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THE RADON-NIKODYM THEOREM FOR
NON-COMMUTATIVE L[P-SPACES

HIDEAKI IZUMI

ABSTRACT. Let M be a von Neumann algebra. We will show that for two normal
semifinite faithful weights ¢, ¥ on M, the corresponding non-commutative LP-
spaces LP(M, ) and LP(M, 1)) are isometrically isomorphic.

Regarding a von Neumann algebra M and its predual M, as a non-commutative
version of L*-space and L'-space, respectively, the author [5] interpolated the above
two Banach spaces by applying Calderén’s complex method [1, 2] and obtained non-
commutative LP-spaces L{’a) (M, p), 1 < p < oo, parametrized by a complex number
« arising from the modular action of a normal semifinite faithful weight ¢ on M.
This construction includes both Kosaki’s one ([7]), which is equivalent to our case
where ¢ is a state and @ = £1/2 and Terp’s one ([10]), which is equivalent to our
case where o = 0 and ¢ is possibly unbounded, namely a weight (cf. [5, Remark in
p.1036]).

The weight ¢ plays a role similar to a measure in the commutative case. The clas-
sical Radon-Nikodym theorem tells us that the LP-spaces for two mutually absolutely
continuous measures on a measure space are mutually isometrically isomorphic. In-
deed, the isomorphism is given by the multiplication by a suitable power of the
Radon-Nikodym derivative.

In this paper, we will prove the non-commutative analogue of the Radon-Nikodym
theorem: for any given two n.s.f. weights ¢, on M, we will construct a natural
isometric map between the corresponding LP-spaces. In the case where ¢, are
states, Kosaki tried to construct such an isometric map [7, Theorem 4.4]. His
map essentially consists of the multiplication by Connes’ Radon-Nikodym cocycles,
the non-commutative analogue of Radon-Nikodym derivative. To realize this, he
first considers “reiterated” compatible pair of L?- and L!'-spaces and define the
isomorphic map between LP-spaces (1 < p < 2) as the evaluation map of isomophism
between the two function spaces arising form the reiterated pairs for ¢ and 1, and
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by using duality between LP- and Li-spaces (1/p + 1/¢ = 1) isomorphisms for all
p, 1 < p < oo, are obtained. His idea is clear and reasonable enough, but it is often
hard to obtain analytic elements for the Radon-Nikodym derivative enough to show
that the evaluation maps are well-defined, unless good conditions are posed on the
states ¢ and . In order to avoid this difficulty, we will make use of Connes’ trick of
2 x 2 matrices and bimodule actions established in [6], and obtain the desired map
directly, without recourse to reiteration. Note that our LP-spaces corresponding to
the weights ¢ and 1 are isometrically isomorphic to Haagerup’s universal one [4], as
is mentioned in [5, p.1059 1.2 from bottom and Theorem 3.8], and hence isomorphic
to each other, but it is much more desirable to construct isomorphisms in a more
explicit way and independently of Haagerup’s result.

We briefly describe the construction of LP-spaces [5]. First, we sketch the mod-
ular theory (for details, see [8, 9]). Let M be a von Neumann algebra and ¢ an
n.s.f. weight on M. Let {m,,n,, A,} be the semi-cyclic representation induced from
(M, ). We define the associated left Hilbert algebra 2, by

2, =n,Nn7.
Next, we define an anti-linear operator Sy on 2, by
Sols(x) = Ay(x¥), x €A,

Then Sy is preclosed. Let S be the closure of Sy, and S = J,A, be its polar
decomposition.
Then by [9, Chapter VI, Theorem 1.19], we have

Alm (M)A =, (M), t €R,
and hence we can define a one-parameter automorphism group {oy }eg on M by

To(0f (v) = Alm(x)A", v € M, t € R. Tt can be extended to a complex

one-parameter automorphism group on af, where aj = AZN(2A), A7 = {£ €
M D(AY) | AZE € ™Ay, n € Z} (D(T) means the domain of a linear opera-

tor 7', and 2 is called the full Tomita algebra).
For a € C, we put

there exist a unique go;(,;a) € M., such that
LYy =Sz e M| o8y 2) = (1,(2) J,A%A ()| T, AL Ay (2))
for all y, z € af
— Mand j§, : L) — M. by i( (z) =z, j{,(2) =

@éa) for x € Lfa), and together with their adjoint maps, we define a compatible pair

We define two maps i}, X L‘(p

(a @)

(M, M*)fa) by Figure 1. Then we apply Calderén’s complex interpolation method
to the pair (M, M,)7,), and obtain a non-commutative LP-space L, (M, ¢) as the
interpolation spaces C/,(M, M.)7,.
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FIGURE 1. a compatible pair (M,./\/l*)‘(pa)
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Next, we explain the theory of balanced weight (see [8, §3] for details). Let ¢ and ¢
be two n.s.f. weights on M. We consider the balanced weight x on ' = M;(C) @ M

by
X <Z Z) = o(a) + ¥(d), (Z Z) eN,.

Then y is an n.s.f. weight on A/. Since

a b " a b . N « .
X (( d) ( d)) = plaa) + WD) + () + Y(dd),
and the standard Hilbert space H,, is canonically identified with H,®H, & H, B Hy

via the map
(a)
a b Ay (D) a b
A v :
X (c d) - A(e) |7 (c d) € M
d
Under this identification, J,, A, and , are described as follows:

J, 0 0 0
0 0 Jy, 0

we have

J p— 1

Tl o Jw 000 (1)
0 0 0 Jy
A, 0 0 0
0 A 0 0

Ay = o , (2)
0 0 Ay, 0

0 0 0 Ay
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To(zi1) 0 mp(zz) 0

7TX<J]) _ 0 Ww(xn) 0 7T,¢,<£L'12) = 11 T12 c N (3)
7T¢(.CE21) 0 7T<p(.7322) 0 21 T92
0 7T¢(£L‘21) O 7'('7/)(1'22)
By [8, (3.16)], we have
Joump(a)dy e = Jomp(a)Jy, (4)
Jymp(a)Jpe = Jypemo(a)d, (5)
for a € M. Since, for t € R,
nof@)
= A’tﬂx(x)A;“f | ‘
A W¢($11)A it 0 Agﬂ‘P(le)AT;Z 0
0 T Az T 0 T Aty
A:Zf,tpﬂ-g’ (ﬁgl)A;Zt A 0 ' AZ;LPTQP (3722)A¢ © ‘ 0 .
0 Agﬂw(@l)A;ffb 0 Agﬂlp(l’gg)A;lt
belongs to N, equations (4) and (5) yield
J@,wAzwmb(a)A;szw = Jwﬁﬁ%(a)ﬁ;i%, (6)
Jwﬁfﬁﬂw(a)ﬁﬁt}w,w = J¢7¢A$,¢W¢(a)A;itJ¢‘ (7)
Since J, and A commute, from (1) and (2) we have
Aﬁ,ﬂwﬂaz)(a)Jw,soAZ; = Ag‘]eﬂw(a)JsoA;ita (8)
AZJQ/,WQ/,(CL)J%@A;Z = Aif,wa,@m@(a)JwA;“. (9)

Next, we examine the relationship between comptible pairs (M, M), (M, M)E
and (M, M, ) . Note that, N, can be identified with M5(C) @ M, via

2
K11 K12 11 T2
K K ) T T ’iz]; ng My M
21 22 21 22 ;
N*,N i,5=1

for k;; € M, and z;; € M. Moreover, we put

a§’¢:{xen¢|Aw ﬂDAgw)}

neL

and

afﬁ”‘p:{xenHA ﬂD }

nez
Then we can express the full Tomita algebra aj as follows.

aix a2 * n
ay = {a: <a21 a22> en,Nni|A(a) € ﬂD(AX)}

neL
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Finally, we define
there exist a unique (wgo);a) € M, such that

Lig = xe M| (o) (y72) = (m(2) Ty ALy Ay ()| T AL Ay (2))
for all y € ag’w, z €af

and put L“("C’;)b in a symmetric way.

Lemma 1.
(i) Fory, z € ay?, we have y*z € L,y and

Py (1) = (1 (2) Ty o AT A (9| T o AL (2)), @ € M.
(i) Ifa € Ll(z’a’f, then a* € L‘(pa’l)p and (1) = (1h){".
Proof. (i) Since y, 2 € af, we find that y*z € L, and
Pyl(@) = (mo(@) T ALAL ()| JLALA(2)), © € M
for all t € R (replace a5 by nin, in [5, Proposition 2.3], see also [5, Remark in
p. 1037]). On the other hand, for a, b € af, we have

(W¢(y*z)J¢A;itA¢(a)|J¢A;itA(b))

= go(yzfi(a*b) (by the definition of L
(Ww(a*b)J@Ag/‘\@(y)\JgoAgA(z.))
= (mp(ad) Jy, o AY JAp(Y)|Jy o AY A (2))

(11)

(@)
(by (11))

(by (8))-

By analytic continuation, we have
(Ww(y*z)J@A;aA@(a)|J¢AgA(b)) = (Ww(a*b)J@b,@Ag,gko(y)|J¢,¢A;;A(z))-

This means that y*z € L(fa) and
P (1) = (1 (2) Ty o A A ()| Ty o Ay EA(2)), @ € M.
(ii) The assertion also follows from the analytic continuation of equation (9), so
O

the details will be omitted.
Lemma 2. For the balanced weight x of ¢ and v, we have

® o
x| Lo Lo
(o) L%w L¢

(@) (@)
and
NON pi) (V)
’ (p)al i)
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a a
fora= " ""?)e LE‘a)
Q21 A22

Proof. Let a = (an a12> € Lz‘a). For any
Qg1 QA22
(o)

z z
_ (Y Y2 o= 11 212 Gaé‘,
Y21 Y22 221 %22
Xa (y2)

= (Wx(a)JxAgAX(y)\JXA;“AX(Z))
To(a11) JpAG A, (y11) + Tp(a12) Jp AT 4 Ay (412) JoAL Ny (211)
Ty (a11) Jy o AF A (y21)+7ﬁp(a12)JwA Ay (y22) ||| Joelypiple(za1)
T (a21) JoAGA G (y11) + Tp(aze) Jp Ay Ay (Y12) ||| Jow D, As(212)
Trd’(an)Jd)yipA b oMo (Y1) + my(azz) Jy AT Ay (y22) Jyp Ay Ay (222)
= (mp(a11) Jo AT (y11)[JoAZ Ny (211))
+(mp(a11) Jy o AF SN (Y21)| Ty oAy SN (221))

(T (@12) JppAG Ay (112)| JpAZ* Ay (211))

(my(@12) Jp AT Ay (Y22) | Ty oA, A o(221))
+(7p(a21) J,AGA (y11)|J wAprw(le))

(7%(@21)Jw Ay (y21) [T Ay Ay (222))

(7 (a22)

(

we have

+

Tp( Q12

+ +

T (G122 sowA@¢Aw(3/12)|JsowAwAw(212))
(7 (a22) Jy AG Ay (Y22) [ T Ay Ay (222))-

On the other hand, if we put
Xéa) _ (Hll /‘f12> eN..
ko1 Koz
then we have
(a)

Xo (U*2) = rmn(yizn) + ri2(yizzin) + k11 (Ys221) + Ki2(Yse201)
+ro1 (Y1 212) + Kaa(Yiaz12) + Kot (Ys1222) + Koo (Yag222).

Hence, by putting y12 = y21 = Y22 = 212 = 221 = 222 = 0, we have
11 (Y 21) = (mp(a11) JoAGA L (Y11) | Jp AL Ay (211))
for all y11, 211 € af. This means aj; € L and <pa11 K11. Similarly, we can deduce

alg € L% and (%DSO)aofz = K12,

a9 € Lf;’g and ((pw)((gz = K91,

Aoy € Lq(pa) and ¢§§2 = Ko99.
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® (%
Conversely, let a = (Z; Z;Z) € (f{aj is(p‘j)
as above. Then we have
(my(a11) Ty o AF SN (Y21)] Ty oAy G NG (221))
gpégill(an) (by Lemma 1 (i)) (12)
= o (y3,221)  (by [5, Theorem 2.5]).

). We claim a € Lz‘a). Let y, 2z be

Similarly, we have

(m (CL12)JwA Ay (y22)| Ty, o Dy M (221))
(Ww(%Q)JwA A (221) [y AF Ay (Y22))
(SW) ) (231y22)

(7/190)1112 (Y32221)  (by Lemma 1 (ii)),

(mp(a22) S Ay Ao (W12) [T AL G Au (212)) = 985 (yia712)

and
(T (a2) [ T A5 A (212)) = (00)$2) (451 212).
Consequently, we have
(m ()JAA( | WAL A (2))

)
= o (ypen) + (¢¢)a12(y1zzn)+90£ff3(y§1221)+(1/)90)&?3(%2221)
o)l (1 212) + 05 (Yiazio) + (00) ) (U1 222) + i) (Y3200

(@)
Dayy (W)am> . >
= (a) (@) Y7
< ((smb)am Yaza NN

Hence a € Lz‘ ) O
As a sub-compatible pair [6, Definition 6.4] of (N, J\/'* , we take

() ()

We compare the sub-compatible pair

(5 (53)),

and (M, M,){,. Let x € M and x € M.. Suppose

~x w [T O ~x w([rK O
(](,a)) (0 O) :(Z(fa)) (O O)-

Then, by the calculations in the proof of (2), we have
k(a*b) = (my(x) JLAGA L (a)|T,AZ* A (b)) for all y, 2 € af, (13)
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and
k(c*d) = (ﬂw(m)waAgmA@(c)|Jw7¢A;i‘DA¢(d)) for all 4,z € ad"?. (14)

Hence x € Lfa) and <p§f") = K, and consequently,
(7 2)" (@) = (7)) (%)

(cf. [5, Proposition 3.6]). Conversely, suppose that (j(,))"(z) = (i{_,))"(k). Then,
by the same argument as in (12), we have (14) as well as (13). Hence

~x w [T 0 ~x w (kK O
(](_a)) (0 O> :(@(_a)) (O O)’

This equivalence of conditions tells us that by identifying

(15) (= (3)

with M (resp. M.,), the sub-compatible pair

(5 (53)),

is equivalent to (M,M*)fa) in the sense of [6, Definition 6.17]. By [6, Proposi-
tion 6.18], the interpolation space

M 0\ (M, 0\\
Grl\lo o) Lo o
(o)

P
(a

G (ii 8) i) (8” 8) 7 ) @)+ 7))

is isometrically isomorphic to L )(/\/l, ¢) via the map

for all

X « [T 0 X « | F 0 M 0 M* 0 '
€= (](70[)) (O 0) + (Z(fa)) (O 0) € Cl.p (( 0 O) ’ ( 0 O)>(
a)

with x € M,k € M,. In a similar way, we can construct a natural isometric map

X
0 0 0 0
Ci/p ((O M) , (0 ./\/l*))( | and Lf(”a)(/\/l,w).

Then, by [5, Theorem 2.14],

lE D e ),
(o)
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and

Nnorm

X
0 0 0 0) (0 0
X * —
Ve (0 L}Q) _Ol/p<(o M)’(O /\/l*))()

By [6, Proposition 6.22], the set (jgga))*((ag)Q) is norm dense in L{ ) (N, x). We put

norm

L= (o) (“‘? 8) C I (V) (16)

and
norm

. 0 0
L2 - (](X_a))* (0 (atob)Q) C L?a)('/\/‘? X)

Again by [6, Proposition 6.22], L; (resp. Ls) equals

o (M0 M*OxresC 0 0 0 0 \\"
1/7’00’00() p'l/pOM’OM*()

and can be naturally identified with Lz(ja)(/\/l, ©) (resp. L’(’a) (M, ).

Next, we recall the bimodule structure of L, , (N, x) (see [6, §7]). For a € N, we
put the left and the right actions by

—1
o) (@) = (Up 1 jp.a) " 0 0(@) 0 ULy 0

and

7TX(a)/(a) = Uy, a))fl omyp'(a)o Uy (172,00

Here Uy /2.0y 1S an isometric isomorphism of L WV, x) onto the left LP-space
LUy ) (N X) satisfying

U;f(_l/z,a)((jf‘_a))*(y)) = j;,(l/Z)(O-?—i(1+27‘)/2p(y>>

for all y € (ay)?, where o = r + is, and 7 (a) is a bounded linear operator on
L o) (N, x) defined by
W;L(a)(j; (1/2) (z) + iy, (1/2)(“)) = j;,(1/2)<a$) + Z‘;;(1/2)(6“@)
for all £ = j; (1/2)( ) + 05 19y (K) € LT gy (N, X), © € N ks € N
Similarly, U (1/2,0) is an isometric isomorphism of L (N X) onto the right LP-
space L(1/2) (N X) satisfying
U;fu/z,a)((jg(_a))*(y)) = j; (1/2)(U§+i(1_2r)/2p(y))
for all y € (ag)?, and 7} ;'(b) is a bounded linear operator on L{, o)WV, X) defined
by
TR (D) (5% ) (@) 4 05 12y (8)) = G5 (1)) (D) + 5 (1 9y (D)
for all m = j5 o) (2) + 5 (1 /9)(K) € LTy ;)N X), 2 €N,k € N,
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Next, we put

{10\ . (10
Pr="Tp@ \g o) "™ \o o)’
0 0 (0 0
— X X
P2 = T (a) <() 1> © Tp,(a) (0 1) '

Since the left and the right actions commute, p; and p, are idempotent operators
on Li (N, ).

and

Proposition 1.

(i) The range of py is Ly.
(ii) The range of py is Lo.

Proof. The proofs of (i) and (ii) are similar, so we will prove only (i). Let

y = Y11 Y12 c N
Y21 Y22

Then, by [8, 3.10], there exist strongly™® continuous one-parameter groups {af) R,
{09} 1er of isometries of M onto M such that

of (Y1 Uf’w 12
o) = (J;;,éi’ )i >)

yzl) af(yzz)

for all ¢ € R. Moreover, suppose that y € aj. By analytic continuation, the one-

parameter groups o and 0¥ can be uniquely extended to complex one-parameter

groups on ay¥ and a?¥, respectively, such that

oX(y) = < o8 (y11) Uﬁ’w(ylz))

Ug’@(yzl) 05(3/22)

ay; Q19 bii bio
A= ,B = € ay.
<a21 a22> <521 522) 0
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Then (5 ,))"(AB) € Li,,y(N, x) and we have
P1(Jay) (AB)
= T (é 8 Tota) (é 8) (e (AB)
- (3 ) U o) TR (é ) U G ) (AB)
= M) ((1) 8 (Unaj2) Tor <(1) 8 Tr(=1/2) (T i1 20 jops (AB))
= M) (é 8 (Unajpe) Mok <(1) 8

10 10
— X X —-1_x !
- 7Tp7(a) (0 0) (Up (1/2 Oé)) ﬂ—p,R <O O)
T (b11) ‘7%0’1 2r)/2 (b12)
v Pl ) (S0 0] iz
A ( (=2n/2rs U;zzfizr)/zpﬂ(bzl) U?f (ba2)
10
_ X X -1
= e (0 0) (U 1/2a))
US'D (bll) 0
% oX A i(1—2r)/2p+s
1 0) . b1 0
— X * A
10 by; O
_ X 1,_Xx X -k
- (U e a)) T (0 0) U e a)jX (A <b21 0)>
10
— -1
= Uncrpw)” Moo (0 0)
o? (b11) O
¥ oX. A i(142r)/2p+s
]X’(l/z) ( _Z(1+2r)/2p+8( ) (U¢Zfl+2r)/2p+s(b21) 0
10
= (UX 1/204)) 17T1>)<,L (0 0)

yx Ufz r s(all) gf;w T s(a12) O-fi T s(bll) 0
Jx.1/2) (( WE?HZ )/2p+ " (1+2r)/2p+ " g(01+2 )/2p+

O i(142r) /2p+s (a21) O _i(1+2r)/2p+s (a2 O _i(1+2r)/2p+s
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—1
= (Upc1/2.0)
* o7, a oy a o?. b 0
Jx,(1/2) (( —z(1+2r)/2p+5( 11) —z(1+2r)/2p+3( 12))( ;1&14_271)/2]34_5( 11)

0 0 U—i(1+2r)/2p+s(b21) 0

_ x| (o a2 (b O
_ (j(x—a))* (allbll —g a12b21 8) ‘

Since AB € (af)? C LE(a)’ we find that a1101; +aj2be; € Lfa) by Lemma 2. Moreover,
airbi € (ag)? by (10). Hence we have

it (9 6] emotaraan < g (0 0)-

Taking norm closures, we have

P1(J{ ) ((a5)?) = I,
by (15) and (16). Since p; is idempotent, its range is closed. Hence we get the
assertion. U
Next, we put

0 0 (0 1
_ X X
U= Ty () (1 0) © Tp,(a) (0 0> ’
01 (0 0
Y X
U2 = Ty (a) (0 0) © Tp,(a) (1 ()> '

Then we state our main result.

and

Theorem 1. With the notations above, for o € C, uq|p, is an isometric isomor-
phism of Ly onto Ly. By the natural identification of Ly (resp. Lo ) with Lp )(/\/l, ©)
(resp. L (M), wilr, and us|r, give rise to isometric isomorphisms

Ure s LE (M) — LF (M, ), and
wa L:?a)(M ) L:fa)(M790)

These two maps are mutually inverse.
Moreover, let 6 be another n.f.s. weight on M. Then we have the chain rule:

U;w Uﬂ}@ — Uty

py(@)’
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Proof. By simple computations, we have usu; = p; and ujus = py. By [6, Theo-

rem 7.1], u; and uy are contractions. Hence we conclude that u|z, is an isometric

isomorphism of L; onto Lo, and that its inverse is given by us|r,, which is identified

€S,

with U;f’w.
To prove the chain rule, we consider § = M3(C)® M, and a weight 6 on S defined
by
ailr a1z ai13 ail a2 ai13
0| an as axs | = ¢(an) +¥(axn) +0(ass), |an azx as
asy asz asg as1 azz2 Gsg

Then ¢ is an n.f.s. weight on §. Similarly as in the 2 x 2 case, we can identify

norm
() 0 0
Ga) | 0 00 with Lf (M, ),
0 00
norm
0o 0 0
(G o) [0 (ag)? © with L (M, ¢))
0o 0 0
and
norm
00 O
(Jlw)* 10 0 0 with Lf, (M, 0).
0 0 (af)?
Since the modular action of 9 is given by
apy; a2 a3 qjg(au) Ug’w(au) Ug’e(als)
Ug a1 Q22 Q23 | = 05’@(@1) U¢(a22) Ug’e(azi;)
aszy azz A33 Ug’w(%l) Ug’¢(a32) Ug(a:s:a)
for all
air G2 413
a = | ao1 Q22 Q93 Eag and BGC,

a31 Q32 a33

. . . , 9, 0, s
under the above identifications, U;f (“;) (resp. Upy(qi), Up@)) is given by
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000 010
Ul:ﬁf;,(a) 1 00 OWI‘;(Q) 00 0},
000 000
000 000
resp. ngﬁg(a) 0 0 0 OWZ,(a)/ 00 1],
010 0 00
000 0 01
vs=7y [0 0 0]om 10 00
1 00 000
Since vs = vouy, the chain rule is proved. O
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