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ELEMENTARY PROPERTIES OF CIRCLE MAP
SEQUENCES

FUMIHIKO NAKANO

Abstract. We study the combinatorial and structural properties of the circle
map sequences. We introduce an embedding procedure which gives a map
Φ : Ω → W := {R,L}N from the hull(closure of the set of translates) to the
sequence of embedding operations through which we study the structure of
Ω. We also study the set of admissible words and classify them in terms of
their appearance.

1. Introduction

The circle map v0 ∈ {0, 1}Z of rotation number α ∈ (0, 1) ∩ Qc is defined by

v0(n) := 1[1−α,1)(nα mod 1), n ∈ Z.

We first recall its basic properties [6]. Let

α = [a1, a2, . . .] :=
1

a1 +
1

a2 + ...

, αn := [a1, a2, . . . , an] =
pn

qn

be the continued fraction expansion of α and its rational approximation (an ∈ N
and pn, qn are relatively prime). pn and qn satisfy{

pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1
n ≥ 0 (1.1)

with (p−1, q−1) = (1, 0), (p0, q0) = (0, 1). Let sn ∈ A∗ :=
⋃

n≥1{0, 1}n be the word
given recursively by

s−1 = 1, s0 = 0, s1 = sa1−1
0 s−1, sn+1 = san+1

n sn−1, n ≥ 1.

Then sn has length qn and coincides with (v0(1), v0(2), . . . , v0(qn)) and also coin-
cides with (v0(−qn + 1), v0(−qn + 2), . . . , v0(−1), v0(0)) if n is even; in other words,
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(v0(n))n≥1 is the right limit of sn and (v0(n))n≤0 is the left limit of s2n. sn (n ≥ 1)
can be written as

sn = πn

{
(10) (n : even)
(01) (n : odd)

where πn is a palindrome. If α is the reciprocal number of the golden number
(α = 1

τ
:=

√
5−1
2

= [1, 1, . . .]), then s1 = 1, s2 = 10, s3 = 101, s4 = 10110, . . . and v0

is called the Fibonacci word which is thoroughly studied. We give the topology of
pointwise convergence on {0, 1}Z (the product topology of the discrete topology on
{0, 1}) and let

Ω := closure of {v0(· − m)}m∈Z

which is called the hull of v0 and has the following representation.

Ω = {vθ}θ∈T ∪ {v′
0(· − m)}m∈Z (1.2)

vθ(n) := 1[1−α,1)(nα + θ mod 1), θ ∈ T,

v′
0(n) := 1(1−α,1](nα mod 1).

Circle map sequences have the property that (1) minimal complexity, and (2) aperi-
odic and balanced. Actually, these three conditions are mutually equivalent [7], and
for that reason circle map sequences are sometimes called Sturmian sequences.

The purpose of this paper is to study some elementary properties of v0. In
Section 2, we consider Fibonacci word and introduce an “embedding procedure” to
construct elements of Ω to study the the combinatorial properties of v0. This is
essentially a special case of the “desubstitution” [3, 6], which is studied well, though
the formulation given here is slightly different. We review the relationship between
this embedding and the two interval exchange dynamical system inheriting in the
Fibonacci word, by which we study property of a measure on T induced by a random
embedding.

In Section 3, we consider the set of admissible words of v0 and study how they
distribute in v0. We classify them in terms of their occurrence in v0 and compute
their frequency. As is discussed (in more general context) in [1], this classification
gives us an alternative proof of the three-distance theorem[10]. In Appendix 1, we
collect some basic properties of the embedding procedure. In Appendix 2, we discuss
a combinatorial property of the circle map sequence which follows easily from the
embedding procedure.

In what follows, the definition of notation |A| for a set A should be clear from the
context: it means the number of its elements if A ⊂ Z, while it means the Lebesgue
measure if A ⊂ R.

2. An embedding procedure

In this section, we consider the case of Fibonacci word: an = 1. We first define the
“embedding procedure.”

— 86 —



2.1. Definition

We first explain the motivation of considering this procedure. Since we have sn+1 =
snsn−1 in Fibonacci word, it is possible to embed sk to a larger sk′ by either of the
following two operations.

(i) R : sn 7→ sn+1 := snsn−1,

(ii) L : sn 7→ sn+1sn =: sn+2.

After infinitely many operations, we will have an element of Ω. The converse will
turn out to be true: every v ∈ Ω is obtained by this procedure. Utilizing this fact, we
would like to consider an analogue of the “up-down generation” in the construction
of the Penrose tiling. To define it properly, we first recall the results in [2] which
applies to any circle map sequences. The (n− 1, n)-partition is the non-overlapping
covering of a sequence {v(n)}n∈Z by two words sn−1, sn.

Lemma 2.1 [2] For any n ≥ 0, v ∈ Ω has unique (n − 1, n)-partition.

Corollary 2.1 [2] In the (n − 1, n)-partition of v ∈ Ω,

(i) sn−1 does not appear consecutively (sn−1 is always isolated);

(ii) sn always appears an+1 or (an+1 + 1) times successively.

Let
W := {(O1, O2, . . .) | Oj = R or L} = {R,L}N.

For given v ∈ Ω, we construct the sequence (O1, O2, . . .) ∈ W of operations by the
following procedure.

(i) When v(0) = 1, v(0) is covered by s1 in the (0, 1)-partition. Set O1 =
R. When v(0) = 0, v(0) is covered by s2 in the (1, 2)-partition, for we have
(v0(−1), v0(0), v0(1)) = (1, 0, 1). Set O1 = L.

(ii) Suppose v(0) is covered by a block sn in the (n − 1, n)-partition after the
k-th step. If we find sn−1 in the right to sn in the (n − 1, n)-partition, then v(0)
is covered by sn+1 in the (n, n + 1)-partition. In this case we regard that the block
sn containing v(0) grow up to sn+1 by putting sn−1 to its right end, so that we set
Ok+1 = R.

sn

↓ R

sn sn−1

||
sn+1

If we find sn in the right to sn, then v(0) is still covered by sn in the (n, n + 1)-
partition, and is then covered by sn+2 in the (n + 1, n + 2)-partition. In this case,
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we regard that the block sn containing v(0) grow up to sn+2 by putting sn+1 to its
left end, so that we set Ok+1 = L.

sn sn−1 sn sn

L ↓
sn+1 sn

||
sn+2

In other words, if we find sn−1 in the right to sn in the (n− 1, n)-partition, then we
set Ok+1 = R; otherwise we find sn+1 in the left to sn in the (n + 1, n + 2)-partition,
and we set Ok+1 = L. Hence we have defined a map Φ : Ω → W .

Remark 2.1 It is possible to define this map for any circle map sequences. In the
n-th level, the embedding procedure is given by

R(n,k) : sn 7→ san+1
n sn−1, k = 1, 2, . . . , an+1

Ln : sn 7→ s
an+2

n+1 sn

R(n,k) means to embed sn to the k-th sn in sn+1 = san+1
n sn−1. This method also

applies to the period-doubling sequence which is the fixed point of the substitution:
1 7→ 10, 0 7→ 11.

2.2. The inverse map

To see Φ is surjective and to find the subset of Ω on which Φ is one to one, we study
how to reconstruct v ∈ Ω for given (O1, O2, . . .) ∈ W (Oj = R or L).

O1 = R: Set v(0) = 1. Then v(0) is covered by s1 in the (0, 1)-partition.
O1 = L: Set v(0) = 0. Then we have (v(−1), v(0), v(1)) = (1, 0, 1) so that v(0)

is covered by s2 in the (1, 2)-partition.
After the k-th step, suppose that v(0) is covered by sn in the (n−1, n)-partition.
Ok+1 = R: we put sn−1 to the right end of sn in the (n − 1, n)-partition.

n

↓ R

n n − 1

||
n + 1

Then v(0) is covered by sn+1 in the (n, n + 1)-partition.
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Ok+1 = L: we put sn+1 to the left end of sn in the (n, n + 1)-partition.

n

L ↓
n + 1 n

||
n + 2

Then v(0) is covered by sn+2 in the (n + 1, n + 2)-partition. We remark that,
when v(0) is covered by sn in the (n − 1, n)-partition, a number of letters has
been further determined to the right of that and thus, in most cases, repeating
this procedure determines a bi-infinite sequence (v(n))n∈Z. In fact, we always find
πn+1 to the next to sn, since we have either snsn−1sn (Ok+1 = R) or snsnsn−1

(Ok+1 = L) in the (n − 1, n)-partition. Because sn−1πn = πn+1, they are equal to
either snπn+1(10) or snπn+1(01). However if Oj = R for large j, we have a semi-
infinite sequence: (v(n))n≥−N for some N , and (v(n))n≤−N−1 is not determined. In
this case (v(n))n≥−N is equal to a translation of (v0(n))n≥1: v(−N +n− 1) = v0(n),
n ≥ 1. So by (1.2) we set either (v(−N − 2), v(−N − 1)) = (1, 0) or (0, 1) and
further set v(−N − n) = v0(n − 2) for n ≥ 3 so that we obtain an element of

ΩR := {v0(· + m), v′
0(· + m) | m ≥ 1}.

Hence, Φ is two to one on ΩR and one to one elsewhere. Under the topology of the
pointwise convergence on Ω and W , Φ and (Φ : Ωc

R → Φ(Ωc
R))−1 are continuous. Φ

has an unique fixed point f := (L,R,R, L,R, L,R,R, L, . . .) if we identify R,L with
1, 0 respectively and v(n) with On+1.

Remark 2.2 By this method we see the correlation (constraint condition) of letters
between different sites. In fact, if n is even, both (10)snπn+1(10) and (01)snπn+1(10)
are allowed while only (01)snπn+1(01) is possible (for odd n, exchange (10) with
(01)).

2.3. Relation to the division of intervals in T

Let Ψ : T → Ω be the map θ ∈ T 7→ vθ ∈ Ω. We consider the inverse image of the
cylinder set of Ω: e.g.,

Ψ−1({v(0) = 1}) =

[
1

τ 2
, 1

)
, Ψ−1({v(0) = 0}) =

[
0,

1

τ 2

)
. (2.1)

— 89 —



If we go further, each interval is divided into two intervals with ratio τ : 1.

Ψ−1({(v(0), v(1), v(2)) = (1, 1, 0)}) =

[
1 − 1

τ 3
, 1

)
,

Ψ−1({(v(0), v(1), v(2)) = (1, 0, 1)}) =

[
1

τ 2
, 1 − 1

τ 3

)
,

Ψ−1({(v(0), v(1), v(2), v(3)) = (0, 1, 1, 0)}) =

[
1

τ 4
,

1

τ 2

)
,

Ψ−1({(v(0), v(1), v(2), v(3)) = (0, 1, 0, 1)}) =

[
0,

1

τ 4

)
.

Similarly, we consider Ψ−1(An) for An = {v ∈ Ω | v(0) = a0, v(1) = a1, . . . , v(n) =
an} which corresponds to the two interval exchange dynamical system given by (2.1).
As n becomes large, we have many intervals whose endpoints belong to

D− = {x | x ≡ nα (mod 1), n = 0,−1,−2, . . .}

Since the induced system given by the first return map to each small interval is again
the two interval exchange, each new interval is given by dividing each intervals into
two ones with ratio τ : 1, with the longer one has the previous dividing point as one
of its endpoints.

·······
·······

········

········

τ−1(R) τ−2(L)
1 0(θ = 1) (θ = 0)

τ−3(L)
110

τ−2(R)
101

τ−3(R)
0110

τ−4(L)
0101

τ−5

110110
τ−4

110101
6

τ−3

10110
τ−4

10101
τ−5

0110110
6

τ−4

0110101

6

τ−5

010110110
6

τ−6

010110101

6

The operations R, L correspond to those division of intervals in the following
way [3].

Theorem 2.1 The operation R (resp. L) corresponds to creating the longer (resp.
smaller) interval.

Proof. Since the division of intervals corresponds to the words snπn+1(10) or snπn+1

(01), under the mapping Ψ : T → Ω, it corresponds either to R or L. It then suffices
to note that L creates the word with the same ending of the original one, while R
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creates the word with the opposite ending: · · · (01)
L→ · · · (01), · · · (01)

R→ · · · (10).
¤

Remark 2.3 If α 6= 1
τ
(=

√
5−1
2

), we do not have such a simple relation except for
quadratic numbers. In fact, we have many types R(n,k)’s of embedding operations
for general α and the induced system given by the first return map is not the two
interval exchange in general.

Remark 2.4 For given w = (O1, O2, . . .) ∈ W , we can compute the corresponding
θ = (Φ ◦ Ψ)−1(w) as follows.

θ =
∞∑

n=0

dn,

d0 = 1, d1 = −1

τ
, dn+1 = (−1)an+1

(
1

τ

)an+1 (
1

τ 2

)bn

, n ≥ 1

where an := ]{1 ≤ k ≤ n : Ok = R}, bn := ]{1 ≤ k ≤ n : Ok = L}. This is
equivalent to represent θ ∈ T in terms of the sum of { 1

τk }k≥1.

Remark 2.5 For w = (w1, w2, . . . , wn) ∈ A∗, let w−1 := (wn, . . . , w2, w1) be its
mirror image. Then tn := s−1

n satisfies

tn =

{
(01)πn (n : even)
(10)πn (n : odd)

and tn+1 = tn−1tn.

Since v ∈ Ω ⇐⇒ v−1 ∈ Ω, v ∈ Ω always has (n − 1, n)-partition by tn so that we
can define embedding R′, L′ by using tn’s in the same way as R, L (we set v(−1)
as the starting point). We have analogue of Theorem 2.1, and for n even both
(01)πn+1tn(10) and (01)πn+1tn(01) are possible while only (10)πn+1tn(10) is allowed.

2.4. A measure induced by the random embedding

Let m be a measure on {R,L} with m({R}) = p ∈ (0, 1), m({L}) = q := 1 − p and
let P := ⊗Nm. In this section we study the measure µ on T induced by the mapping
Φ ◦ Ψ : T → W . This may be regarded as an analogue of the Bernoulli convolution
problem [8]. Since P({Oj = R for large j}) = P({Oj = L for large j}) = 0, µ is a
probability measure. It is easy to see that µ does not have atoms.

Theorem 2.2 (i) If p = 1
τ
, q = 1

τ2 , µ is equal to the Lebesgue measure.

(ii) If 1
τ2 < p < 1

2
, µ has singular continuous component.
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Proof. (i) follows from Theorem 2.1. To prove (ii), we use the following fact [9]: set

Dµ(x) := lim sup
δ↓0

µ(x − δ, x + δ)

δ
, A := {x|Dµ(x) = ∞}.

Then 1Adµ is singular w.r.t. the Lebesgue measure. Take any (O′
1, O

′
2, . . . , O

′
n) ∈

{R,L}n and let kn = ]{1 ≤ j ≤ n | O′
j = R}, ln = ]{1 ≤ j ≤ n | O′

j = L},
kn + ln = n. Then In = In(O′

1, O
′
2, . . . , O

′
n) := (Φ ◦ Ψ)−1({w = (O1, O2, . . .) ∈

W | O1 = O′
1, O2 = O′

2, . . . , On = O′
n}) satisfies

|In| =

(
1

τ

)kn
(

1

τ 2

)ln

=
1

τ kn+2ln
, µ(In) = pknqln

so that we have

rn :=
µ(In)

|In|
=

pknqln(
1
τ

)kn+2ln
= (pτ)n

(
(1 − p)τ

p

)ln

.

Define x and α by

pτ =: x < 1,
τ

x
(τ − x) = x−α,

Then we have α > 1 and

rn = xnx−αln =

(
1

x

)αln−n

(2.2)

For w = (O1, O2, . . .) ∈ W let kn(w) = ]{1 ≤ j ≤ n | Oj = R}, ln(w) = ]{1 ≤ j ≤
n | Oj = L}, kn(w) + ln(w) = n. By (2.2) µ|A is singular continuous, where

A := (Φ ◦ Ψ)−1({w ∈ W | ln(w) >
n

α
for infinitely many n }).

Lemma 2.2 below shows µ(A) > 0. ¤

Let
B = (Φ ◦ Ψ)−1({w ∈ W | ln(w) ≤ n

α
for infinitely many n })

so that T = A ∪ B = A ∪ (B \ A).

Lemma 2.2 If 1
τ2 < p < 1

2
, µ(A) > 0.

Proof. Suppose µ(A) = 0, then µ(B \ A) > 0. By definition,

A \ B = (Φ ◦ Ψ)−1({w ∈ W | n À 1, ln(w) >
n

α
})

B \ A =
⋃
N≥1

⋂
n≥N

(Φ ◦ Ψ)−1({x | kn(w) ≥ (1 − 1

α
)n}) =:

⋃
N≥1

(B \ A)N .
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Since (B \A)N is monotone increasing, µ((B \A)N) > 0 for some N . Let (B \A)′N
be the set with R and L being exchanged in (B \ A)N :

(B \ A)′N =
⋂

n≥N

(Φ ◦ Ψ)−1({w ∈ W | ln(w) ≥ (1 − 1

α
)n}).

Since 1
τ2 < p < 1

τ
, ln(w) ≥ (1 − 1

α
)n implies ln(w) > n

α
so that (B \ A)′N ⊂ A \ B.

Hence
µ((B \ A)′N) ≤ µ(A \ B)(= 0).

It suffices to show
(0 <) µ((B \ A)N) ≤ µ((B \ A)′N) (2.3)

which leads us to a contradiction. To see (2.3), note that we may assume

lN−1((Φ ◦ Ψ)(x)) ≤ N − 1

2

for x ∈ (B \ A)N by letting N large if necessary. Hence if we exchange R with L,
]L increases in (B \ A)N . Since µ(In) =

(
x
τ

)n
(τxα)−ln and since τxα < 1 for p < 1

2
,

µ(In) is monotone increasing w.r.t. ln which implies (2.3). ¤

3. Some combinatorial aspects of admissible words

In this section, we consider general circle map sequences except in subsection 3.2,
and use the symbol A, B instead of 1, 0 respectively. Let Pn be the set of admissible
words(factors of v0) of length n. |Pn| = n + 1 is well known. We can find tn ∈ Pn

uniquely such that tnA, tnB ∈ Pn+1 and for a ∈ Pn \ {tn} there exists unique
C = C(a) ∈ {A,B} with aC(a) ∈ Pn+1

1. For any k with n ≤ qk − 2 we have
tn = (πk(n), πk(n − 1), . . . , πk(1)). In this section we study some combinatorial
properties of admissible words.

3.1. Exhausting point

For n ≥ 2, let f(n) ∈ N be the smallest number where we have seen all words in Pn

in (v0(n))n≥1. For instance in the Fibonacci word,

ABAA2BAB3A4ABAA5B6AB · · ·

∗n corresponds to f(n). Hence f(2) = 4, f(3) = 7, f(4) = 8 in this case.

Theorem 3.1 Let n ≥ 2 and take k = 0, 1, . . . such that

qk ≤ n ≤ qk+1 − 1.

Then writing n = qk + j, we have

f(qk + j) = qk+1 + qk − 1 + j, j = 0, 1, . . . , qk+1 − qk − 1. (3.1)

1This is called the right special factor [6].
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The corresponding exhausting points lies from the letter next to sk+1πk to the last
letter in sk+1πk+1. Therefore (v0(f(n)))n≥2 coincides with the original circle map
sequence (v0(n))n≥1.

Corollary 3.1 v0(f(n + 1)) = v0(n), for n = 1, 2, 3, . . ..

Let g(n) ∈ N be the smallest number where we have seen both tn−1A and tn−1B.
As a preparation, we prove the following lemma.

Lemma 3.1 f(n) is the smallest number satisfying following conditions.

(i) f(n − 1) + 1 ≤ f(n),

(ii) g(n) ≤ f(n).

Proof. We first show that f(n) satisfies (i), (ii). (ii) is clear. We should have
f(n−1) < f(n), because cutting the rightmost letter in words in Pn yields all words
in Pn−1. Hence f(n) satisfies (i). Thus it suffices to show that if a number f(n)
satisfies (i), (ii), then we have already seen all words in Pn at f(n). By the equation
Pn = {aC(a)}a∈Pn−1\{tn−1} ∪ {tn−1A, tn−1B}, this is clear. ¤

Proof of Theorem 3.1. We prove (3.1) by induction on k. Let

k0 =


2 (a1 = 1, a2 = 1)
1 (a1 = 1, a2 ≥ 2, or a1 = 2)
0 (a1 ≥ 3)

so that qk0 ≤ 2 ≤ qk0+1 − 1. For n = 2, 3, . . . , qk0+1 − 1, it is straightforward to see
(3.1). We next suppose that (3.1) holds true for k0, k0 + 1, . . . , k − 1 and would like
to prove it for k(≥ k0 +1). Let qk ≤ n ≤ qk+1−1. We note that tn−1 is a subword of
πk+1 and is not a subword of πk. Since sk+1πk = skπk+1, both πk+1AB and πk+1BA
are subwords of sk+1sk, which implies

g(n) ≤ qk+1 + qk − 1. (3.2)

On the other hand, since we suppose (3.1) for k − 1, f(qk − 1) = 2qk − 2. In
(v0(1), v0(2), . . . , v0(2qk − 2)), we have (2qk − 2) − (qk − 1) + 1 = qk of words of
length qk − 1. Since |Pqk−1| = qk, we find each element of Pqk−1 only once in
(v0(1), v0(2), . . . , v0(2qk − 2)). Hence tqk−1 appears only once in skπk. In what
follows, we suppose that k is even. For k odd, we have only to exchange AB with
BA in the argument below. Since tqk−1 is the last subword of length qk−1 in skπk−1,
it appears ak+1 times in sk+1 and they have the form of tqk−1BA. The other one
tqk−1AB appears as the last subword of sk+1sk. Since tqk−1 appears only once in
skπk, they exhaust all tqk−1’s in sk+1sk. Therefore we have g(qk) = qk+1 + qk − 1.
Since f(qk − 1) < g(qk),

f(qk) = qk+1 + qk − 1,
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by Lemma 3.1. By the monotonicity of g, we have g(n) ≥ qk+1 + qk − 1 for qk ≤
n ≤ qk+1 − 1 and together with (3.2), g(n) = qk+1 + qk − 1 for such n. By Lemma
3.1 again,

f(qk + j) = g(qk + j) + j = qk+1 + qk − 1 + j

for j = 0, 1, . . . , qk+1 − qk − 1 which proves (3.1) for k. ¤

3.2. The classification of Pn and frequency: Fibonacci case

We consider the classification of words in Pn in terms of their frequency. We study
Fibonacci case in this subsection. Let {F (n)} be the Fibonacci sequence defined by

F1 = 1, F2 = 2, Fn+1 = Fn + Fn−1.

By (1.1), Fn = qn = |sn|.
Theorem 3.2 Let an = 1. We can decompose Pn into three disjoint subsets

Pn = An ∪ Bn ∪ Cn

which are given explicitly as follows. Let n = Fk + j, j = 0, 1, . . . , Fk−1 − 1.

An : (v0(1), . . . , v0(Fk + j))
. . .

(v0(1 + m), . . . , v0(Fk + j + m)) (m = 0, 1, . . . , Fk−1 − j − 2)
. . .

(v0(Fk−1 − j − 1), . . . , v0(Fk+1 − 2))

Bn : (v0(Fk−1 − j), . . . , v0(Fk+1 − 1))
. . .

(v0(Fk−1 − j + m), . . . , v0(Fk+1 − 1 + m)) (m = 0, 1, . . . , Fk−2 + j)
. . .

(v0(Fk), . . . , v0(2Fk + j − 1))

An : (v0(Fk + 1), . . . , v0(2Fk + j))
. . .

(v0(Fk + 1 + m), . . . , v0(2Fk + j + m)) (m = 0, 1, . . . , Fk−1 − j − 2)
. . .

(v0(Fk+1 − j − 1), . . . , v0(Fk+2 − 2))

Cn : (v0(Fk+1 − j), . . . , v0(Fk+2 − 1))
. . .

(v0(Fk+1 − j + m), . . . , v0(Fk+2 − 1 + m)) (m = 0, 1, . . . , j)
. . .

(v0(Fk+1), . . . , v0(Fk+2 + j − 1)).
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They are characterized as follows. An consists of all words in Pn contained in
skπk−1(= πk+1) and each ones in An appear twice before arriving at f(n), while
those in Bn, Cn appear only once. Starting from v0(1), we see words in An one after
another. Words in Bn begin to appear after we have seen all words in An. Words in
An appear for the second time after we have seen words in Bn. Words in Cn appear
after we have seen all words in An for the second time. Moreover

(i) |An| = (Fk−1−j−1) and each word in An has overlaps of length j or (Fk−2+j)
with itself.

(ii) |Bn| = (Fk−2 + j + 1) and each word in Bn has overlaps of length j or has
distance (Fk−1 − j) with itself.

(iii) |Cn| = (j + 1) and each word in Cn has distance (Fk−1 − j) or (Fk+1 − j) with
itself.

Since each words in An has overlaps with itself, it can cover v ∈ Ω if overlap is
allowed. Penrose tiling has analogous property [4, 5].
Proof. Before arriving at f(n) = f(Fk + j) = Fk+2 + j − 1, we see Fk+1 words of
length n. Since |Pn| = (Fk + j + 1), at least Fk+1 − (Fk + j + 1) = Fk−1 − j − 1
words should appear more than twice. On the other hand since sk−1πk = πk+1, the
words of length n contained in πk+1 (there are Fk−1 − j − 1 of these) should appear
at least twice before arriving at f(n). Let An be the set of such words. Then the
words in Pn \ An appears only once. The properties of Bn, Cn follows from looking
at words in (v0(1), . . . , v0(f(n))) explicitly, and the length of overlaps and distance
follows from the (k − 1, k)-partition of v0. ¤

We next compute the frequency of words in Pn.

Theorem 3.3 Let v ∈ Ω and let n = Fk + j, j = 0, 1, . . . , Fk−1 − 1. For a ∈ Pn,

lim
N→∞

] a’s in (v(1), v(2), . . . , v(N))

N
=


1

τ k−1
(a ∈ An)

1

τ k
(a ∈ Bn)

1

τ k+1
(a ∈ Cn)

Proof. Due to the unique ergodicity of the dynamical system (Ω, T ) ((Tv)(n) :=
v(n + 1), v ∈ Ω is the shift operator), we can work on some subsequence. In the
(k−1, k)-partition, the frequency of sk, sk−1 are equal to α, 1−α respectively. Thus
when |sk|+ |sk−1| = N , ]{sk} = Nα(1+ o(1)), ]{sk−1} = N(1−α)(1+ o(1)) so that
the number of letters is equal to {αFk + (1 − α)Fk−1}N(1 + o(1)). Each word in
An is found in every sk, sk−1 while each word in Bn (resp. Cn) is found in every sk
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(resp. sk−1). Hence

rA =
N

(αFk + (1 − α)Fk−1)N
=

1

τ k−1

rB =
Nα

(αFk + (1 − α)Fk−1)N
=

1

τ k

rC =
N(1 − α)

(αFk + (1 − α)Fk−1)N
=

1

τ k+1
.

¤

Theorem 3.4 Let n = Fk + j, j = 0, 1, . . . , Fk−1 − 1 and w ∈ Pn. Then I(w) :=
Ψ−1({v ∈ Ω | (v(0), v(1), . . . , v(n − 1)) = w}) satisfies

|I(w)| =


1

τ k−1
(w ∈ An)

1

τ k
(w ∈ Bn)

1

τ k+1
(w ∈ Cn)

In other words, the width of intervals in T corresponding to words in An, Bn and Cn

are 1
τk−1 ,

1
τk and 1

τk+1 respectively.

Since the endpoints in these intervals are equal to the set {x | x ≡ −jα (mod 1), j =
1, 2, . . . , n}, Theorem 3.4 implies the three-distance theorem [10, 1].
Proof. This follows directly from Theorem 3.3 and the ergodic theorem. It is
also possible to prove Theorem 3.4 directly by using Theorem 2.1 and inductive
argument. In doing so, we note that tn ∈ An for n = Fk + j, j = 0, 1, . . . , Fk−1 − 2
(resp. tn ∈ Bn for n = Fk +Fk−1−1 = Fk+1−1) and tnA, tnB belong to Bn+1, Cn+1,
while the corresponding intervals are divided into two intervals with ratio τ : 1. ¤

Remark 3.1 Let us call wn ∈ Pn exhausting word if the endpoint of which is
located at f(n). By Theorem 3.2, wFk

= AπkA (resp. wFk
= BπkB) if k is even

(resp. odd). Then by the fact that tn /∈ Cn and the embedding procedure we see
that Ψ−1(wn) is the interval which is closest to the endpoint of T: if n = Fk + j,
j = 0, 1, . . . , Fk−1 − 1,

Ψ−1(wn) =

{ [
1 − 1

τk+1

)
(k : even)[

0, 1
τk+1

)
(k : odd)

3.3. Classification of admissible words and frequency: general case

The results in previous subsection is directly extended to the general case, though
the statement becomes slightly complicated. We only state the results. For given
n, take k such that qk ≤ n ≤ qk+1 − 1.
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(1) Classification

(i) qk ≤ n ≤ qk + qk−1 − 1:
writing n = qk + j, j = 0, 1, . . . , qk−1 − 1, we have

An : (v0(1 + m + pqk), . . . , v0(sk + j + m + pqk))
m = 0, 1, . . . , qk−1 − j − 2, p = 0, 1, . . . , ak+1

Bn : (v0(qk−1 − j + m + pqk), . . . , v0(qk + qk−1 − 1 + m + pqk))
m = 0, 1, . . . , qk − qk−1 + j, p = 0, 1, . . . , ak+1 − 1

Cn : (v0(qk+1 − j + m), . . . , v0(qk+1 + qk − 1 + m))
m = 0, 1, . . . , j.

The order of their appearance is

ak+1︷ ︸︸ ︷
(An, Bn), . . . , (An, Bn), (An, Cn). They are charac-

terized as follows.

• An: they are the words of length n in skπk−1, |An| = qk−1 − 1− j, and appear
(ak+1 + 1)-times before arriving at f(n). Each one has overlap of length j,
(qk − qk−1 + j) with itself.

• Bn: |Bn| = qk − |An| = qk − qk−1 + 1 + j and appear ak+1 before arriving at
f(n). Each one has overlap of length j or has distance of length (qk−1 − j).

• Cn: |Cn| = j + 1 and appear only once before arriving at f(n). Each one has
distance of length (qk+1 − j), (qk+1 − qk − j) from itself.

(ii) lqk + qk−1 ≤ n ≤ (l + 1)qk + qk−1 − 1, l = 1, 2, . . . , (ak+1 − 1):
writing n = lqk + qk−1 + j, j = 0, 1, . . . , (qk − 1), we have

An : (v0(1 + m + pqk), . . . , v0(lqk + qk−1 + j + m + pqk))
m = 0, 1, . . . , qk − j − 2, p = 0, 1, . . . , ak+1 − l

Bn : (v0(qk − j + m + pqk), . . . , v0((l + 1)qk + qk−1 − 1 + m + pqk))
m = 0, 1, . . . , j, p = 0, 1, . . . , ak+1 − l − 1

Cn : (v0(qk+1 − (l − 1)qk − qk−1 − j + m), . . . , v0(qk+1 + qk − 1 + m))
m = 0, 1, . . . , (l − 1)qk + qk−1 + j.

The order of their appearance is

ak+1−l︷ ︸︸ ︷
(An, Bn), . . . , (An, Bn), (An, Cn). They are charac-

terized as follows.

• An: they are the words of length n in sl+1
k πk−1, |An| = qk − 1 − j, and appear

(ak+1 − l + 1)-times before arriving at f(n). Each one has overlaps with itself
of length (l−1)qk+qk−1+j, (l−2)qk+qk−1+j, . . . [(2l−ak+1−1)]+qk +qk−1+j
and j.

• Bn: |Bn| = j + 1, and appear (ak+1 − l)-times before arriving at f(n). Each
one has overlaps with itself of length (l − 1)qk + qk−1 + j, (l − 2)qk + qk−1 + j,
. . . [(2l − ak+1)]+qk + qk−1 + j or has distance of length qk − j.
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• Cn: |Cn| = (l−1)qk+qk−1+1+j, and appear only once before arriving at f(n).
Each one has distance from itself of length (ak+1− l)qk − j, (ak+1 +1− l)qk − j.

(2) Frequency

To compute the frequency, set

βk := [1, ak+2, ak+3, . . .].

Let rAn (resp. rBn , rCn) be the frequency of the words in An (resp. Bn, Cn).
(i) qk ≤ n ≤ qk + qk−1 − 1:

rAn =
βk(ak+1 + 1) + (1 − βk)

βkqk+1 + (1 − βk)qk

rBn =
βkak+1 + (1 − βk)

βkqk+1 + (1 − βk)qk

rCn =
βk

βkqk+1 + (1 − βk)qk

.

(ii) lqk + qk−1 ≤ n ≤ (l + 1)qk + qk−1 − 1, l = 1, 2, . . . , (ak+1 − 1):

rAn =
βk(ak+1 − l + 1) + (1 − βk)

βkqk+1 + (1 − βk)qk

rBn =
βk(ak+1 − l) + (1 − βk)

βkqk+1 + (1 − βk)qk

rCn =
βk

βkqk+1 + (1 − βk)qk

.

4. Appendix 1: Basic properties of embedding procedure

4.1. Fixed point of Φ

In this subsection, we would like to represent the fixed point

f = (L,R,R, L,R, L,R,R, L, . . .) ∈ W

of Φ : Ω → W in terms of the recursion relation of the sequence of words {un}∞n=0

such that f is the right limit of that: f = limn→∞ un. In whalt follows, we identify
1 ↔ R, 0 ↔ L. Let

u0 = s0

v0 = s1

k(0) = 1

k(0) stands for the suffix of s] in v0. To go further, we prepare some notations. For
s ∈ S := {sl1sl2 · · · slN : l1 < l2 < · · · < lN , N ∈ N}, we define an operation O(v) as
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follows. Arrange its elements like (R,L,R,R, L, . . .), partition it in terms of R and
RL like ((RL), R, (RL), . . .), and replace R(resp. RL) by AR (resp. ARL).

v = sl1sl2 . . . slr

= (O1, O2, O3, . . . , ON), Oj = R or RL

↓
O(v) = (A1, A2, A3, . . . , AN), Aj = O(Oj) = AR or ARL

where O(R) = AR, O(RL) = ARL, whose operation on S0 := {sl : l ∈ N}, are
defined by

ARsk := sk+1, ARLsk := sk+3,

and the action of O(v) on sk is defined by

(A1, A2, A3, . . . , AN)sk := (A1sk)(A2A1sk) · · · (ANAN−1 · · ·A2A1sk).

By using notations above, the recursion relation between (un, vn, k(n)) and (un+1,
vn+1, k(n + 1)) is given by

un+1 = unvn

vn+1 = O(vn)sk(n)

k(n + 1) = k(n) + (3]{(RL)’s in vn} + ]{R’s in vn}).

k(n) is equal to the suffix of the rightmost word in vn ∈ S. The followings are
computations of a few of them.

u1 = u0v0 = s0s1

v1 = O(v0)sk(0) = O(s1)s1 = s2

k(1) = k(0) + (3]{(RL)’s in v0} + ]{R’s in v0}) = 1 + 1 = 2,
u2 = u1v1 = u1s2

v2 = O(v1)sk(1) = O(s2)s2 = O(RL)s2 = s5

k(2) = k(1) + (3]{(RL)’s in v1} + ]{R’s in v1}) = 5,

u3 = u2v2 = u2s5

v3 = O(v2)sk(2) = O(s5)s5 = O((RL)R(RL)(RL)R)s5

= (ARL, AR, ARL, ARL, AR)s5

= (ARLs5)(ARARLs5)(ARLARARLs5)
(ARLARLARARLs5)(ARARLARLARARLs5)

= s8s9s12s15s16

k(3) = k(2) + (3]{(RL)’s in v2} + ]{R’s in v2}) = 16

4.2. Concrete examples

From the discussion in subsection 2.2, Φ(v) is seen to reflect some combinatorial
aspects of v ∈ Ω, and Φ(v) in turn can be derived by Theorem 2.1. In this subsection
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we explicitly give Φ(v) for some examples of v: v0(· −m), v′
0(· −m) and vAA, vA, vB

defined later.

(1) v0(· − m), v′
0(· − m): it is easy to see

Φ(v0) = (L,L, . . .), Φ(v′
0) = (R,L, L, . . .). (4.1)

Moreover

ΩL := {v0(· − m), v′
0(· − m) | m ≥ 0}, ΩR := {v0(· + m), v′

0(· + m) | m ≥ 1}

satisfy

Φ(ΩL) = {(O1, O2, . . .) | Oj = L for large j} (4.2)

Φ(ΩR) = {(O1, O2, . . .) | Oj = R for large j} (4.3)

In fact, to see (4.2) we note that Ψ−1(v0(· − m)) ∈ D− (m ≥ 0) by definition.
Therefore, by a successive application of R or L, say after the k-th step we reach
the interval with Ψ−1(v0(· − m)) its left endpoint, and then we set Ok+1 = R,
Ok+2 = Ok+3 = · · · = L. For Φ(v′

0(· − m)), we approach Ψ−1(v0(· − m)) from the
opposite direction. Conversely, if w ∈ {(O1, O2, . . .) | Oj = L for large j}, we have
(Φ ◦ Ψ)−1(w) ∈ D− by Theorem 2.1.

To see (4.3), we recall that m ∈ N has the following unique representation

m = Fk1 + Fk2 + · · · + FkN
, lj := kj − kj−1 ≥ 2, j = 2, 3, . . . , N,

by which Φ(v0(· + m)), Φ(v′
0(· + m)) are given explicitly below.

(i) k1: odd

Φ(v0(· + m)) = Φ(v′
0(· + m))

= (R,

k1−1
2︷ ︸︸ ︷

L, . . . , L,

l2−1︷ ︸︸ ︷
R, . . . , R, L,

l3−2︷ ︸︸ ︷
R, . . . , R, L, . . . ,

lN−2︷ ︸︸ ︷
R, . . . , R, L,R,R, . . .)

(ii) k1: even

Φ(v0(· + m)) = Φ(v′
0(· + m))

= (

k1
2︷ ︸︸ ︷

L, . . . , L,

l2−1︷ ︸︸ ︷
R, . . . , R, L,

l3−2︷ ︸︸ ︷
R, . . . , R, L, . . . ,

lN−2︷ ︸︸ ︷
R, . . . , R, L,R,R, . . .)

The converse is clear.
For the general case, given θ ∈ T we take a sequence {Nk}∞k=1 with Nkα ↓ θ in

T, and then the above argument tells us how to obtain Φ(vθ).
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(2) symmetric sequences: Ω contains words with mirror symmetry

vAA := · · · 110101|101011 · · · =: h−1
AAhAA

vA := · · · 10110101101 · · · =: h−1
A AhA

vB := · · · 101101101 · · · =: h−1
B BhB

which do not belong to ΩR ∪ ΩL.
(i) vAA : setting vAA(−1) = vAA(0) = 1 gives θAA := Ψ−1(vAA) = 1

2
and

Φ(vAA) = (R,R,L,R, L, . . .).

(ii) vA: setting vA(−1) = 1 gives θA := Ψ−1(vA) = α
2

and

Φ(vA) = (L, R, L,R, . . .).

(iii) vB: setting vB(1) = 0 gives θB := Ψ−1(vB) = 1
2
− 3

2
α and

Φ(vB) = (R,L,R, L, . . .).

4.3. Symmetric words

In this subsection, we further study some combinatorial properties of vAA, vA and
vB. When n is odd, sn+3 = sn+1snsn+1 = πn+1(AB)πn(BA)πn+1(AB) from which
we have

πn+3 = πn+1(AB)πn(BA)πn+1 (4.4)

For even n we exchange AB with BA. Hence πn and πn+3 have the same symmetry
and vA, vB and vAA can be derived by using this equation for n = 3k, n = 3k + 1
and n = 3k + 2 respectively. In fact, define hn by the following equation.

sn =:


h−1

n · A · hn, (n = 3k = 3, 6, 9, . . .)
h−1

n · B · hn, (n = 3k + 1 = 4, 7, 10, . . .)
h−1

n · hn, (n = 3k + 2 = 5, 8, 11, . . .)

By (4.4) we have

hn+3 =

{
hn(BA)πn+1 (n : odd)
hn(AB)πn+1 (n : even)

whose right limits coincide with hA, hB and hAA respectively.
We next study some substitutive properties of vAA. Recall hAA ∈ {0, 1}N is

defined by the equation vAA = h−1
AAhAA.

Proposition 4.1 (i) hAA is the fixed point of the following substitution rule:

σ : A 7→ AB′, A′ 7→ BA′,

B 7→ A,B′ 7→ A′

under the identification of A, B with A′, B′.
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(ii) Define the sequence of words {tn}n≥0 by

tn+1 = tntn−1, n ≥ 1, t0 = B, t1 = A.

where s is obtained by exchanging A, B with A′, B′ in s−1. Let t be the right
limit of tn (we identify A, B with A′, B′ in t). Then t = hAA.

Proof. We can show tn = σn(A) by the inductive argument and the equation
σ(s) = σ(s). t = hAA then follows from Lemma 4.1 given below. ¤

Let t′n be the word obtained by identifying A, B with A′, B′ in tn.

Lemma 4.1 For n ≥ 1 odd, we have

t′3n+2 = h3n+2(BA)h−1
3n+2

t′3n+3 = h3n+2(BA)π3n+1(AB)h−1
3n+2

t′3n+4 = h3n+2(BA)h−1
3n+5 = h3n+5(AB)h−1

3n+2

(for even n, we exchange AB with BA)

5. Appenix 2: Robustness against local move

In the Fibonacci case (α = 1
τ
), we can exchange 10 with 01 in v ∈ Ω at some site. A

natural question is whether it remains in the hull after this exchange. Let E (i,i+1) be
this exchange operation at site i, i + 1 (we always assume v(i) 6= v(i + 1)). We can
see E (−1,0)v0 = v′

0 which is, however, essentially the only case where this exchange is
possible.

Theorem 5.1 Let α ∈ Qc ∩ (0, 1). If v ∈ Ω \ (ΩR ∪ ΩL), then E (i,i+1)v /∈ Ω for
any i.

As a preparation, we prove

Lemma 5.1 Let v ∈ Ω. If E (m−1,m)v ∈ Ω for some m, then for any n ≥ 0 the
(n − 1, n)-partition of v has one of the following form:

(a) sn−1 sn

∣∣∣∣∣ sn

(b) sn sn−1

∣∣∣∣∣ sn

where m is the site left to
∣∣. Furthermore, if the (n − 1, n)-partition satisfies (a)

(resp. (b)), then the (n, n + 1)-partition satisfies (b)(resp. (a)), where n is replaced
by n + 1.
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Lemma 5.1 is proved by induction. Then Theorem 5.1 follows from the fact that v0

(resp. v′
0) is the right limit of sn and the left limit of s2n (resp. s2n+1). We can also

consider exchanging sk with sk−1 somewhere in the (k − 1, k)-partition of v and the
same result as Theorem 5.1 holds.
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