a subset of full measure of the phase

space is foliated by closed curves invariant under the billiard ball map φ. The

billiards in circles and ellipses are integrable. Note that invariant closed curves under

φmay not be connected, but a union of closed curves. G. Birkhoff’s conjecture states

that the only examples of integrable billiards are circular and elliptic billiards ([4]).

M. Bialy ([3]) has given a partial answer of the conjecture, proving that C is a circle

if Ω is foliated by φ-invariant continuous closed curves not null-homotopic in Ω. M.

Wojtkowski ([15]) proved that C is a circle if the domain bounded by C is foliated

by smooth caustics to which almost every billiard ball trajectories are tangent. A

system of caustics has been found by V. F. Lazutkin ([13]) for a plane convex domain

with a sufficiently smooth boundary. These caustics are close to the boundary and

occupy a set of positive measure. As was stated in [3], Bialy’s theorem corresponds

to a theorem of E. Hopf ([8]) which states that Riemannian metrics on tori without

conjugate points are flat. N. Innami ([10]) extended Bialy’s theorem to the higher

dimensional case and the nonpositive curvature case as L. Green ([6]) did.

We say that a φ-invariant continuous closed curve f in Ω is an invariant circle

if it is not null-homotopic. Since the billiard ball map φ becomes an orientation

preserving homeomorphism of the invariant circle, the set of all configurations of

all points in the invariant circle f makes a foliation of X by straight lines which is

invariant under all translations on X, and vice versa. If the billiard table is of class

C2, then the map φ in Ω is an area preserving twist map of class C1, and Birkhoff’s

theorem ensures only that the invariant circles are Lipshitz and any invariant circle

is the graph of a Lipshitz function, {G(s) = (c(s), u(s)) : 0 ≤ s ≤ L} ([7], [14]). E.

Gutkin and A. Katok ([7]) mention some examples of invariant circles and caustics.

N. Innami ([9]) gives an example of convex billiards with invariant circle consisting of

points with period (3, 1). N. Innami ([11]) discussed the differentiability of invariant

circles by using the geometry of geodesics due to H. Busumann ([5]) which was

reconstructed in the configuration space X by V. Bangert ([1], [2]).

In this note we apply his results to an integrable convex billiard and we note the

differentiability of invariant circles.
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We assume that the billiard of C is integrable. Let F be the foliation of the

subset of full measure of Ω by closed curves invariant under the billiard ball map

φ. We notice that a φ-invariant curve may not be connected, but a union of simple

closed curves. We consider all connected components of φ-invariant curves in F to

be elements of F . Namely, if g ∈ F , then there exists a union f ⊂ F of curves such

that φ(f) = f and g ⊂ f .

We extend the foliation F . Let U denote the set of all closed subsets in the closure

Ω of Ω. Let o be a given point in Ω. The distance δo in U is defined by

δo(M,N) = sup
x∈Ω

| d(x,M)− d(x,N) | e−d(x,o)

for any closed subsets M and N in Ω (cf. [5] p11). Since Ω is compact, the set U
is compact also (see [5] p.14, (3.15) Theorem). Let F denote the closure of F in U .
Then, F covers Ω. Moreover, all elements of F are contained in a φ-invariant subset.

Therefore, for every point x ∈ Ω there exists a φ-invariant set f ⊂ F containing x.

In general, f may not be a union of simple closed curves.

In the present note we assume that the following condition is satisfied.

(P) Every f ∈ F is either a simple close curve or a point in Ω and the set

{f ∈ F | f is a point.} has no accumulation point in Ω.

Under the condition (P) we will study the structure of invariant circles and their

differentiability. We say that a convex billiard is strongly integrable if it is integrable

and (P) is satisfied.

The notion of slope is usful to classify the invariant circles. Let x = (xj)j∈Z be a

billiard ball trajectory and let a(xj, xj+1) be the arclength of the subarc of C from

xj to xj+1 measured with the positive orientation of C. We define the slope α(x) of

x as

α(x) = lim inf
n→∞

1

n

n−1∑
j=0

a(xj, xj+1) = lim inf
n→∞

sn
n
.

where s = (sj)j∈Z is a configuration for x. Let α(x̄) denote the slope of the billiard

ball trajectory determined by x̄ for x̄ ∈ Ω. Set

Ω(a) = {x̄ ∈ Ω |α(x̄) = aL}.

If f is an invariant circle in Ω, then α(x̄) are constant for all x̄ ∈ f , and, therefore,

f ⊂ Ω(a) for some a with 0 < a < 1. We say that a closed curve f in Ω not

null-homotoic is a circle with constant slope if α(x̄) are constant for all x̄ ∈ f . We

write the constant by α(f), also. We call aL an irrational (resp., rational) slope if

a is irrational (resp., rational). An invariant circle is a circle with constant slope.

However, the reverse is not true, in general.
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Theorem 1.1. Let C be a simple closed convex curve of class Ck, k ≥ 2, with

positive curvature κ and length L. If f is an invariant circle with irrational slope

aL, then the graph Gf (s) of f is of class C1. In particular, if the convex billiard of

C is strongly integrable, then Ω(a) is the invariant circle of class C1 with slope aL

in Ω for all irrational numbers a with 0 < a < 1.

If an invariant circle f is of class C1, then the caustic K made from f is a

continuous curve in the domain bounded by C. Here we say that a closed continuous

curve K is a caustic if K has the following property. Let x0 be an arbitrary point

in C and let T (x0, x1) be a segment tangent to K. If x = (xj)j∈Z is the billiard

ball trajectory determined by T (x0, x1), then T (xj, xj+1) are segments tangent to

K for all j ∈ Z. Without C2 differentiability condition on C the caustics are not

continuous, in general. More general and precise definition of caustics is seen in [7].

Next we treat the case that a is rational. Let r̄j and rj be sequences of irrational

numbers such that rj → a+0 and rj → a− 0 as j → ∞. If the convex billiard of C

is strongly integrable, then Ω(rj) and Ω(rj) are invariant circles because of Theorem

1.1. If L(rj) (resp., U(rj)) are the domains bounded below (resp., bounded above)

by Ω(rj) (resp., Ω(rj)) in Ω, then we have Ω(a) = ∩∞
j=1(L(rj) ∩ U(rj)). Here,

L(rj) ∩ U(rj) is the strip between Ω(rj) and Ω(rj) in Ω. Moreover, if Ω(a + 0) :=

limj→∞ Ω(rj) and Ω(a − 0) := limj→∞ Ω(rj), then Ω(a) is contained in the domain

bounded by Ω(a+ 0) ∪ Ω(a− 0) (possibly, Ω(a) = Ω(a+ 0) ∩ Ω(a− 0)).

Let a = p/q where p and q are mutually prime integers. There exists a periodic

straight line s = (sj)j∈Z with period (q, p), i.e., sj+q = sj + pL for all j ∈ Z. In

Section 2 we will introduce the definitions of technical terms, such as a straight line,

a ray, an asymptote, a parallel and so on, used in geometry of geodesics for convex

billiards.

Let A ⊂ R be the set of those parameters s0 such that s = (sj)j∈Z is a periodic

straight line with period (q, p). Then, A is a closed set in R. Let B = Rr A. The

set B is either an empty set or a union of open intervals (bk, tk), k ∈ I, where I is

an index set.

Theorem 1.2. Let C be a simple closed convex curve of class Ck, k ≥ 2, with

positive curvature κ and length L. Assume that the convex billiard of C is strongly

integrable. Let a = p/q be an arbitrary rational number with 0 < a < 1 where p and

q are mutually prime numbers. Then the following are true.

(1) If Ω(a + 0) = Ω(a − 0), then A = R and f := Ω(a) is the invariant circle

with slope aL in Ω. The graph Gf (s) of f is of class C1.

(2) If Ω(a+ 0) ̸= Ω(a− 0), we then have the following.

(a) The number of connected components of c(A) is finite.
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(b) Ω(a+ 0) and Ω(a− 0) are the invariant circles with slope aL in Ω, say

f . The graph Gf (s) of each invariant circle f is of class C1 except at

the points s ∈ A such that s is isolated point in A.

(c) Assume that c(A) consists of q points. Then there exist two closed curves

G1(s) = (c(s), u1(s)) and G2(s) = (c(s), u2(s)), 0 ≤ s ≤ i(q)L, of class

C1 with slope aL which are not null-homotopic, where i(q) = 2 if q is

odd and i(q) = 1 if q is even.

Moreover, the graphs Gt(s) = (c(s),max{u1(s), u2(s)}) and Gb(s) =

(c(s),min{u1(s), u2(s)}), 0 ≤ s ≤ L, are the invariant circles with slope

aL which are Ω(a− 0) and Ω(a+ 0), respectively.

The results in this note would be direct consequences if Birkohoff’s conjecture

were solved affirmatively. We wish our research would help to solve the conjecture.

It is natural to ask whether the only examples of strongly integrable billiards are

circular and elliptic billiards.

2. Foliation by asymptotes and parallels

Let C be a simple closed convex curve of class Ck, k ≥ 2, with positive curvature κ

and length L.

The contents in this section are based on the results in [1], [2] and [11]. We work

in the configuration space X and apply geometry of geodesics for convex billiards.

Let si and sk be points in X. For any configuration t = (tj)i≤j≤k such that ti = si,

tk = sk and tj < tj+1 < tj + L, set

H(sj, sk; t) = −
k−1∑
j=i

|c(tj+1)− c(tj)|.

We consider the variational problem for the functional H(si, sk; t). Then, s =

(sj)i≤j≤k is the configuration of a billiard ball trajectory x = (xj)i≤j≤k if and only if

it is a critical configuration of H(sj, sk; t).

We say that s = (sj)i≤j≤k is a segment from si to sk in X if

H(si, sk; s) = −
k−1∑
j=i

|c(sj+1)− c(sj)|

= min
t

{
−

k−1∑
j=i

|c(tj+1)− c(tj)|

}
where t = (tj)j∈Z is any configuration such that ti = si, tk = sk and tj < tj+1 <

tj + L. The most important property of segments is that if two different segments

have two points in common, then they are the endpoints of both segments. In
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particular, if any segment connecting an endpoint and an interior point of a segment

s is unique and it is a subsegment of s.

We say that s = (sj)j∈Z is a straight line in X if the restriction of s to the interval

i < j < k in Z is a segment for every i < k ∈ Z. We say that a straight line s is

(positively) asymptotic to a straight line t if the sequence of segments from si to tk
converges to the sub-ray s = (sj)j≥i of s as k → ∞ for every i ∈ Z.

We say that a straight line s is a parallel to a straight line t if the sequences of

segments from si to tk converge to the sub-ray s = (sj)j≥i and s = (sj)j≤i of s as

k → ∞ and k → −∞, respectively, for every i ∈ Z. In general, the asymptote and

parallel relations are not symmetric.

A simple modification of the arguments in the proof of [11] Lemma 6.8 proves the

following. The proof will be reviewed in Section 8 for convenience and completeness.

Lemma 2.1. Let f be a continuous curve in Ω with its graph Gf (s) = (c(s), u(s)),

s ∈ [a, b]. Assume that the configurations s(x̄) for all x̄ ∈ f are straight lines and

they are parallels to each other. Then, the graph Gf (s) is of class C1.

The continuity of the curvature of C plays an important role in the proof of

Lemma 2.1 as was seen in [11] Lemma 6.4.

As was seen in [11] Lemma 4.15, an invariant circle f in Ω yields a foliation of X

by straight lines, namely s(x̄) is a straight line in X for every x̄ ∈ f . The situation

in Lemma 2.1 appears in the case of irrational slopes (cf. [11] Lemma 5.17).

Lemma 2.2. Let a be an irrational number with 0 < a < 1. Let f be an invariant

circle in Ω with slope aL. Let s(x̄) be the configuration corresponding to x̄ ∈ f .

Then, all s(x̄) are parallels to each other, and, therefore, f is of class C1.

Note that without the condition of positiveness on curvature κ of C in Theorem

1.1 there exists no invariant circle in Ω.

3. Null-homotopic invariant closed curves

We assume that the convex billiard of C is strongly integrable.

Let F0 be the subset of all elements f ∈ F which are null homotopic in Ω. Let

f ∈ F0. Then, f is either a point or a simple closed curve which is null homotopic.

If f is a point, we then set D(f) = f . Otherwise, let D(f) denote the closed domain

bounded by f in Ω.

We define a partial order ≤ in F0 as follows: Let f and g be elements in F0.

Then, f ≤ g if and only if D(f) ⊂ D(g). Let M(f) be a maximal totally ordered

subset of F0 containing f . We do not know whether it is uniquely determined or

not. Each M(f) has the maximum and minimum elements. The minimum elements
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are points because of the strong integrability. We do not know whether M(f) is

connected or not in F0.

Let C(f) be the (pathwise) connected component containing f in F0. Since the

convex billiard of C is strongly integrable, we have C(f) ⊂ M(f). Moreover, C(f)
has the maximum and minimum elements, say f̄ and f , respectively. Set D(f) =

D(f̄) r D(f) if f is a simple closed curve, and set D(f) = D(f̄) if f is a point.

Thus, D(f) is an annulus if f is a simple closed curve, and it is a disk if f is a point.

In particular, the domain D(f) is foliated by simple closed curves in F0, namely

D(f) = ∪g∈C(f)g.

Lemma 3.1. Assume that the convex billiard of C is strongly integrable. Let f ∈ F0.

Then the following are true.

(1) There exists the unique maximum element f̄ ∈ F0 such that f̄ ∈ M(f) and

D(f) ⊂ D(f̄).

(2) M(f) contains a point belonging to F0. There exist at most finitely many

elements g ∈ F0 such that g is a point and g ∈ D(f).

(3) Let f̄ ∈ F0 be a maximum in M(f) and f the minimum of C(f̄). Then there

exist finitely many elements g1, . . . , gn in F0 such that D(f) = ∪n
i=1D(gi).

In particular, M(gi) can be extended to a totally ordered set M(f̄) and D(f̄)

is the union of D(f) and ∪n
i=1D(gi).

Proof. We prove (1). Let N(f) = {g ∈ F0 |D(f) ⊂ D(g)}. Note that either D(g) ⊂
D(h) or D(g) ⊃ D(h) holds for all elements g and h in N(f). Set D = ∪g∈N(f)D(g).

Let gk ∈ N(f) be a sequence such that D(gk) → D. Then, gk converges to an

element f̄ ∈ F0 which is the maximum and satisfies D(f) ⊂ D(f̄).

We prove (2). Each maximal totally ordered subset M(f) containing f has a

minimum g. If g is not a point, we then have a simple closed curve in D(g),

contradicting that M(f) is maximal. Therefore, g is a point in D(f). Since D(f)

is compact and the convex billiard of C is strongly integrable, the set {g ∈ F0 | g ∈
D(f) is a point. } is a finite set.

We prove (3). For any g and h in F0 we have C(g) = C(h) or C(g) ∩ C(h) = ∅,
since C(g) and C(h) are connected components. Hence, we have

D(f) = ∪k∈ID(gk),

where I is the index set of those k such that gk ⊂ D(f) and C(gk) ∩ C(gk′) = ∅ if

k ̸= k′. It follows from (2) that I is a finite set. �

Let E ⊂ F consists of null-homotopic closed curves such that E is invariant under

φ and any proper subset of E is not invariant under φ. Since the billiard ball map φ

preserves the measure of the domain bounded by a closed curve which is a connected

component of E, the number of connected components of E is finite. Let E = ∪q
i=1fi
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where fi ∈ F is a simple closed curve for every i = 1, . . . , q. By Brouwer’s fixed

point theorem we have q ≥ 2 because φ has no fixed point in Ω. The billiard ball

map φ is considered a permutation of {f1, . . . , fq}. Therefore, the slope α(x) is

constant which is rational for all x ∈ E. Actually, α(E) = (p/q)L where p and q are

mutually prime numbers, since, otherwise, there exists a φ-invariant proper subset

of E.

Lemma 3.2. Assume that the convex billiard of C is strongly integrable. Let f ∈ F0.

Let α(f) = (p/q)L. Then the following are true.

(1) Then α(x̄) = (p/q)L for all x̄ ∈ D(f).

(2) If g ∈ F0 and D(f) ⊂ D(g), then α(g) = (p/q)L.

(3) Every g ∈ F which touches f has α(g) = (p/q)L.

Proof. We prove (1). Let s(x̄) = (sj)j∈Z for x̄ ∈ D(f). Since φq(D(f)) = D(f) and

α(f) = (p/q)L for some p ∈ Z, we have s0 + kpL − L ≤ skq ≤ s0 + kpL + L for

k ∈ Z. Hence, we have α(x̄) = (p/q)L. Since φq(D(g)) = D(g), (2) is proved.

Take a point x̄ ∈ g ∩ f . We then have α(g) = α(x̄) = α(f). This shows (3). �

4. Proof of Theorem 1.1

The first part of Theorem 1.1 is a direct consequence of Lemma 2.2.

To prove the second part of Theorem 1.1 we assume that the convex billiard of

C is strongly integrable. Let x be a point in Ω whose slope aL is irrational. Since

F covers Ω, there exists an element f ∈ F passing through x. If f is a point, then

{φq(f) | q ∈ Z} consists of infinitely many points and, hence, has an accumulation

point in Ω, a contradiction. Thus, f is an invariant circle because of Lemma 3.2. As

was seen before, f ⊂ Ω(a) and it yields the unique foliation of X by straight lines

with slope aL (cf. [11] Theorem 4.16). Let rj (resp., rj) be sequences of irrational

numbers such that rj → a+ 0 (resp., rj → a− 0). Let f j ∈ F (resp., f
j
∈ F) be a

sequence of invariant circles with slope rjL (resp., rjL). Let X(rj) (resp., X(rj)) be

the foliation of X by straight lines with slope rjL (resp., rjL). They correspond to

f j and f
j
. Since both X(rj) and X(rj) converge to X(a) (cf. [11] Lemma 4.11), the

sequences of invariant circles f j and f
j
converge to f . Since the slope is invariant

under the billiard ball map φ, the set Ω(a) lies in the strip between f j and f
j
in Ω.

Therefore, as the limiting situation, we have f = Ω(a). This completes the proof of

Theorem 1.1.
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5. Straight lines with rational slope

We treat the case that the slope aL is rational. Assume that the convex billiard of

C is strongly integrable. Let a = p/q where p and q are mutually prime integers.

In this case there exists a periodic straight line s = (sj)j∈Z with period (q, p), i.e.,

sj+q = sj + pL for all j ∈ Z (cf. [11] Proposition 4.4).

Let A ⊂ R be the set of those parameters s0 such that s = (sj)j∈Z is a periodic

straight line with period (q, p). Then, A is a closed set in R. The following lemma

holds from [11] Proposition 5.15 and Lemma 2.1.

Lemma 5.1. All periodic straight lines with period (q, p) are parallels to each other.

Let A be as above. Assume that the interior Int(A) of A is not empty. If G(s) =

(c(s), u(s)) is the graph of the set of those points in Ω corresponding to periodic

straight lines with period (q, p), then G(s) is of class C1 in s ∈ Int(A).

Let B = R r A. The set B is either an empty set or a union of open intervals

(bk, tk), k ∈ I, where I is an index set. We prove the following

Lemma 5.2. Let π : Ω → C be the natural projection. We then have c(A) =

π(Ω(a + 0) ∩ Ω(a − 0)). In particular, for every x̄ ∈ Ω(a + 0) ∩ Ω(a − 0), its

configuration s(x̄) is a periodic straight line with period (q, p) in X.

Proof. We have, from [11] Proposition 5.16, c(A) ⊂ π(Ω(a+ 0) ∩ Ω(a− 0)).

We prove that c(B) ∩ π(Ω(a+ 0) ∩ Ω(a− 0)) = ∅, meaning that c(A) ⊃ π(Ω(a+

0) ∩ Ω(a− 0)). Let uk = (uk
j)j∈Z and vk = (vkj)j∈Z be periodic straight lines with

period (q, p) such that uk
0 = bk and vk0 = tk. They are parallels to each other

(Lemma 5.1).

For every s0 ∈ (bk, tk) ⊂ B, we show that there exist just two straight lines with

slope aL. Let s be the positive asymptote to vk through s0 and let s be the positive

asymptote to uk through s0. In fact, s (resp., s) is given as the straight line to which

a sequence of straight lines with irrational slope rjL greater than aL (resp., rjL less

than aL) converges (cf. [11] Lemma 4.11). This is possible becouse of the second

part of Theorem 1.1. It follows from the construction that s and s are the negative

asymptotes to uk and vk through s0, respectively.

Moreover, they satisfy that |sj − vkj| → 0 and |sj − uk
j| → 0 as j → ∞. In

fact, if this is not true, then we can find a straight line t through some w ∈ (bk, tk)

with period (q, p) such that t is invariant under the translation τ and τ−1 given

by τ((j, xj)) = (j − q, xj − pL) for all (j, xj) ∈ X, using τ for s or s repeatedly.

Actually, t = limj→∞ τ j(s) or t = limj→∞ τ j(s). Then, [11] Lemma 4.6 shows that t

is a periodeic straight line with period (q, p), contradicting that (bk, tk) ∩ A = ∅.
Since s ∈ Ω(a + 0), s ∈ Ω(a− 0) and s ̸= s, we have c(s0) ̸∈ π(Ω(a + 0) ∩ Ω(a−

0)). �
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Since p and q are mutually prime integers, we have at least q initial parameters

s0 ( mod L) of periodic straight lines s = (sj)j∈Z with period (q, p).

Assume that A is discrete. Then, we may assume that tk = bk+1 for all k ∈ I.

Let S(uk, vk) ⊂ X be the strip bounded by two straight lines uk and vk which were

defined before. We have two foliations F k = {s | s0 ∈ (bk, tk)} and F k = {s | s0 ∈
(bk, tk)} of the interior of the strip S(uk, vk) in R2 by parallels for each k ∈ I (cf.

[11] Lemma 5.10), since any two straight lines s1 and s2 (resp., s1 and s2) satisfy

that |s1j − s2j| (resp., |s1j − s2j|) converges to 0 as |j| goes to ∞, as was seen in the

proof of Lemma 5.2.

Recall that S(uk+1, vk+1) is adjacent to S(uk, vk). Since both uk+1 and vk are

periodic straight lines with period (q, p) and passing through bk+1 = tk, we have

uk+1 = vk (cf. [11] Theorem 4.12). Let F0 be the set of all periodic straight

lines with period (q, p) through all s0 ∈ A. Then, each set of straight lines F1 =

· · · ∪ F k−1 ∪ F k ∪ F k+1 ∪ · · · ∪ F0 and F2 = · · · ∪ F k−1 ∪ F k ∪ F k+1 ∪ · · · ∪ F0 gives

a foliation of X by paralleles to each other in the interior of each strip S(uk, vk).

Moreover, all straight lines in F k ∪ F k+1 (resp., F k ∪ F k+1) are asymptotic to the

positive vk (resp., the negative vk) for all k ∈ I. These foliations correspond to

closed curves, say f , not null-homotopic in Ω of class C1 because of Lemma 2.1.

Here we should note that there exists no foliation of S(uk, vk) by configurations of

billiard ball trajectories other than F
k
and F k. In fact, if we have another foliation,

we then have a straight line t in S(uk, vk) which does not belong to either F
k
or F k

(cf. [11] Proposition 2.9). The straight line t does not approach positively to either

uk or vk. Therefore, as was seen in the proof of Lemma 5.2, this shows that there

exists a periodic straight line with period (q, p) in S(uk, vk), a contradiction.

Lemma 5.3. Assume Ω(a + 0) ∩ Ω(a − 0) consists of q points. Let f be a closed

curve in Ω made from the foliation F1 or F2 of X as above. Then the projection of

the curves f to C cover C in Ω twice (resp., once) if q is odd (resp., even).

Proof. From Lemma 5.2, A is discrete because c(A) consists of q points. Suppose

that q is odd (resp., even). If the k-th component of the foliations is F k, then the

(k + q)-th component is F k+q (resp., F k+q). Therefore, the foliations F1 and F2 of

X have the period 2L (resp., L) for initial parameters s0 ∈ R. �

Under the assumption of Lemma 5.3, we prove that there exists no invariant circle

in Ω with slope aL other than Ω(a+ 0) and Ω(a− 0). Let F be a foliation of X by

straight lines with slope aL. Then, F contains all periodic straight lines with period

(q, p) as its leaves because of [11] Proposition 5.16. As was seen just before Lemma

5.3, the leaves of F in S(uk, vk) must be either the positive asymptotes to vk or the

positive asymptotes to uk. The foliation F is determined by a foliation of only one

S(uk, vk), since F corresponds to an invariant circle in Ω and the periodic straight
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lines with period (q, p) corresponds to Ω(a + 0) ∩ Ω(a − 0) which is the trajectory

of one point in it by the billiard ball map φ. In other words, the foliation F is the

set of all straight lines which are translated from all leaves in S(uk, vk). Therefore,

F is the foliation corresponding to either Ω(a+0) or Ω(a− 0). We have proved the

following.

Lemma 5.4. Let a = p/q be a rational number with 0 < a < 1 where p and q are

mutually prime integers. Let s(x̄) be the configuration in X corresponding to x̄ ∈ Ω.

If s(x̄) are periodic straight lines with period (q, p) for all x̄ ∈ Ω(a), then Ω(a) is an

invariant circle of class C1. Otherwise, Ω(a+0) and Ω(a− 0) are invariant circles,

say f , with slope aL in Ω. The graph Gf (s) of each invariant circle f is of class C1

in s ∈ B ∪ Int(A). Moreover, if Ω(a+ 0) ∩Ω(a− 0) consists of q points, then there

is no invariant circles with slope aL other than Ω(a+ 0) and Ω(a− 0).

6. Proof of Theorem 1.2

Lemmas 2.1, 5.1, 5.2 and 5.4 show (1).

Suppose Ω(a) is not an invariant circle. Let f be a simple closed curve contained

in Ω(a + 0) ∪ Ω(a− 0). Since φq(f) = f , by applying the argument in the proof of

Lemma 3.1, we notice that D(f) contains a point which is an element in F0. Since

the set of those points has no accumulation, the number of simple closed curve in

Ω(a+ 0) ∪ Ω(a− 0) is finite. This shows (2) (a).

Let rj ( resp., rj ) be a sequence of irrational numbers with rj > a (resp., rj < a

) converging to a. Then, Ω(rj) and Ω(rj) converge to subsets Gb and Gt contained

in Ω(a) which are invariant circles. More precisely, Gb ∪Gt is the boundary of Ω(a)

and the configurations s(x̄) in X corresponding to x̄ ∈ Gb ∩Gt are periodic straight

lines with period (q, p). Lemma 5.3 and 5.4 complete the proof of Theorem 1.2.

7. A remark on islands

The following proposition states what the neighborhood of Ω(a+ 0) ∪ Ω(a− 0).

Proposition 7.1. Assume that the convex billiard of C is strongly integrable. Let

a ∈ (−1, 1) be rational and Ω(a + 0) ̸= Ω(a− 0). Let f be a simple closed curve in

Ω(a+0)∪Ω(a− 0). Then f is a maximum element in F0. Moreover, D(f) has the

nonempty interior, namely f̄ ̸= f . The annulus bounded by f̄ = f and f in Ω is

foliated by simple closed curves in F0 homotopic to f .

Proof. We claim that each simple closed curve f contained in Ω(a+0)∪Ω(a− 0) is

an element of F0. Since f ⊂ Ω(a+ 0)∪Ω(a− 0), every point in f corresponds to a

straight line in X. Let (c(bk), u1) and (c(tk), u2) be points in f ∩Ω(a+0)∩Ω(a−0).
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Then, they correspond to adjacent periodic straight lines with period (q, p). Here,

there is no periodic straight line with period (q, p) through s0 ∈ (bk, tk) ⊂ B. Recall

that there exist finitely many elements g1, . . . , gn in F0 such that D(f) = ∪n
i=1D(gi),

as was seen in the proof of Lemma 3.1.

We prove that f = gj for some j, implying the claim. Since f ∩ Ω(a + 0) ⊂
∪n

i=1D(gi), there exists the element gj such that (c(tk), u2) ∈ gj. Let (c(s1), u) be

the endpoint of the arc gj∩Ω(a+0) other than (c(tk), u2). Since φ
kq(gj) = gj for some

k ∈ Z and φq(f ∩Ω(a+ 0)) = (f ∩Ω(a+ 0)), we have φkq((c(s1), u)) = ((c(s1), u)).

Hence, because of [11] Lemma 4.6, the configuration determined by (c(s1), u) is a

periodic straight line with period (q, p), since (kq, kp) is a period of any periodic

straight line with period (q, p) for k ∈ Z. Therefore, we have s1 ̸∈ (bk, tk) ⊂ B,

namely s1 = bk. In particular, we have f ∩ Ω(a + 0) = gj ∩ Ω(a + 0). Set gk =

φm(gj r gj ∩ Ω(a + 0)) for some m ∈ Z where π(gk) = c([bk, tk]). Then, the union

of those curves gk and Ω(a + 0) ∩ Ω(a − 0) make an invariant circle in Ω. Since

all points in an invariant circle are straight lines, they are with period (q, p) if they

are not asymptotes to uk which was used before in the definition of S(uk, vk). This

implies that gk ⊂ Ω(a− 0). Therefore we conclude that f = gj for some j.

Since f touches an invariant circle, f is a maximum in F0.

The argument above shows that D(f) has the nonempty interior as well. �

8. Appendix : Proof of Lemma 2.1

In this section we review the proof of Lemma 2.1 for convenience and completeness.

We can see it in [11].

Let C be a simple closed strictly convex curve in the plane E of class C2 with

length L. Let c : (−∞,∞) → E be the representation of C by arclength and κ(s)

the curvature of C at c(s). Let B be the closed domain bounded by C.

Let x = (xj)j∈Z be a billiard ball trajectory in C and let γ : (−∞,∞) → B be

the unit speed broken line such that γ(tj) = xj for all j ∈ Z. Let Q = Qj be the

reflection with respect to the tangent line to C at γ(tj) which is by definition

Q(X) = X − 2 < X,N > N

where X is any vector at γ(tj) and N is the inward unit normal vector to C. Then,

γ̇(tj + 0) = Q(γ̇(tj − 0)). Let the angle between ċ(tj) and T (xj, xj+1) be θj for any

j ∈ Z. We say that Y (t), −∞ < t < ∞, is a perpendicular Jacobi vector field along

γ if Y satisfies the following (see [10]).

(1) Y is of class C∞, Y ′′(t) = 0 and ⟨γ̇(t), Y (t)⟩ = 0 in each interval [tj, tj+1].

(2) Y (tj + 0) = Q(Y (tj − 0)) for any j ∈ Z.
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(3) Q(Y ′(tj−0))−Y ′(tj+0) = (2κ(tj)/ sin θj)Y (tj+0) where κ(tj) is the geodesic

curvature of C at γ(tj) with respect to N .

Let γu : (−∞,∞) −→ B be a variation through billiard ball trajectories with unit

speed such that γ0(t) = γ(t) for any t ∈ (−∞,∞). Let

Y (t) =
∂γu
∂u

∣∣∣∣
u=0

(t)

for any t ∈ (−∞,∞). If ⟨Y (a), γ′(a)⟩ = 0 for some a ∈ R, then Y (t) is a perpen-

dicular Jacobi vector field along γ. Any perpendicular Jacobi vector field is given in

this way. Let K be the envelope of a variation γu through billiard ball trajectories

with unit speed and let γ be tangent to K at aλ, λ ∈ Λ. Then, γ(aλ) are conjugate

points to each other along γ, since the perpendicular component of the variation

vector field Y is a nontrivial perpendicular Jacobi vector field with Y (aλ) = 0 for

any λ ∈ Λ. We sometimes call such points focal points to C along γ.

We say that the conjugate points of a nontrivial perpendicular Jacobi vector field

Y (t), −∞ < t < ∞, along γ separate the boundary if there exists a sequence {aj}j∈Z
such that γ(aj) lie in T (xj, xj+1) and Y (aj) = 0 for any j ∈ Z. Let γu : (−∞,∞) →
B be a variation through billiard ball trajectories such that the straight lines in

X corresponding to all γu are asymptotes to the straight line in X corresponding

to γ = γ0. Then, T (x(u)j, x(u)j+1) intersects T (xj, xj+1) for any j ∈ Z where

x(u)j = γu(tj). From this it follows that there exists a nontrivial perpendicular

Jacobi vector field along γ whose conjugate points separate the boundary.

Let J be the set of all perpendicular Jacobi vector fields along γ whose conjugate

points separate the boundary. We think that J contains the trivial Jacobi vector

field along γ. We prove the following.

Lemma 8.1. Let γ : (−∞,∞) → B be a billiard ball trajectory which corresponds

to a straight line in X. Then, J ̸= {0}.

Proof. Suppose for indirect proof that J = {0}. Then, we have a perpendicu-

lar Jacobi vector field Y (t), t ∈ (−∞,∞), along γ such that there exist i0 and

j0 ≥ i0 + 2 with Y (ti0) = 0 and Y (t) ̸= 0 for all t ∈ (tj0 , tj0+1] where γ(tj) ∈ C.

Let γu : (−∞,∞) → B be the variation through billiard ball trajectories such that

γ0 = γ, γu(tj0(u)) = c(sj0(u)) ∈ C, γu(t0(u)) = c(u), γu(ti0(u)) = γ(ti0) and its

variation vector field is Y . Then, γu((tj0(u), tj0+1(u)]) do not cross to one another

for sufficiently small |u|. Let θ(u) be the angle between ċ(sj0(u)) and the oriented

segment T (γu(tj0(u)), γu(tj0+1(u))) and let θ1(u) be the angle between ċ(sj0(u)) and

the oriented segment T (γu(tj0(u)), γ(tj0+1)). We may suppose without loss of gen-

erality that sj0
′(0) > 0. Since the neighborhood of T (γ(tj0), γ(tj0+1)) is foliated by

segments T (γu(tj0(u)), γu(tj0+1(u))), we see that θ(u) > θ1(u) for any u < 0 and
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θ(u) < θ1(u) for any u > 0. Hence, from the first variation formula at tj0(u), there

exists a u0 such that

j0∑
i=i0

H(γ(tj), γ(tj+1)) >

j0−1∑
i=i0

H(γu0(tj(u0)), γu0(tj+1(u0)))

+H(γu0(tj0(u0)), γ(tj0+1)),

contradicting the straightness of γ. �

Assume that J ̸= {0} and Y ∈ J . Let {aj}j∈Z be the set of all parameters such

that γ(aj) is the point conjugate γ(tj−1), tj < aj < tj+1, for any j ∈ Z. Let Ym

be a perpendicular Jacobi vector field along γ such that Ym(t0 + 0) ⊥ γ′(t0 + 0),

∥Ym(t0 + 0)∥ = 1 and Ym(tm) = 0. Let Sm = {b(m)j |Ym(b(m)j) = 0, tj < b(m)j <

tj+1}.
The following lemma is a generalization of the Sturm comparison theorem which

is seen in [12].

Lemma 8.2. (Separation property) Suppose γ(b) is the first point conjugate to

γ(a) with a < b. Any nontrivial perpendicular Jacobi vector field Y along γ with

Y (a) ̸= 0 or Y (b) ̸= 0 has a unique zero point γ(t0) at t0 ∈ (a, b).

Proof. Let e(t), t ∈ R, be a vector field along γ such that ⟨γ̇(t), e(t)⟩ = 0 and

∥e(t)∥ = 1 for each interval [tj, tj+1] and e(tj+0) = Q(e(tj−0)). Any perpendicular

Jacobi vector field Y along γ is denoted by Y (t) = y(t)e(t) for any t ∈ R. Then,

y(t) is continuous for t ∈ R and it satisfies

y′(tj + 0) = y′(tj − 0)− 2κ(tj)

sin θj
y(tj)

for all j ∈ Z. Thus, if Y and Z are perpendicular Jacobi vector fields along γ, then

f(t) = y′(t)z(t) − y(t)z′(t) is constant for all t ∈ R. In fact, we have f ′(t) = 0 for

t ̸= tj and

f(tj − 0) = y′(tj − 0)z(tj)− y(tj)z
′(tj − 0)

=

(
y′(tj + 0) +

2κ(tj)

sin θj
y(tj)

)
z(tj)− y(tj)

(
z′(tj + 0) +

2κ(tj)

sin θj
z(tj)

)
= y′(tj + 0)z(tj)− y(tj)z

′(tj + 0) = f(tj + 0).

By the assumption there exists a nontrivial perpendicular Jacobi vector field Y

along γ such that y(a) = y(b) = 0, y′(a) = 1 and y(t) > 0 for any t ∈ (a, b).

Since γ(b) is the first conjugate point to γ(a), we have y′(b) < 0. Let Z be a

nontrivial perpendicular Jacobi vector field along γ with Z(a) ̸= 0, say z(a) > 0.

Since y′(b)z(b) = z(a), we have z(b) < 0. Therefore, there exists a t0 ∈ (a, b) such

that z(t0) = 0, proving the existence of zeros.
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Suppose there exists another zero point of Z. Let γ(t1) be the first point conjugate

to γ(t0) with t0 < t1 ≤ b. Since z′(t0)z
′(t1) < 0 and y(t0)z

′(t0) = y(t1)z
′(t1), we

have y(t0)y(t1) < 0, proving that there exists a zero point of Y between t0 and t1, a

contradiction. This proves that Z does not have more than one zero in (a, b). �

The separation property of conjugate points shows that tj < aj < b(m)j < tj+1

for all m with j ≤ m − 2. The sequence {b(m)0}m>2 is monotone decreasing and

bounded. Let Ym be the perpendicular Jacobi vector field along γ such that Ym(t0) =

e(t0 + 0) and Ym(b(m)0) = 0.

Then, Yf = limm→∞ Ym exists and Yf ∈ J . In the same manner, Yb = limm→−∞ Ym

exists and Yb ∈ J . Let {bj}j∈Z and {b̄j}j∈Z be the sequence of parameters such that

Yb(bj) = 0, Yf (b̄j) = 0 and tj < bj ≤ b̄j < tj+1 for any j ∈ Z.

We notice the following.

Lemma 8.3. If Y is a non-trivial perpendicular Jacobi vector field along γ such that

Y (a) = 0 for some a ∈ [bj, b̄j], then Y has the unique zero in the interval [tj, tj+1]

for every j ∈ Z.

Lemma 8.4. Let J ̸= {0}. Then, J is a one-dimensional vector space if and only

if Yf = Yb.

Let s = (sj)j∈Z be a straight line in X. We define the Busemann function of s as

Bs(0, tj) = lim
n→∞

{H(tj, sn)−H(s0, sn; s)}

for tj = (j, tj) where H(tj, sn) is the H-length of a segment connecting tj and

sn = (n, sn) in X.

The following is a condition that Yf = Yb.

Lemma 8.5. Let x = (xj)j∈Z be a billiard ball trajectory in C which corresponds

to γ in E and to a straight line s = (sj)j∈Z in X. Suppose there exists a variation

through parallels x(u) = (x(u)j)j∈Z to x in X such that x(0) = x. Then, J is a

one-dimensional vector space.

Proof. Suppose for indirect proof that b̄0 > b0, meaning that Yf ̸= Yb. Let γu :

(−∞,∞) → B be billiard ball trajectories corresponding to x(u) with x(u)0 = γu(0),

t0 = 0. Let 0 < ϵ < min{b0, b̄0−b0} and S the ϵ/2-ball around γ(ϵ). For a sufficient

small ε we may assume that S is foliated by γu([t0(u), t1(u)]). We define a function

F±s on S as

F±s(γu(t)) = B±s(0, s0(u))∓ t

where s(u) = (sj(u))j∈Z is parallels to s = (s(0)j)j∈Z in X corresponding to x(u).

The functions F±s are of class C1 in S such that the gradient vector field is ∓γ̇u
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because S is foliated by γu which correspond to parallels x(u) to x. In particular,

Fs + F−s is constant on S.

Choose constants kf and kb such that kfYf (ϵ) = e and kbYb(ϵ) = e where e is the

unit vector perpendicular to γ̇0(ϵ). Set Y1 = kfYf and Y2 = kbYb. Then, Y1
′(ϵ) ̸=

Y2
′(ϵ). If Y1(t) = y1(t)e, Y2(t) = y2(t)e, then y2

′(ϵ) < y1
′(ϵ) < 0 because b0 − ϵ <

b̄0−ϵ. However, this means that Fs+F−s is not constant, since F±s
−1(F±s(γ(ϵ))) are

the limit sets of spheres through γ(ϵ) with center c(s±n) measured by H as n → ±∞
and y1

′(ϵ), y2
′(ϵ) are their curvatures at γ(ϵ). Thus, we have a contradiction. �

Proof of Lemma 2.1 : Let x̄(s) = (c(s), u(s)) for every s ∈ [a, b]. Let x(s) =

(x(s)j)j∈Z be the billiard ball trajectory corresponding to x̄(s) and r(s) = (r(s)j)j∈Z
the configuration for x̄(s) with r(s)0 = s. We note that r(s)1 is continuous in

s ∈ [a, b] because F±s is of class C
1.

We prove that r(s)1 is of class C1. Let γs : (−∞,∞) → B be the unit speed

broken line such that γs(t(s)j) = x(s)j for all j ∈ Z. Let Yf
s be the unique nontriv-

ial perpendicular Jacobi vector field along γs whose conjugate points separate the

boundary for s ∈ [a, b]. Then, we can assume that Yf
s is continuous for s ∈ [a, b]

and ⟨Yf
s(t(s)0), ċ(s)⟩ = 1 because of Lemma 8.5. We then have

r(s)1 =

∫ s

a

⟨Yf
s(t(s)1 + 0), ċ(r(s)1)⟩ ds+ r(a)1.

This shows that r(s)1 is of class C
1. In particular, we have proved that if (c1(s), u1(s)) =

φ(c(s), u(s)), then c1(s) = c(r(s)1) is of class C
1. Since

u(s) =
⟨c1(s)− c(s), ċ(s)⟩
∥c1(s)− c(s)∥

,

we conclude that u(s) is also of class C1. �
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