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THE RADON-NIKODYM THEOREM FOR
NON-COMMUTATIVE Lp-SPACES

HIDEAKI IZUMI

Abstract. Let M be a von Neumann algebra. We will show that for two normal
semifinite faithful weights ϕ, ψ on M, the corresponding non-commutative Lp-
spaces Lp(M, ϕ) and Lp(M, ψ) are isometrically isomorphic.

Regarding a von Neumann algebra M and its predual M∗ as a non-commutative

version of L∞-space and L1-space, respectively, the author [5] interpolated the above

two Banach spaces by applying Calderón’s complex method [1, 2] and obtained non-

commutative Lp-spaces Lp
(α)(M, ϕ), 1 < p < ∞, parametrized by a complex number

α arising from the modular action of a normal semifinite faithful weight ϕ on M.

This construction includes both Kosaki’s one ([7]), which is equivalent to our case

where ϕ is a state and α = ±1/2 and Terp’s one ([10]), which is equivalent to our

case where α = 0 and ϕ is possibly unbounded, namely a weight (cf. [5, Remark in

p.1036]).

The weight ϕ plays a rôle similar to a measure in the commutative case. The clas-

sical Radon-Nikodým theorem tells us that the Lp-spaces for two mutually absolutely

continuous measures on a measure space are mutually isometrically isomorphic. In-

deed, the isomorphism is given by the multiplication by a suitable power of the

Radon-Nikodým derivative.

In this paper, we will prove the non-commutative analogue of the Radon-Nikodým

theorem: for any given two n.s.f. weights ϕ, ψ on M, we will construct a natural

isometric map between the corresponding Lp-spaces. In the case where ϕ, ψ are

states, Kosaki tried to construct such an isometric map [7, Theorem 4.4]. His

map essentially consists of the multiplication by Connes’ Radon-Nikodým cocycles,

the non-commutative analogue of Radon-Nikodým derivative. To realize this, he

first considers “reiterated” compatible pair of L2- and L1-spaces and define the

isomorphic map between Lp-spaces (1 < p < 2) as the evaluation map of isomophism

between the two function spaces arising form the reiterated pairs for ϕ and ψ, and
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by using duality between Lp- and Lq-spaces (1/p + 1/q = 1) isomorphisms for all

p, 1 < p < ∞, are obtained. His idea is clear and reasonable enough, but it is often

hard to obtain analytic elements for the Radon-Nikodým derivative enough to show

that the evaluation maps are well-defined, unless good conditions are posed on the

states ϕ and ψ. In order to avoid this difficulty, we will make use of Connes’ trick of

2 × 2 matrices and bimodule actions established in [6], and obtain the desired map

directly, without recourse to reiteration. Note that our Lp-spaces corresponding to

the weights ϕ and ψ are isometrically isomorphic to Haagerup’s universal one [4], as

is mentioned in [5, p.1059 l.2 from bottom and Theorem 3.8], and hence isomorphic

to each other, but it is much more desirable to construct isomorphisms in a more

explicit way and independently of Haagerup’s result.

We briefly describe the construction of Lp-spaces [5]. First, we sketch the mod-

ular theory (for details, see [8, 9]). Let M be a von Neumann algebra and ϕ an

n.s.f. weight on M. Let {πϕ, nϕ, Λϕ} be the semi-cyclic representation induced from

(M, ϕ). We define the associated left Hilbert algebra Aϕ by

Aϕ = nϕ ∩ n∗
ϕ.

Next, we define an anti-linear operator S0 on Aϕ by

S0Λϕ(x) = Λϕ(x∗), x ∈ Aϕ.

Then S0 is preclosed. Let S be the closure of S0, and S = Jϕ∆ϕ be its polar

decomposition.

Then by [9, Chapter VI, Theorem 1.19], we have

∆it
ϕπϕ(M)∆−it

ϕ = πϕ(M), t ∈ R,

and hence we can define a one-parameter automorphism group {σϕ
t }t∈R on M by

πϕ(σϕ
t (x)) = ∆it

ϕπϕ(x)∆−it
ϕ , x ∈ M, t ∈ R. It can be extended to a complex

one-parameter automorphism group on aϕ
0 , where aϕ

0 = Λ−1
ϕ (Aϕ

0 ), Aϕ
0 = {ξ ∈

∩∞
n=−∞D(∆n

ϕ) | ∆n
ϕξ ∈ Aϕ, n ∈ Z} (D(T ) means the domain of a linear opera-

tor T , and Aϕ
0 is called the full Tomita algebra).

For α ∈ C, we put

Lϕ
(α) =

x ∈ M

∣∣∣∣∣∣∣
there exist a unique ϕ

(α)
x ∈ M∗ such that

ϕ
(α)
x (y∗z) = (πϕ(x)Jϕ∆α

ϕΛϕ(y)|Jϕ∆−α
ϕ Λϕ(z))

for all y, z ∈ aϕ
0

 .

We define two maps iϕ(α) : Lϕ
(α) → M and jϕ

(α) : Lϕ
(α) → M∗ by iϕ(α)(x) = x, jϕ

(α)(x) =

ϕ
(α)
x for x ∈ Lϕ

(α), and together with their adjoint maps, we define a compatible pair

(M,M∗)
ϕ
(α) by Figure 1. Then we apply Calderón’s complex interpolation method

to the pair (M,M∗)
ϕ
(α), and obtain a non-commutative Lp-space Lp

(α)(M, ϕ) as the

interpolation spaces C1/p(M,M∗)
ϕ
(α).
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Figure 1. a compatible pair (M,M∗)
ϕ
(α)

Next, we explain the theory of balanced weight (see [8, §3] for details). Let ϕ and ψ

be two n.s.f. weights on M. We consider the balanced weight χ on N = M2(C)⊗M
by

χ

(
a b

c d

)
= ϕ(a) + ψ(d),

(
a b

c d

)
∈ N+.

Then χ is an n.s.f. weight on N . Since

χ

((
a b

c d

)∗ (
a b

c d

))
= ϕ(a∗a) + ψ(b∗b) + ϕ(c∗c) + ψ(d∗d),

we have

nχ =

(
nϕ nψ

nϕ nψ

)
and the standard Hilbert space Hχ is canonically identified with Hϕ⊕Hψ⊕Hϕ⊕Hψ

via the map

Λχ

(
a b

c d

)
7→


Λϕ(a)

Λψ(b)

Λϕ(c)

Λψ(d)

 ,

(
a b

c d

)
∈ nχ.

Under this identification, Jχ, ∆χ and πχ are described as follows:

Jχ =


Jϕ 0 0 0

0 0 Jψ,ϕ 0

0 Jϕ,ψ 0 0

0 0 0 Jψ

 , (1)

∆χ =


∆ϕ 0 0 0

0 ∆ϕ,ψ 0 0

0 0 ∆ψ,ϕ 0

0 0 0 ∆ψ

 , (2)
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πχ(x) =


πϕ(x11) 0 πϕ(x12) 0

0 πψ(x11) 0 πψ(x12)

πϕ(x21) 0 πϕ(x22) 0

0 πψ(x21) 0 πψ(x22)

 , x =

(
x11 x12

x21 x22

)
∈ N . (3)

By [8, (3.16)], we have

Jϕ,ψπψ(a)Jψ,ϕ = Jϕπϕ(a)Jϕ, (4)

Jψπψ(a)Jψ,ϕ = Jψ,ϕπϕ(a)Jϕ (5)

for a ∈ M. Since, for t ∈ R,

πχ(σχ
t (x))

= ∆it
χπχ(x)∆−it

χ

=

0

B

B

B

B

B

B

B

@

∆it
ϕπϕ(x11)∆

−it
ϕ 0 ∆it

ϕπϕ(x12)∆
−it
ψ,ϕ 0

0 ∆it
ϕ,ψπψ(x11)∆

−it
ϕ,ψ 0 ∆it

ϕ,ψπψ(x12)∆
−it
ψ

∆it
ψ,ϕπϕ(x21)∆

−it
ϕ 0 ∆it

ψ,ϕπϕ(x22)∆
−it
ψ,ϕ 0

0 ∆it
ψπψ(x21)∆

−it
ϕ,ψ 0 ∆it

ψπψ(x22)∆
−it
ψ

1

C

C

C

C

C

C

C

A

belongs to N , equations (4) and (5) yield

Jϕ,ψ∆it
ϕ,ψπψ(a)∆−it

ϕ,ψJψ,ϕ = Jϕ∆it
ϕπϕ(a)∆−it

ϕ Jϕ, (6)

Jψ∆it
ψπψ(a)∆−it

ϕ,ψJψ,ϕ = Jψ,ϕ∆it
ψ,ϕπϕ(a)∆−it

ϕ Jϕ. (7)

Since Jχ and ∆it
χ commute, from (1) and (2) we have

∆it
ψ,ϕJϕ,ψπψ(a)Jψ,ϕ∆−it

ψ,ϕ = ∆it
ϕJϕπϕ(a)Jϕ∆−it

ϕ , (8)

∆it
ψJψπψ(a)Jψ,ϕ∆−it

ψ,ϕ = ∆it
ϕ,ψJψ,ϕπϕ(a)Jϕ∆−it

ϕ . (9)

Next, we examine the relationship between comptible pairs (N ,N∗)
χ
(α), (M,M∗)

ϕ
(α)

and (M,M∗)
ψ
(α). Note that, N∗ can be identified with M2(C) ⊗M∗ via〈(

κ11 κ12

κ21 κ22

)
,

(
x11 x12

x21 x22

)〉
N∗,N

=
2∑

i,j=1

〈κij, xij〉M∗,M

for κij ∈ M∗ and xij ∈ M. Moreover, we put

aϕ,ψ
0 =

{
x ∈ nψ | Λψ(x) ∈

⋂
n∈Z

D(∆n
ϕ,ψ)

}
and

aψ,ϕ
0 =

{
x ∈ nϕ | Λϕ(x) ∈

⋂
n∈Z

D(∆n
ψ,ϕ)

}
.

Then we can express the full Tomita algebra aχ
0 as follows.

aχ
0 =

{
a =

(
a11 a12

a21 a22

)
∈ nχ ∩ n∗

χ

∣∣∣∣∣ Λχ(a) ∈
⋂
n∈Z

D(∆n
χ)

}
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=

(
aϕ

0 aϕ,ψ
0

aψ,ϕ
0 aψ

0

)
(10)

Finally, we define

Lψ,ϕ
(α) =

x ∈ M

∣∣∣∣∣∣∣
there exist a unique (ψϕ)

(α)
x ∈ M∗ such that

(ψϕ)
(α)
x (y∗z) = (πϕ(x)Jϕ,ψ∆α

ϕ,ψΛψ(y)|Jϕ∆−α
ϕ Λϕ(z))

for all y ∈ aϕ,ψ
0 , z ∈ aϕ

0


and put Lϕ,ψ

(α) in a symmetric way.

Lemma 1.

(i) For y, z ∈ aψ,ϕ
0 , we have y∗z ∈ Lϕ

(α) and

ϕ
(−α)
y∗z (x) = (πψ(x)Jψ,ϕ∆α

ψ,ϕΛϕ(y)|Jψ,ϕ∆−α
ψ,ϕΛ(z)), x ∈ M.

(ii) If a ∈ Lψ,ϕ
(α) , then a∗ ∈ Lϕ,ψ

(α) and (ϕψ)
(α)
a∗ = (ψϕ)

(α)
a

∗
.

Proof. (i) Since y, z ∈ aϕ
0 , we find that y∗z ∈ Lϕ

(α) and

ϕ
(it)
y∗z(x) = (πϕ(x)Jϕ∆it

ϕΛϕ(y)|Jϕ∆it
ϕΛ(z)), x ∈ M (11)

for all t ∈ R (replace aϕ
0 by n∗

ϕnϕ in [5, Proposition 2.3], see also [5, Remark in

p. 1037]). On the other hand, for a, b ∈ aϕ
0 , we have

(πϕ(y∗z)Jϕ∆−it
ϕ Λϕ(a)|Jϕ∆−it

ϕ Λ(b))

= ϕ
(it)
y∗z(a

∗b) (by the definition of Lϕ
(α))

= (πϕ(a∗b)Jϕ∆it
ϕΛϕ(y)|Jϕ∆it

ϕΛ(z)) (by (11))

= (πψ(a∗b)Jψ,ϕ∆it
ψ,ϕΛϕ(y)|Jψ,ϕ∆it

ψ,ϕΛ(z)) (by (8)).

By analytic continuation, we have

(πϕ(y∗z)Jϕ∆−α
ϕ Λϕ(a)|Jϕ∆α

ϕΛ(b)) = (πψ(a∗b)Jψ,ϕ∆α
ψ,ϕΛϕ(y)|Jψ,ϕ∆−α

ψ,ϕΛ(z)).

This means that y∗z ∈ Lϕ
(−α) and

ϕ
(−α)
y∗z (x) = (πψ(x)Jψ,ϕ∆α

ψ,ϕΛϕ(y)|Jψ,ϕ∆−α
ψ,ϕΛ(z)), x ∈ M.

(ii) The assertion also follows from the analytic continuation of equation (9), so

the details will be omitted. ¤

Lemma 2. For the balanced weight χ of ϕ and ψ, we have

Lχ
(α) =

(
Lϕ

(α) Lψ,ϕ
(α)

Lϕ,ψ
(α) Lψ

(α)

)
and

χ(α)
a =

(
ϕ

(α)
a11 (ψϕ)

(α)
a12

(ϕψ)
(α)
a21 ψ

(α)
a22

)
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for a =

(
a11 a12

a21 a22

)
∈ Lχ

(α).

Proof. Let a =

(
a11 a12

a21 a22

)
∈ Lχ

(α). For any

y =

(
y11 y12

y21 y22

)
, z =

(
z11 z12

z21 z22

)
∈ aχ

0 ,

we have

χ
(α)
a (y∗z)

= (πχ(a)Jχ∆α
χΛχ(y)|Jχ∆−α

χ Λχ(z))

=


0

B

B

B

B

B

B

B

@

πϕ(a11)Jϕ∆α
ϕΛϕ(y11) + πϕ(a12)Jϕ,ψ∆α

ϕ,ψΛψ(y12)

πψ(a11)Jψ,ϕ∆α
ψ,ϕΛϕ(y21) + πψ(a12)Jψ∆α

ψΛψ(y22)

πϕ(a21)Jϕ∆α
ϕΛϕ(y11) + πϕ(a22)Jϕ,ψ∆α

ϕ,ψΛψ(y12)

πψ(a21)Jψ,ϕ∆α
ψ,ϕΛϕ(y21) + πψ(a22)Jψ∆α

ψΛψ(y22)

1

C

C

C

C

C

C

C

A

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0

B

B

B

B

B

B

B

@

Jϕ∆−α
ϕ Λϕ(z11)

Jψ,ϕ∆−α
ψ,ϕΛϕ(z21)

Jϕ,ψ∆−α
ϕ,ψΛψ(z12)

Jψ∆−α
ψ Λψ(z22)

1

C

C

C

C

C

C

C

A


= (πϕ(a11)Jϕ∆α

ϕΛϕ(y11)|Jϕ∆−α
ϕ Λϕ(z11))

+(πψ(a11)Jψ,ϕ∆α
ψ,ϕΛϕ(y21)|Jψ,ϕ∆−α

ψ,ϕΛϕ(z21))

+(πϕ(a12)Jϕ,ψ∆α
ϕ,ψΛψ(y12)|Jϕ∆−α

ϕ Λϕ(z11))

+(πψ(a12)Jψ∆α
ψΛψ(y22)|Jψ,ϕ∆−α

ψ,ϕΛϕ(z21))

+(πϕ(a21)Jϕ∆α
ϕΛϕ(y11)|Jϕ,ψ∆−α

ϕ,ψΛψ(z12))

+(πψ(a21)Jψ,ϕ∆α
ψ,ϕΛϕ(y21)|Jψ∆−α

ψ Λψ(z22))

+(πϕ(a22)Jϕ,ψ∆α
ϕ,ψΛψ(y12)|Jϕ,ψ∆−α

ϕ,ψΛψ(z12))

+(πψ(a22)Jψ∆α
ψΛψ(y22)|Jψ∆−α

ψ Λψ(z22)).

On the other hand, if we put

χ(α)
a =

(
κ11 κ12

κ21 κ22

)
∈ N∗,

then we have

χ
(α)
a (y∗z) = κ11(y

∗
11z11) + κ12(y

∗
12z11) + κ11(y

∗
21z21) + κ12(y

∗
22z21)

+κ21(y
∗
11z12) + κ22(y

∗
12z12) + κ21(y

∗
21z22) + κ22(y

∗
22z22).

Hence, by putting y12 = y21 = y22 = z12 = z21 = z22 = 0, we have

κ11(y
∗
11z11) = (πϕ(a11)Jϕ∆α

ϕΛϕ(y11)|Jϕ∆−α
ϕ Λϕ(z11))

for all y11, z11 ∈ aϕ
0 . This means a11 ∈ Lϕ

(α) and ϕ
(α)
a11 = κ11. Similarly, we can deduce

a12 ∈ Lψϕ
(α) and (ψϕ)

(α)
a12 = κ12,

a21 ∈ Lϕψ
(α) and (ϕψ)

(α)
a21 = κ21,

a22 ∈ Lψ
(α) and ψ

(α)
a22 = κ22.
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Conversely, let a =

(
a11 a12

a21 a22

)
∈

(
Lϕ

(α) Lψ,ϕ
(α)

Lϕ,ψ
(α) Lψ

(α)

)
. We claim a ∈ Lχ

(α). Let y, z be

as above. Then we have

(πψ(a11)Jψ,ϕ∆α
ψ,ϕΛϕ(y21)|Jψ,ϕ∆−α

ψ,ϕΛϕ(z21))

= ϕ
(−α)
y∗
21z21

(a11) (by Lemma 1 (i))

= ϕ
(α)
a11(y

∗
21z21) (by [5, Theorem 2.5]).

(12)

Similarly, we have

(πψ(a12)Jψ∆α
ψΛψ(y22)|Jψ,ϕ∆−α

ψ,ϕΛϕ(z21))

= (πψ(a∗
12)Jψ,ϕ∆−α

ψ,ϕΛϕ(z21)|Jψ∆α
ψΛψ(y22))

= (ϕψ)
(α)
a∗
12

(z∗21y22)

= (ψϕ)
(α)
a12(y

∗
22z21) (by Lemma 1 (ii)),

(πϕ(a22)Jϕ,ψ∆α
ϕ,ψΛψ(y12)|Jϕ,ψ∆−α

ϕ,ψΛψ(z12)) = ϕ(α)
a22

(y∗
12z12)

and

(πϕ(a21)|Jϕ,ψ∆−α
ϕ,ψΛψ(z12)) = (ϕψ)(α)

a21
(y∗

11z12).

Consequently, we have

(πχ(a)Jχ∆α
χΛχ(y)|Jχ∆−α

χ Λχ(z))

= ϕ
(α)
a11(y

∗
11z11) + (ψϕ)

(α)
a12(y

∗
12z11) + ϕ

(α)
a11(y

∗
21z21) + (ψϕ)

(α)
a12(y

∗
22z21)

+(ϕψ)
(α)
a21(y

∗
11z12) + ψ

(α)
a22(y

∗
12z12) + (ϕψ)

(α)
a21(y

∗
21z22) + ψ

(α)
a22(y

∗
22z22)

=

〈(
ϕ

(α)
a11 (ψϕ)

(α)
a12

(ϕψ)
(α)
a21 ψ

(α)
a22

)
, y∗z

〉
N∗,N

.

Hence a ∈ Lχ
(α). ¤

As a sub-compatible pair [6, Definition 6.4] of (N ,N∗)
χ
(α), we take((

M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

.

We compare the sub-compatible pair((
M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

and (M,M∗)
ϕ
(α). Let x ∈ M and κ ∈ M∗. Suppose

(jχ
(−α))

∗

(
x 0

0 0

)
= (iχ(−α))

∗

(
κ 0

0 0

)
.

Then, by the calculations in the proof of (2), we have

κ(a∗b) = (πϕ(x)Jϕ∆α
ϕΛϕ(a)|Jϕ∆−α

ϕ Λϕ(b)) for all y, z ∈ aϕ
0 , (13)
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and

κ(c∗d) = (πψ(x)Jψ,ϕ∆α
ψ,ϕΛϕ(c)|Jψ,ϕ∆−α

ψ,ϕΛϕ(d)) for all y, z ∈ aψ,ϕ
0 . (14)

Hence x ∈ Lϕ
(α) and ϕ

(α)
x = κ, and consequently,

(jϕ
(−α))

∗(x) = (iϕ(−α))
∗(κ)

(cf. [5, Proposition 3.6]). Conversely, suppose that (jϕ
(−α))

∗(x) = (iϕ(−α))
∗(κ). Then,

by the same argument as in (12), we have (14) as well as (13). Hence

(jχ
(−α))

∗

(
x 0

0 0

)
= (iχ(−α))

∗

(
κ 0

0 0

)
.

This equivalence of conditions tells us that by identifying(
M 0

0 0

) (
resp.

(
M∗ 0

0 0

))
with M (resp. M∗), the sub-compatible pair((

M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

is equivalent to (M,M∗)
ϕ
(α) in the sense of [6, Definition 6.17]. By [6, Proposi-

tion 6.18], the interpolation space

C1/p

((
M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

is isometrically isomorphic to Lp
(α)(M, ϕ) via the map

(jχ
(−α))

∗

(
x 0

0 0

)
+ (iχ(−α))

∗

(
κ 0

0 0

)
7→ (jϕ

(−α))
∗(x) + (iϕ(−α))

∗(κ)

for all

ξ = (jχ
(−α))

∗

(
x 0

0 0

)
+ (iχ(−α))

∗

(
κ 0

0 0

)
∈ C1.p

((
M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

with x ∈ M, κ ∈ M∗. In a similar way, we can construct a natural isometric map

between

C1/p

((
0 0

0 M

)
,

(
0 0

0 M∗

))χ

(α)

and Lp
(α)(M, ψ).

Then, by [5, Theorem 2.14],

(jχ
(−α))

∗

(
Lϕ

(α) 0

0 0

)norm

= C1/p

((
M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

(15)
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and

(jχ
(−α))

∗

(
0 0

0 Lψ
(α)

)norm

= C1/p

((
0 0

0 M

)
,

(
0 0

0 M∗

))χ

(α)

By [6, Proposition 6.22], the set (jχ
(−α))

∗((aχ
0 )2) is norm dense in Lp

(α)(N , χ). We put

L1 = (jχ
(−α))

∗

(
(aϕ

0 )2 0

0 0

)norm

⊂ Lp
(α)(N , χ) (16)

and

L2 = (jχ
(−α))

∗

(
0 0

0 (aψ
0 )2

)norm

⊂ Lp
(α)(N , χ).

Again by [6, Proposition 6.22], L1 (resp. L2) equals

C1/p

((
M 0

0 0

)
,

(
M∗ 0

0 0

))χ

(α)

resp. C1/p

((
0 0

0 M

)
,

(
0 0

0 M∗

))χ

(α)


and can be naturally identified with Lp

(α)(M, ϕ) (resp. Lp
(α)(M, ψ)).

Next, we recall the bimodule structure of Lp
(α)(N , χ) (see [6, §7]). For a ∈ N , we

put the left and the right actions by

πχ
p,(α)(a) = (Uχ

p,(−1/2,α))
−1 ◦ πχ

p,L(a) ◦ Uχ
p,(−1/2,α)

and

πχ
p,(α)

′(a) = (Uχ
p,(1/2,α))

−1 ◦ πχ
p,R

′(a) ◦ Uϕ
p,(1/2,α).

Here, Uχ
p,(−1/2,α) is an isometric isomorphism of Lp

(α)(N , χ) onto the left Lp-space

Lp
(−1/2)(N , χ) satisfying

Uχ
p,(−1/2,α)((j

χ
(−α))

∗(y)) = j∗χ,(1/2)(σ
χ
s−i(1+2r)/2p(y))

for all y ∈ (aχ
0 )2, where α = r + is, and πχ

p,L(a) is a bounded linear operator on

Lp
(−1/2)(N , χ) defined by

πχ
p,L(a)(j∗χ,(1/2)(x) + i∗χ,(1/2)(κ)) = j∗χ,(1/2)(ax) + i∗χ,(1/2)(aκ)

for all ξ = j∗χ,(1/2)(x) + i∗χ,(1/2)(κ) ∈ Lp
(−1/2)(N , χ), x ∈ N , κ ∈ N∗.

Similarly, Uχ
p,(1/2,α) is an isometric isomorphism of Lp

(α)(N , χ) onto the right Lp-

space Lp
(1/2)(N , χ) satisfying

Uχ
p,(1/2,α)((j

χ
(−α))

∗(y)) = j∗χ,(1/2)(σ
χ
s+i(1−2r)/2p(y))

for all y ∈ (aχ
0 )2, and πχ

p,R
′(b) is a bounded linear operator on Lp

(1/2)(N , χ) defined

by

πχ
p,R

′(b)(j∗χ,(1/2)(x) + i∗χ,(1/2)(κ)) = j∗χ,(1/2)(xb) + i∗χ,(1/2)(κb)

for all η = j∗χ,(−1/2)(x) + i∗χ,(−1/2)(κ) ∈ Lp
(1/2)(N , χ), x ∈ N , κ ∈ N∗.
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Next, we put

p1 = πχ
p,(α)

(
1 0

0 0

)
◦ πχ

p,(α)
′

(
1 0

0 0

)
,

and

p2 = πχ
p,(α)

(
0 0

0 1

)
◦ πχ

p,(α)
′

(
0 0

0 1

)
.

Since the left and the right actions commute, p1 and p2 are idempotent operators

on Lp
(α)(N , χ).

Proposition 1.

(i) The range of p1 is L1.

(ii) The range of p2 is L2.

Proof. The proofs of (i) and (ii) are similar, so we will prove only (i). Let

y =

(
y11 y12

y21 y22

)
∈ N .

Then, by [8, 3.10], there exist strongly* continuous one-parameter groups {σψ,ϕ
t }t∈R,

{σϕ,ψ
t }t∈R of isometries of M onto M such that

σχ
t (y) =

(
σϕ

t (y11) σϕ,ψ
t (y12)

σψ,ϕ
t (y21) σψ

t (y22)

)

for all t ∈ R. Moreover, suppose that y ∈ aχ
0 . By analytic continuation, the one-

parameter groups σψ,ϕ and σϕ,ψ can be uniquely extended to complex one-parameter

groups on aψ,ϕ
0 and aϕ,ψ

0 , respectively, such that

σχ
α(y) =

(
σϕ

α(y11) σϕ,ψ
α (y12)

σψ,ϕ
α (y21) σψ

α(y22)

)

for all α ∈ C. Let

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
∈ aχ

0 .
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Then (jχ
(−α))

∗(AB) ∈ Lp
(α)(N , χ) and we have

p1(j
χ
(−α))

∗(AB)

= πχ
p,(α)

(
1 0

0 0

)
πχ

p,(α)
′

(
1 0

0 0

)
(jχ

(−α))
∗(AB)

= πχ
p,(α)

(
1 0

0 0

)
(Uχ

p,(1/2,α))
−1πχ

p,R
′

(
1 0

0 0

)
Uχ

p,(1/2,α)(j
χ
(−α))

∗(AB)

= πχ
p,(α)

(
1 0

0 0

)
(Uχ

p,(1/2,α))
−1πχ

p,R
′

(
1 0

0 0

)
j∗χ,(−1/2)(σ

χ
i(1−2r)/2p+s(AB))

= πχ
p,(α)

(
1 0

0 0

)
(Uχ

p,(1/2,α))
−1πχ

p,R
′

(
1 0

0 0

)
j∗χ,(−1/2)(σ

χ
i(1−2r)/2p+s(A)σχ

i(1−2r)/2p+s(B))

= πχ
p,(α)

(
1 0

0 0

)
(Uχ

p,(1/2,α))
−1πχ

p,R
′

(
1 0

0 0

)

j∗χ,(−1/2)

(
σχ

i(1−2r)/2p+s(A)

(
σϕ

i(1−2r)/2p+s(b11) σϕ,ψ
i(1−2r)/2p+s(b12)

σψ,ϕ
i(1−2r)/2p+s(b21) σψ

i(1−2r)/2p+s(b22)

))

= πχ
p,(α)

(
1 0

0 0

)
(Uχ

p,(1/2,α))
−1

j∗χ,(−1/2)

(
σχ

i(1−2r)/2p+s(A)

(
σϕ

i(1−2r)/2p+s(b11) 0

σψ,ϕ
i(1−2r)/2p+s(b21) 0

))

= πχ
p,(α)

(
1 0

0 0

)
j∗χ

(
A

(
b11 0

b21 0

))

= (Uχ
p,(−1/2,α))

−1πχ
p,L

(
1 0

0 0

)
Uχ

p,(−1/2,α)j
∗
χ

(
A

(
b11 0

b21 0

))

= (Uχ
p,(−1/2,α))

−1πχ
p,L

(
1 0

0 0

)

j∗χ,(1/2)

(
σχ
−i(1+2r)/2p+s(A)

(
σϕ
−i(1+2r)/2p+s(b11) 0

σψ,ϕ
−i(1+2r)/2p+s(b21) 0

))

= (Uχ
p,(−1/2,α))

−1πχ
p,L

(
1 0

0 0

)

j∗χ,(1/2)

(
0

B

@

σϕ
−i(1+2r)/2p+s(a11) σϕ,ψ

−i(1+2r)/2p+s(a12)

σψ,ϕ
−i(1+2r)/2p+s(a21) σψ

−i(1+2r)/2p+s(a22)

1

C

A

0

B

@

σϕ
−i(1+2r)/2p+s(b11) 0

σψ,ϕ
−i(1+2r)/2p+s(b21) 0

1

C

A

)
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= (Uχ
p,(−1/2,α))

−1

j∗χ,(1/2)

(
0

B

@

σϕ
−i(1+2r)/2p+s(a11) σϕ,ψ

−i(1+2r)/2p+s(a12)

0 0

1

C

A

0

B

@

σϕ
−i(1+2r)/2p+s(b11) 0

σψ,ϕ
−i(1+2r)/2p+s(b21) 0

1

C

A

)

= (jχ
(−α))

∗

((
a11 a12

0 0

)(
b11 0

b21 0

))

= (jχ
(−α))

∗

(
a11b11 + a12b21 0

0 0

)
.

Since AB ∈ (aχ
0 )2 ⊂ Lχ

(α), we find that a11b11 +a12b21 ∈ Lϕ
(α) by Lemma 2. Moreover,

a11b11 ∈ (aϕ
0 )2 by (10). Hence we have

(jχ
(−α))

∗

(
(aϕ

0 )2 0

0 0

)
⊂ p1(j

χ
(−α))

∗((aχ
0 )2) ⊂ (jχ

(−α))
∗

(
Lϕ

(α) 0

0 0

)
.

Taking norm closures, we have

p1(j
χ
(−α))

∗((aχ
0 )2)

norm
= L1

by (15) and (16). Since p1 is idempotent, its range is closed. Hence we get the

assertion. ¤

Next, we put

u1 = πχ
p,(α)

(
0 0

1 0

)
◦ πχ

p,(α)
′

(
0 1

0 0

)
,

and

u2 = πχ
p,(α)

(
0 1

0 0

)
◦ πχ

p,(α)
′

(
0 0

1 0

)
.

Then we state our main result.

Theorem 1. With the notations above, for α ∈ C, u1|L1 is an isometric isomor-

phism of L1 onto L2. By the natural identification of L1 (resp. L2) with Lp
(α)(M, ϕ)

(resp. Lp
(α)(M, ψ)), u1|L1 and u2|L2 give rise to isometric isomorphisms

Uψ,ϕ
p,(α) : Lp

(α)(Mϕ) → Lp
(α)(M, ψ), and

Uϕ,ψ
p,(α) : Lp

(α)(Mψ) → Lp
(α)(M, ϕ).

These two maps are mutually inverse.

Moreover, let θ be another n.f.s. weight on M. Then we have the chain rule:

U θ,ψ
p,(α) ◦ Uψ,ϕ

p,(α) = U θ,ϕ
p,(α).

— 148 —



Proof. By simple computations, we have u2u1 = p1 and u1u2 = p2. By [6, Theo-

rem 7.1], u1 and u2 are contractions. Hence we conclude that u1|L1 is an isometric

isomorphism of L1 onto L2, and that its inverse is given by u2|L2 , which is identified

with Uϕ,ψ
p .

To prove the chain rule, we consider S = M3(C)⊗M, and a weight δ on S defined

by

δ

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = ϕ(a11) + ψ(a22) + θ(a33),

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∈ S+.

Then δ is an n.f.s. weight on S. Similarly as in the 2 × 2 case, we can identify

(jδ
(−α))

∗

(aϕ
0 )2 0 0

0 0 0

0 0 0


norm

with Lp
(α)(M, ϕ),

(jδ
(−α))

∗

0 0 0

0 (aψ
0 )2 0

0 0 0


norm

with Lp
(α)(M, ψ)

and

(jδ
(−α))

∗

0 0 0

0 0 0

0 0 (aθ
0)

2


norm

with Lp
(α)(M, θ).

Since the modular action of δ is given by

σδ
β

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 σϕ
β (a11) σϕ,ψ

β (a12) σϕ,θ
β (a13)

σψ,ϕ
β (a21) σψ

β (a22) σψ,θ
β (a23)

σθ,ϕ
β (a31) σθ,ψ

β (a32) σθ
β(a33)


for all

a =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∈ aδ
0 and β ∈ C,

under the above identifications, Uψ,ϕ
p,(α)

(
resp. U θ,ψ

p,(α), U θ,ϕ
p,(α)

)
is given by
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v1 = πδ
p,(α)

0 0 0

1 0 0

0 0 0

 ◦ πδ
p,(α)

′

0 1 0

0 0 0

0 0 0

 ,

resp. v2 = πδ
p,(α)

0 0 0

0 0 0

0 1 0

 ◦ πδ
p,(α)

′

0 0 0

0 0 1

0 0 0

 ,

v3 = πδ
p,(α)

0 0 0

0 0 0

1 0 0

 ◦ πδ
p,(α)

′

0 0 1

0 0 0

0 0 0


 .

Since v3 = v2v1, the chain rule is proved. ¤
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algèbres de von Neumann, Ann. Inst. Fourier 24 (1974), 121–155.

[4] U. Haagerup, Lp-spaces associated with an arbitrary von Neumann algebra, Col-

loques Internationaux CNRS, No.274, 175–184.

[5] H. Izumi, Constructions of non-commutative Lp-spaces with a complex param-

eter arising from modular actions, Int. J. Math. 8 (1997), 1029–1066.

[6] H. Izumi, Natural bilinear forms, natural sesquilinear forms and the associated

duality of non-commutative Lp-spaces, Int. J. Math. 9 (1998), 975–1039.

[7] H. Kosaki, Applications of the Complex Interpolation Method to a von Neumann

Algebra: Non-commutative Lp-Spaces, J. Funct. Anal. 56 (1984), 29–78.
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