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QUASIASYMPTOTICS IN EXPONENTIAL
DISTRIBUTIONS BY WAVELET ANALYSIS

BYUNG KEUN SOHN

Abstract. We investigate the quasiasymptotics of exponential distributions at

a point or infinity via its multiresolution expansion. We also analyse the bound-

edness of the wavelet transform and wavelet coefficients of quasiasymptotically

bounded exponential distributions.

1. Introduction

While the notion of the value of a continuous function at a point is clear, the notion

of the value of a distribution at a point is somewhat complicated since distributions

are not defined pointwise, but are the elements of certain dual spaces. It is therefore

interesting to study the notion of the value of a distribution at a point, introduced

by Lojasiewicz in [5], that reduces to the usual one for distributions locally equal to

continuous functions.

The concept of the value of a distribution at a point in the sense of Lojasiewicz

has many applications in areas such as Abelian and Tauberian type theorems for

integral transform [8, 24], pointwise convergence of wavelet series of distributions

[16, 29], convergence of Fourier series and integrals [3, 20, 21] and the boundry

behavior of solutions of partial differential equations [27].

In general, not all distributions have a value at a point (see [5]), so there is

a limitation for applying the value of a distribution at a point to Abelian and

Tauberian type theorems for integral transforms such as Fourier, Laplace, Stieltjes

and Mellin transforms. In order to avoid such a difficulty, we need a more general

notion than the value of distribution at a point. The more general notion, namely,

the quasiasymptotics at a point, was introduced by B.I. Zavialov [31]. This notion

was rediscovered by Y. Meyer in his work on pointwise weak scaling exponents [7].
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The notion of quasiasymptotics has many applications in areas such as quantum

field theory [25] and P.D.E. theory [26]. Especially, many authors have applied

wavelet theory to investigate the quasiasymptotics of tempered distributions at some

point or infinity, see [7, 9, 10, 11, 12, 13, 14, 15, 23].

The purpose of this paper is to investigate the quasiasymptotics of exponential

distributions at a point via their multiresolution expansions. Let {Vj, j ∈ Z} be

a multiresolution analysis of the space L2(R), f a exponential distribution, and fj
its projection to Vj, j ∈ Z. We prove that if f has quasiasymptotics at a point or

infinity related to a continuous function, then so does each fj, j ∈ Z, provided that

the scaling function is sufficiently regular. Moreover, with an additional condition,

we prove that the converse statement also holds. Also we analyse the boundedness of

the wavelet transform and wavelet coefficients of the quasiasymptotically bounded

exponential distributions.

2. Exponential Distributions and its Multiresolution Ex-

pansion

Throughout the paper, we consider the domain of functions as the set of real num-

bers, R, and omit the suffix, therefore, in what follows, H means H(R). Also, we

mean by N and Z the set of natural numbers and integers, respectively.

2-1. The spaces K′ of distributions of exponential growth

Let K be the space of all C∞ - functions φ in R such that

∥φ∥kK = sup
x∈R, 0≤α≤k

ek|x|
∣∣∣∣ dαdxαφ

∣∣∣∣ , k = 1, 2, . . . , α ∈ N,

are finite. The topology in K is defined by the family of the semi-norms ∥ ·∥kK. Then
K is a Fréchet space and D ↪→ K ↪→ S ↪→ E are continuous and dense inclusions;

here D denotes the spaces of all C∞ - functions with compact supports, S the spaces

of polynomially decreasing functions (Schwartz functions) and E the space of all C∞

- functions. The dual space of K is denoted by K′.

Definition 2.1. We say that the elements of K′ are exponential distributions.

The spaces K′ were introduced by K. Yoshinaga [30] and M. Hasumi [4], indepen-

dently, and were characterized by S. Sznajder and Z.Zielezny [17, 18].

We define Kr, r ∈ N, to be the space of all Cr - functions ϕ in R such that
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∥ϕ∥Kr = sup
x∈R, 0≤α≤r

er|x|
∣∣∣∣ dαdxαϕ(x)

∣∣∣∣ <∞, α ∈ N,

and

lim
|x|→∞

sup
0≤α≤r

er|x|
∣∣∣∣ dαdxαϕ(x)

∣∣∣∣ = 0, α ∈ N.

The topology of Kr is defined by ∥ · ∥Kr . The dual space of Kr is denoted by K′
r.

Clearly, K is the projective limit of Kr when r → ∞ and K′ = ∪r∈NK′
r.

We also define K̃r, r ∈ N, to be the space of all Cr - functions ψ in R such that

∥ψ∥lK̃r
= sup

x∈R, 0≤α≤r
el|x|

∣∣∣∣ dαdxαψ(x)
∣∣∣∣ <∞, l = 1, 2, . . . α ∈ N.

The topology of K̃r is defined by the family of semi-norms ∥ · ∥lK̃r
. The dual space

of K̃r is denoted by K̃′
r. Obviously, K̃r ⊂ Kr.

Let ϕ and sequence {ϕn}n∈N be given in Kr+1 such that { dα

dxαϕn}n∈N converges

uniformly to dα

dxαϕ on every compact set K ⊂ R and for α = 0, 1, . . . , r. Then there

exists N such that for arbitrary ϵ > 0 and K ⊂ R.

sup
x∈K

er|x|
∣∣∣∣ dαdxα (ϕn − ϕ)(x)

∣∣∣∣ < ϵ, n ≥ N. (1)

In addition, if the sequence {ϕn}n∈N is bounded in Kr+1, we can take a positive

number M > 0 and a compact set K such that |x| > M when x /∈ K and

sup
x/∈K

er|x|
∣∣∣∣ dαdxα (ϕn − ϕ)(x)

∣∣∣∣
≤ e−M sup

x/∈K
e(r+1)|x|

(∣∣∣∣ dαdxαϕn(x)

∣∣∣∣+ ∣∣∣∣ dαdxαϕ(x)
∣∣∣∣) < ϵ. (2)

From (1) and (2), we have

lim
n→∞

sup
x∈R

er|x|
∣∣∣∣ dαdxα (ϕn − ϕ)(x)

∣∣∣∣ = 0, 0 ≤ α ≤ r.

Hence we have a lemma that will be used later.

— 23 —



Lemma 2.1. Let ϕ and sequence {ϕn}n∈N be given in Kr+1 such that { dα

dxαϕn}n∈N
converges uniformly to dα

dxαϕ on every compact set K ⊂ R and for α = 0, 1, . . . , r. If

{ϕn}n∈N is bounded in Kr+1, then the sequence {ϕn}n∈N converges to ϕ in Kr.

2.2 Mutiresolution expansion of exponential distributions

Let ψ ∈ K̃r (or Kr). In order for it to qualify as a scaling function, there must be

associated with ψ a multiresolution analysis (MRA) of L2, i.e., a nested sequence of

closed subspaces {Vn}n∈Z such that

(i) {ψ(t− n)}n∈Z is an orthonormal basis of V0,

(ii) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2,

(iii) f ∈ Vn ⇔ f(2·) ∈ Vn+1,

(iv) ∩nVn = {0}, ∪nVn = L2.

Definition 2.2. We say that a multiresolution analysis Vj, j ∈ Z, is an exp-r-

regular MRA of L2 if the scaling function ψ is in K̃r.

Corollary 5.5.3 in [2] states that it is impossible that the scaling function ψ has

exponential decay and ψ ∈ C∞ , with all derivatives bounded, unless ψ = 0. So we

will restrict our attention to K̃r or Kr. From the remark in [2, page 152] or Example

4 in [28, page 36], Battle-Lemarié’s wavelets are in Kr for some r ∈ N, but not in K̃r

even if they have exponential decay and smoothness. In [2], I. Daubechies showed

that for an arbitrary nonnegative integer r, there exists an exp-r-regular MRA of

L2 such that the scaling function ψ has compact support. More details about the

relations between wavelet and function spaces can be found in [6].

Let Vj be an exp-r-regular MRA of L2 and let ψ be a scaling function. The

reproducing kernel [28] of V0 is given by

q0(x, y) =
∑
n∈Z

ψ(x− n)ψ(y − n).

The series and its derivatives with respect to x or y of order ≤ r converge uniformly

on R because of the regularity of ψ ∈ K̃r. The reproducing kernel of the projection

operator onto Vj is

qj(x, y) = 2jq0(2
jx, 2jy), x, y ∈ R,
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and the projection of f ∈ L2 onto Vj is given by

qjf(x) = ⟨f(y), qj(x, y)⟩ =
∫
f(y)qj(x, y)dy, x ∈ R. (3)

Definition 2.3. The sequence {qjf}j∈Z in (3) is called the multiresolution ex-

pansion of f .

For a given f ∈ K′
r, the multiresolution expansion of f by the sequence {qj}j∈Z is

defined by

⟨qjf, ϕ⟩ = ⟨f, qjϕ⟩, ϕ ∈ Kr. (4)

We deduce the following properties of the reproducing kernel q0 with scaling function

ψ ∈ K̃r:

(a) q0(x, y) = q0(y, x) and q0(x+ k, y + k) = q0(x, y) for all k ∈ Z.

(b) For every l ∈ N and 0 ≤ α, β ≤ r, there exists Cl > 0 such that

∣∣∣∣ ∂α∂xα ∂β

∂yβ
q0(x, y)

∣∣∣∣ ≤
∑
j

∣∣∣∣ dαdxαψ(x− j)

∣∣∣∣ ∣∣∣∣ dβdyβψ(y − j)

∣∣∣∣
≤

∑
j

Cl+1e
−(l+1)|x−j|e−(l+1)|y−j|

≤ Cl+1e
−l|x−y|

∑
j

e−|x−j|e−|y−j|

≤ Cl+1e
−l|x−y|.

(c)
∫∞
−∞ q0(x, y)y

αdy = xα, y ∈ R, 0 ≤ α ≤ r.

Let Vj be an exp-r-regular MRA of L2. We fix a function g ∈ D with
∫
g = 1. We

let gj denote the function 2jg(2jx) and let Gj denote the operation of convolution

by gj. For each fixed x, we consider the function ∂αx q0(x, y) of the variable y. From

(c), we have

∫
∂αx q0(x, y)y

βdy = 0, (5)

for 0 ≤ β < α, whereas
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∫
∂αx q0(x, y)y

αdy = α!. (6)

Now, it follows from integration by parts that the kernal g(x− y) of the operator G

shares these properties (5) and (6) with q0(x, y).

Let

Rα(x, y) = ∂αx q0(x, y)− ∂αx g(x− y).

From (b) and the fact that g ∈ D ⊂ Kr,

|Rα(x, y)| ≤ cke
−k|x−y|, x, y ∈ R, k ∈ N, (7)

and these functions also satisfy ∫
Rα(x, y)dy = 0

identically in x for every α = 1, 2, . . . , r. They, for every j ∈ Z and f ∈ Cr with at

most exponential growth, define operator Rα
j by

Rα
j f(x) = 2j

∫
Rα(2jx, 2jy)f(y)dy

which are such that

qj
dα

dxα
f(x) = Gj

dα

dyα
f(y) +Rα

j

dα

dyα
f(y), (8)

i.e.,

∫
qj(x, y)

dα

dyα
f(y)dy = 2j

∫
g(2j(x− y))

dα

dyα
f(y)dy + 2j

∫
Rα(2jx, 2jy)

dα

dyα
f(y)dy.

From the Theorem 1.1 in [1], we have

lim
j→∞

Gj
dα

dyα
f(y)dy =

dα

dxα
f(x), x ∈ R, α ≥ 0, (9)
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uniformly on compact sets. In addition, we let f be in Cr such that the corre-

sponding derivatives dα

dxαf are bounded by a exponential when |x| → ∞, for every

α = 0, 1, . . . , r. Then, if |y − x| ≤ c, we have∣∣∣∣∣ dαdyαf(y)− dα

dyα
f(y)

∣∣∣∣
y=x

∣∣∣∣∣ ≤ eα(y − x),

where er(x) is a continuous function with exponential growth and er(0) = 0. From

(7), given a compact set K,

2j
∣∣∣∣∫ Rα(2jx, 2jy)

dα

dyα
f(y)dy

∣∣∣∣
≤ 2j

∫ ∣∣∣∣∣Rα(2jx, 2jy)

(
dα

dyα
f(y)− dα

dyα
f(y)

∣∣∣∣
y=x

)∣∣∣∣∣ dy
≤ 2j

∫
cke

−2jk|x−y||eα(y − x)|dy

= 2jck

∫
e−2jky|eα(y)|dy,

for large enough j and x ∈ K. Since k can be chosen arbitrary, we obtain by the

dominated convergence theorem,

lim
j→∞

2j
∣∣∣∣∫ Rα(2jx, 2jy)

dα

dyα
f(y)dy

∣∣∣∣
≤ 2j

∫
lim
j→∞

cke
−2jk|x−y||eα(y − x)|dy

= ck

∫
lim
j→∞

2je−2jky|eα(y)|dy

uniformly for x ∈ K. From (8) and (9), we have a lemma that will be used later.

Lemma 2.2. Let f ∈ Cr and let qjf , given by (3), be the projection of f onto an exp-

r-regular MRA of L2 such that the corresponding derivatives dα

dxαf are bounded by a

exponential when |x| → ∞, for every α = 0, 1, . . . , r. Then the sequence { dα

dxα qjf}j∈N
converges uniformly on compact sets to dα

dxαf as j → ∞, for every α = 0, 1, . . . , r.

We now show that the multiresolution expansion of ϕ ∈ Kr+1 converges in ϕ ∈ Kr,

provided that the MRA is exp-r-regular.
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Proposition 2.1. Let ϕ ∈ Kr+1 and let qjϕ(x), given by (3), be a projection of ϕ

onto an exp-r-regular MRA of L2. Then the sequence {qjϕ(x)} converges to ϕ(x) in

Kr as j → ∞.

Proof. Let g and Rα be given in (8) such that g ∈ D and
∫
g(x)dx = 1. From

Lemma 2.1, Lemma 2.2 and (8), it suffices to show that

sup
x∈R

e(r+1)|x| 1

h

∣∣∣∣∫ q0(
x

h
,
y

h
)ϕ(y)dy

∣∣∣∣
= sup

x∈R
e(r+1)|x| 1

h

∣∣∣∣∫ g(
x− y

h
)
dα

dyα
ϕ(y)dy +

∫
Rα(

x

h
,
y

h
)
dα

dyα
ϕ(y)dy

∣∣∣∣
is bounded for every α ∈ {0, 1, . . . , r} and h > 0. Since

sup
x∈R

e(r+1)|x| 1

h

∣∣∣∣∫ g(
x− y

h
)
dα

dyα
ϕ(y)dy

∣∣∣∣
≤ sup

x∈R

1

h

∣∣∣∣∫ g(
x− y

h
)e(r+1)|x|e−(r+1)|y|dy

∣∣∣∣
≤ sup

x∈R

1

h

∣∣∣∣∫ g(
x− y

h
)e(r+1)|x−y|dy

∣∣∣∣ ≤ C,

we have only to show that

K = sup
x∈R

e(r+1)|x| 1

h

∣∣∣∣∫ Rα(
x

h
,
y

h
)
dα

dyα
ϕ(y)dy

∣∣∣∣ ≤ C, x ∈ R

for every α∈{0, 1, . . . , r} and h > 0. Let S1={y : |x−y| ≤ 1}, S2={y : |x−y| ≥ 1}.
Then, by (7),

K = sup
x∈R

e(r+1)|x| 1

h

∣∣∣∣∫ Rα(
x

h
,
y

h
)
dα

dyα
ϕ(y)dy

∣∣∣∣
≤ cl sup

x∈R
e(r+1)|x| 1

h

∫
e−l|x−y

h |e−(r+1)|y|dy

= cl sup
x∈R

e(r+1)|x| 1

h

∫
S1

e−l|x−y
h |e−(r+1)|y|dy

+ cl sup
x∈R

e(r+1)|x| 1

h

∫
S2

e−l|x−y
h |e−(r+1)|y|dy

= cl(K1 +K2).
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By a simple change of variable,

K1 = sup
x∈R

e(r+1)|x| 1

h

∫
S1

e−l|x−y
h |e−(r+1)|y|dy

≤ sup
x∈R

e(r+1)|x|2

∫ 1

0

1

h
e−l| t

h |e−(r+1)|x−t|dt

≤ 2e(r+1)

∫ 1

0

1

h
e−l| t

h |dt = 2e(r+1)

∫ 1
h

0

e−ludu ≤ C1.

and

K2 = sup
x∈R

e(r+1)|x| 1

h

∫
S2

e−l|x−y
h |e−(r+1)|y|dy

≤ sup
x∈R

1

h

∫
S2

e−
l
h
|x−y|e(r+1)(|x−y|)dy

≤ sup
x∈R

1

h

∫
S2

e(−
l
h
+(r+1))|x−y|dy ≤ C2

for sufficiently large l. �

3. Quasiasymptotics of exponential distributions at a point

It is possible to expand a certain class of tempered distributions in orthogonal

wavelets from L2. In [28, 29], G. G. Walter considered the expansion of a dis-

tribution or function in regular orthogonal wavelets and showed that the expansion

of a distribution converges pointwisely to the value of the distribution in the sense

of Lojasiewicz. More generally, we expanded the exponential distributions in terms

of orthgonal wavelets and showed the pointwise convergence of wavelet expansions

of exponential distributions as follows [16]:

Definition 3.1. [5]. f is said to have a value γ of order r at x0 in K′ if there

exists a continuous function F (x) of exponential growth such that its distributional

derivative dr

dxrF (x) = f(x) and

lim
x→x0

F (x)

(x− x0)r
=
γ

r!
,

or equivalently
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f has the value γ = f(x0) at the point x0 in K′ if

lim
ϵ→0

⟨f(x0 + ϵx), ϕ(x)⟩ = γ

∫ ∞

−∞
ϕ(x)dx, ϕ(x) ∈ K.

Theorem 3.1. Let f ∈ K̃′
r and have a value γ of order α ≤ r at x0. Then

qjf(x0) → γ as j → ∞,

where qj is given in (3).

In general, a distribution does not have to admit a value at a point, as seen in

[5]. We need more general notion than the distributional value at a point in order

to analyze the point behavior of distributions. The more general notion, namely

the quasiasymptotics at some point or infinity, was introduced by B. I. Zavialov [31]

and turned out to be appropriate for the Abelian and Tauberian type theorems for

several integral tranforms [9, 10, 25, 26].

Definition 3.2. [22, 31]. Let f ∈ K′ and let c(ϵ), x ∈ (0, a), a > 0, be a continuous

function. We say that f has the quasiasymptotics at x0 in K′ related to c(ϵ)

equal to g, if there exists g ∈ K′, g ̸= 0, such that

lim
ϵ→0+

⟨
f(ϵx+ x0)

c(ϵ)
, φ(x)

⟩
= ⟨g(x), φ(x)⟩ , φ(x) ∈ K.

One can show that the comparison function c must be a regularly varying function

in the sense of Karamata and g must be a homogeneous distribution (see [11] for

details). Obviously, if we put c(ϵ) = 1, we can obtain the value of exponential

distributions at x0 in the sense of Lojasiewicz.

In this section, by following the approach of Pilipović, A. Takaći and N. Teofanov

from [9], we show that if f has the quasiasymptotics at x0 in K′ related to c(ϵ),

then so does qjf, j ∈ Z, given in (3) and prove the opposite statement with an

additional Tauberian condition. In order to investigate the properties of the kernel

of the integral transform, we may allow j in (3) to be real number.

Lemma 3.1. Let Vj be an exp-r-regular MRA of L2 and let q0 be the reproducing

kernel of V0. If we let qϵj(x, y) = 2jϵq0(2
jϵx, 2jϵy), then given any fixed φ ∈ K, the

set

{⟨qϵj(x+
x0
ϵ
, y +

x0
ϵ
), φ(x)⟩, ϵ ∈ (0, 1) ; φ ∈ K}
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is bounded in K for every j ∈ Z and is uniformly bounded in ϵ.

Proof. Let φ ∈ K be given. We show that

sup
y∈R

el|y|
∣∣∣∣ dpdyp

∫ ∞

−∞
qϵj(x+

x0
ϵ
, y +

x0
ϵ
)φ(x)dx

∣∣∣∣ , p = 0, 1, . . . , r,

is uniformly bounded in ϵ.

I = el|y|
∣∣∣ dp
dyp

∫ ∞

−∞
qϵj(x+

x0
ϵ
, y +

x0
ϵ
)φ(x)dx

∣∣∣
≤ el|y|

∣∣∣ dp
dyp

∫ y−c

−∞
qϵj(x+

x0
ϵ
, y +

x0
ϵ
)φ(x)dx

∣∣∣
+el|y|

∣∣∣ dp
dyp

∫ y+c

y−c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)(φ(x)− φ(y))dx

∣∣∣
+el|y|

∣∣∣ dp
dyp

∫ ∞

y+c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)φ(x)dx

∣∣∣
+el|y|

∣∣∣ dp
dyp

∫ y+c

y−c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)φ(y)dx

∣∣∣
= I1 + I2 + I3 + I4.

First, we estimate Ii, i = 2, 3, 4.

I2 = el|y|
∣∣∣ dp
dyp

∫ y+c

y−c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)(φ(x)− φ(y))dx

∣∣∣
≤ el|y|

∣∣∣ dp
dyp

∫ y+c

y−c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)φ′(ξ)(x− y)dx

∣∣∣
≤ el|y|c|φ′(ξ)|

∫ y+c

y−c

∣∣∣ dp
dyp

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx

≤ cc1,se
l|y|e−s|y−c|

∫ y+c

y−c

∣∣∣ dp
dyp

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx, (10)

where ξ ∈ (y − c, y + c).

I3 = el|y|
∣∣∣ dp
dyp

∫ ∞

y+c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)φ(x)dx

∣∣∣
≤ c2,se

l|y|e−s|y+c|
∫ ∞

y+c

∣∣∣ dp
dyp

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx. (11)
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The estimation of I1 can be showed in a similar way.

I4 = el|y|
∣∣∣ dp
dyp

∫ y+c

y−c

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)φ(y)dx

∣∣∣
≤ c3,se

l|y|e−s|y|
∫ y+c

y−c

∣∣∣ dp
dyp

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx

+ c′3,se
l|y|e−s|y|

∫ y+c

y−c

∣∣∣qϵj(x+ x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx. (12)

Since we can choose s to be arbitrary in (10),(11) and (12), to prove the uniform

boundedness of I in ϵ, it suffices to show that

I5 =

∫ ∞

y+c

∣∣∣ dp
dyp

qϵj(x+
x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx, p = 0, 1, . . . , r,

is uniformly bounded in ϵ. Since qϵj(x+
x0

ϵ
, y+ x0

ϵ
) = 2jϵq0(2

jϵx+2jx0, 2
jϵy+2jx0),

after the change of variables t = 2jϵx,

I5 =

∫ ∞

2jϵ(y+c)

∣∣∣ dp
dyp

q0(t+ 2jx0, 2
jϵy + 2jx0)

∣∣∣dt
≤

∑
k∈Z

∣∣∣ dp
dyp

φ(2jϵy + 2jx0 − k)
∣∣∣ ∫ ∞

2jϵ(y+c)

|φ(t+ 2jx0 − k)|dt

≤ Cs

∑
k∈Z

|2jϵ|pe−s|2jϵy+2jx0−k|
∫ ∞

2jϵ(y+c)

e−(s+1)|t+2jx0−k|dt

≤ Cs|2jϵ|p
∑
k∈Z

e−s|2jϵy+2jx0−k| e−s|2jϵ(y+c)+2jx0−k|
∫ ∞

2jϵ(y+c)+2jx0−k

e−|u|du

≤ C ′
s|2jϵ|p

∑
k∈Z

e−s|2jϵy+2jx0−k| e−s|2jϵ(y+c)+2jx0−k|.

Since we can choose s arbitrary, the last series is uniformly bounded in x and y, for

fixed j and p = 0, 1, . . . , r, hence I5 is uniformly bounded in ϵ. �

Now, we are ready to characterize the quasiasymptotic behavoir of exponential

distributions at a point via its multiresolution expansion.

Theorem 3.2. Let f, g(̸= 0), gj( ̸= 0) ∈ K′ and let qjf , given in (3), be a projection

of f onto an exp-r-regular MRA of L2. If f has the quasiasymptotics at x0 in K′

related to c(ϵ) equal to g(x), then qjf, j ∈ R, has the quasiasymptotics at x0 in K′

related to c(ϵ) equal to g(x). Moreover, if qjf, j ∈ R, has the quasiasymptotics at x0
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in K′ related to c(ϵ) equal to gj(x) such that gj(x) → g(x) pointwisely as j → ∞ and

the family
{

f(ϵx+x0)
c(ϵ)

: ϵ ∈ (0, 1)
}

is bounded in K, then f has the quasiasymptotics

at x0 in K′ related to c(ϵ) equal to g(x).

Proof. For the first statement, we let qϵj(x, y) = 2jϵq0(2
jϵx, 2jϵy) and

lim
ϵ→0+

⟨
f(ϵx+ x0)

c(ϵ)
, φ(x)

⟩
= ⟨g(x), φ(x)⟩, φ(x) ∈ K.

If we use the equivalence of weak and strong convergence in K′, the Lemma 2.1,

Lemma 2.2, and Lemma 3.1 (or, Corollary 8.3 in [28]), then

lim
ϵ→0+

⟨
qjf(ϵx+ x0)

c(ϵ)
, φ(x)

⟩
= lim

ϵ→0+

⟨
1

c(ϵ)
⟨f(y), qj(ϵx+ x0, y)⟩, φ(x)

⟩
= lim

ϵ→0+

⟨
f(ϵy + x0)

c(ϵ)
, ⟨ϵqj(ϵx+ x0, ϵy + x0), φ(x)⟩

⟩
= lim

ϵ→0+

⟨
f(ϵy + x0)

c(ϵ)
, ⟨2jϵq0(2jϵ(x+

x0
ϵ
), 2jϵ(y +

x0
ϵ
)), φ(x)⟩

⟩
= lim

ϵ→0+

⟨
f(ϵy + x0)

c(ϵ)
, ⟨qϵj(x+

x0
ϵ
, y +

x0
ϵ
), φ(x)⟩

⟩
= ⟨g(x), φ(x)⟩.

For the second statement, we let qϵ1
ϵ

(x, y) = 2
1
ϵ ϵq0(2

1
ϵ ϵx, 2

1
ϵ ϵy) and

lim
ϵ→0+

⟨
qjf(ϵx+ x0)

c(ϵ)
, φ(x)

⟩
= ⟨gj(x), φ(x)⟩, φ(x) ∈ K.

Once we have showed that ⟨qϵ1
ϵ

(x + x0

ϵ
, y + x0

ϵ
) − δ(x − y), φ(x)⟩ tends to 0 in K as

ϵ→ 0 for Dirac distribution δ, we have
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lim
ϵ→0+

⟨f(ϵy + x0)

c(ϵ)
, φ(y)

⟩
= lim

ϵ→0+

(⟨f(ϵy + x0)

c(ϵ)
, φ(y)

⟩
+
⟨f(ϵy + x0)

c(ϵ)
, ⟨qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)− δ(x− y), φ(x)⟩

⟩)
= lim

ϵ→0+

⟨⟨f(ϵy + x0), q
ϵ
1
ϵ

(x+ x0

ϵ
, y + x0

ϵ
)⟩

c(ϵ)
, φ(x)

⟩
= lim

ϵ→0+

⟨⟨f(y + x0

ϵ
), qϵ1

ϵ

(ϵx+ x0, y +
x0

ϵ
)⟩

c(ϵ)
, φ(x)

⟩
= lim

ϵ→0+

⟨qϵ1
ϵ

f(ϵx+ x0)

c(ϵ)
, φ(x)

⟩
= ⟨g(y), φ(y)⟩, φ(x) ∈ K.

It remains to show that

sup
y∈R

el|y|
∣∣∣∣ dpdyp ⟨qϵ1ϵ (x+ x0

ϵ
, y +

x0
ϵ
)− δ(x− y), φ(x)⟩

∣∣∣∣
tends to 0 as ϵ→ 0. Since dp

dyp
qϵ1

ϵ

(x, y) = dp

dxp q
ϵ
1
ϵ

(y, x),

J = el|y|
∣∣∣ ∫ ∞

−∞

dp

dyp
qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)φ(x)dx

−(−1)pφ(p)(y)

∫ ∞

−∞
qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)dx
∣∣∣

= el|y|
∣∣∣(−1)p

(∫ ∞

−∞
qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
dp

dxp
φ(x)dx

−φ(p)(y)

∫ ∞

−∞
qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)dx
)∣∣∣

≤ el|y|
∣∣∣ ∫ y−c

−∞
qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
dp

dxp
φ(x)dx

∣∣∣
+ el|y|

∣∣∣ ∫ y+c

y−c

qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)(φ(p)(x)− φ(p)(y))dx

∣∣∣
+ el|y|

∣∣∣ ∫ ∞

y+c

qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
dp

dxp
φ(x)dx

∣∣∣
+ el|y|

∣∣∣φ(p)(y)

∫ y−c

−∞
qϵ1

ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)dx
∣∣∣

+ el|y|
∣∣∣φ(p)(y)

∫ ∞

y+c

qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)dx
∣∣∣

= J1 + J2 + J3 + J4 + J5.
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Consider J3.

J3 = el|y|
∣∣∣ ∫ ∞

y+c

qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
dp

dxp
φ(x)dx

∣∣∣
≤ cse

l|y|e−s|y+c|
∫ ∞

y+c

∣∣∣qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx

≤ c
∑
k∈Z

|φ(2
1
ϵ ϵ(y +

x0
ϵ
− k))|

∫ ∞

y+c

2
1
ϵ ϵ|φ(2

1
ϵ ϵ(x+

x0
ϵ
− k))|dx

≤ c′
∑
k∈Z

e−2l|2
1
ϵ ϵ(y+

x0
ϵ
−k)|

∫ ∞

2
1
ϵ ϵ(y+

x0
ϵ
+c)

e−(2l+1)|x−k|dx

≤ c′
∑
k∈Z

e−2l|2
1
ϵ ϵ(y+

x0
ϵ
−k)|e−2l|2

1
ϵ ϵ(y+

x0
ϵ
+c−k)|

∫ ∞

2
1
ϵ ϵ(y+

x0
ϵ
+c)

e−|x−k|dx

≤ c′e−l|2
1
ϵ ϵc|
∑
k∈Z

e−l|2
1
ϵ ϵ(y+

x0
ϵ
−k)|e−l|2

1
ϵ ϵ(y+

x0
ϵ
+c−k)|

≤ c′′e−l|2
1
ϵ ϵc|.

It follows that J3 → 0 as ϵ→ 0. In the similar way, we have

(J1 + J4 + J5) → 0 as ϵ→ 0.

Now, since

J2 = el|y|
∣∣∣ ∫ y+c

y−c

qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)(φ(p)(x)− φ(p)(y)dx

∣∣∣
≤ el|y|c1|φ(p+1)(ξ)|

∫ y+c

y−c

∣∣∣qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx

≤ c′1e
l|y|e−s|y−c|

∫ ∞

y−c

∣∣∣qϵ1
ϵ
(x+

x0
ϵ
, y +

x0
ϵ
)
∣∣∣dx,

where ξ ∈ (y − c, y + c), it follow from the similar way of estimation of J3 that

J2 → 0 as ϵ→ 0. �

Remark 3.1. It should be noticed that K. Saneva and J. Vindas have recently shown

in [15] that the wavelet expansions of tempered distributions are convergent when

viewed in the quotient space S ′ modulo polynomials. They have used this result to

characterize quasiasymptotics at finite points in terms of size estimates for wavelet
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coefficients. Their approach depends upon the existence of mother wavelets in S.
For instance, Lemarié-Meyer wavelets are of this kind. Since it is impossible to

have mother wavelets in K, their results seem to have no analogs in the context of

exponential distributions

4. Quasiasymptotics of exponential distributions at infinity

As mentioned in [10], a function may have the quasaiasymptotics different from

its classical asymptotic behavior. For example, even if eix does not have classical

asymptotic behavior at infinity [5], it has the quasaiasymptotics at infinity. In

this section, by following the approach of Pilipović and N. Teofanov from [10], we

characterize the quasaiasymptotics of a exponential distribution f at infinity via its

multiresolution expansion qjf , and vice versa, with an additional assumption.

Definition 4.1. [19]. Let f ∈ K′ and let c(x), x ∈ (0, a), a > 0, be a continuous

function. we say that f has the quasaiasymptotics at infinity in K′ related to

c(k) equal to g, if there exists g ∈ K′, g ̸= 0, such that

lim
k→∞

⟨
f(kx)

c(k)
, φ(x)

⟩
= ⟨g(x), φ(x)⟩, φ(x) ∈ K.

Now, we are ready to characterize the quasaiasymptotics of exponential distribu-

tions at infinity via its multiresolution expansion and vice versa, with an additional

assumption.

It follows from a results of J. Vindas that if f ∈ K′ has quasiasymptotics at

infinity in K′, then it must be a tempered distribution and f automatically has the

same quasiasymptotic behavior in S ′ (see Remark 3.1 in [19]). Now, if we combine

this fact with the results from [10], we obtain at once the ensuing theorem. It

characterizes the quasiasymptotics of exponential distributions at infinity in terms

of multiresolution expansions.

Theorem 4.1. Let f ∈ K′ be of order r0, let r ≥ r0 and let g(̸= 0), gj (̸= 0) ∈ K′.

Also, let qjf , given in (3), be a projection of f onto an exp-r-regular MRA of L2.

If f has the quasaiasymptotics at infinity in K′ related to c(k) equal to g(x), then

qjf, j ∈ R, has the quasaiasymptotics at infinity in K′ related to c(ϵ) equal to g(x).

Moreover, if qjf, j ∈ R, has the quasaiasymptotics at infinity in K′ related to c(k)

equal to gj(x) such that gj → g in K′
r as j → ∞ and the family

{
f(kx)
c(k)

: k ∈ N
}

is bounded in K′
r, then f has the quasaiasymptotics at infinity in K′ related to c(k)

equal to g(x).
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5. Boundedness of the wavelet transform and wavelet coef-

ficients of the quasiasymptotically bounded exponential

distributions at 0

In [13, 14] , K. Saneva analyzed the boundedness of the wavelet transform and

wavelet coefficients at 0 of the distributions in S ′ with respect to the wavelet in

the space of highly time-frequence localized functions. In this section, we follow

the approach of K. Saneva from [13, 14] to analyse the boundedness of the wavelet

transform and wavelet coefficients of the quasiasymptotically bounded exponential

distributions f ∈ K′
r at 0 with respect to the wavelet ϕ ∈ Kr. See [3, 23] for a

complete wavelet analysis of asymptotic properties of tempered distributions via

orthogonal wavelet expansions and wavelet transforms.

The wavelet transform of F ∈ L2 with respect to the wavelet Φ ∈ L2 is defined

by

WΦF (a, b) =

∫ ∞

−∞
F (x)Φ̄b,a(x)dx, b ∈ R, a > 0,

where Φb,a(x) =
1
a
Φ
(
x−b
a

)
. We can define the wavelet transform of the exponential

distribution f ∈ K′
r with respect to the wavelet ϕ ∈ Kr by

Wϕf(a, b) = ⟨f(x), ϕ̄b,a(x)⟩, x ∈ R,

where ϕb,a(x) =
1
a
ϕ
(
x−b
a

)
. We will give a definition of quasiasymptotic boundedness

of exponential distributions at 0.

Definition 5.1. [20]. Let f ∈ K′
r and c(ϵ), ϵ ∈ (0, a), a > 0 be a continuous positive

function. We say that f is quasiasymptotically bounded at 0 related to c(ϵ)

in K′
r if there exists M > 0 such that∣∣∣∣⟨f(ϵx)c(ϵ)

, ϕ(x)

⟩∣∣∣∣ ≤M∥ϕ∥Kr , 0 < ϵ < 1,

for every ϕ ∈ Kr.

For properties of quasiasymptotically bounded tempered distributions, we refer to

[20]. Obviously, if f has a quasiasymptotics at 0 related to c(ϵ) in K′
r, then f is

quasiasymptotically bounded at 0 related to c(ϵ) in K′
r.
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We will analyze the boundedness of the wavelet transform Wϕf of the quasi-

asymptotically bounded exponential distributions at 0 with respect to the wavelet

ϕ ∈ Kr.

Theorem 5.1. Let f ∈ K′
r and c(ϵ), ϵ ∈ (0, ϵ′) be a continuous positive function. If

f is quasiasymptotically bounded at 0 related to c(ϵ), then there exists C > 0 such

that

|Wϕf(b, a)| ≤ C
1

ar+1
er|

b
a |, 0 < a < 1,

for every ϕ ∈ Kr.

Proof. Let ϕb,a(x) = 1
a
ϕ
(
x−b
a

)
and let ϕ ∈ Kr. By the change of variables x = ϵt

and Definition 5.1, we obtain that for 0 < a < 1 and 0 < ϵ < 1, there exists M > 0

such that

∣∣∣∣Wϕf(ϵb, ϵa)

c(ϵ)

∣∣∣∣ =

∣∣∣∣⟨f(x)c(ϵ)
, ϕ̄ϵb,ϵa(x)

⟩∣∣∣∣
=

∣∣∣∣⟨f(ϵt)c(ϵ)
, ϕ̄b,a(t)

⟩∣∣∣∣
≤ M

∥∥ϕ̄b,a

∥∥
Kr

= M

∥∥∥∥1aϕ̄
(
t− b

a

)∥∥∥∥
Kr

= M sup
t∈R, 0≤α≤r

er|t|

∣∣∣∣∣1aϕ̄
(
t− b

a

)(α)
∣∣∣∣∣

≤ M

ar+1
sup
t∈R

er|t|e−r| t−b
a

|

≤ M

ar+1
er|

b
a
|.

If we choose 0 < ϵ0 < 1 and put ϵ0b = u and ϵ0a = v(0 < v < 1), we obtain that

there exists C > 0 such that

|Wϕf(u, v)| ≤Mϵr+1
0 c(ϵ0)

1

vr+1
er|

u
v
| ≤ C

1

vr+1
er|

u
v |.

�

Now we will analyze the boundedness of the wavelet coefficients of the quasi-

asymptotically bounded exponential distributions at 0 with respect to the wavelet

in Kr.
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According to [2], we define the discrete wavelet transform of F ∈ L2 with respect

to the wavelet Ψ ∈ L2 as a double-indexed sequence

cm,n = ⟨F,Ψm,n⟩ =
∫ ∞

−∞
F (x)Ψ̄m,n(x)dx,

where Ψm,n(x) = 2m/2Ψ(2mx − n),m, n ∈ Z. If the wavelet Ψ is orthonormal, then

every F ∈ L2 can be written as

F (x) =
∑
m∈Z

∑
n∈Z

cm,nΨm,n(x)

with convergence in L2−norm.

The wavelet expansion of f ∈ K′
r with respect to the orthonormal wavelet ψ ∈ Kr

is defined by

⟨∑
m∈Z

∑
n∈Z

⟨f, ψm,n⟩ψm,n, ϕ

⟩
=

⟨
f,
∑
m∈Z

∑
n∈Z

⟨ϕ, ψm,n⟩ψm,n

⟩
, ϕ ∈ Kr, (13)

where ψm,n(x) = 2m/2ψ(2mx− n),m, n ∈ Z.

Definition 5.2. We say that cm,n = ⟨f, ψm,n⟩,m, n ∈ Z in (13) are wavelet coef-

ficients of f ∈ K′
r with respect to ψ ∈ Kr.

Theorem 5.2. Let f ∈ K′
r and c(ϵ), ϵ ∈ (0, ϵ′) be a continuous positive function.

If f is quasiasymptotically bounded at 0 related to c(ϵ), 0 < ϵ < a, then there exists

C > 0 such that for the wavelet coefficients cm,n,m, n ∈ Z of f ∈ K′
r and ψ ∈ Kr

cm,n ≤ C 2m(r+ 1
2
) er|n|, m > 0, n ∈ Z.

Proof. Let ψm,n(x) = 2m/2ψ(2mx−n) and let ψ ∈ Kr. Take η(m, ϵ) = m+log2(1/ϵ)

for m > 0 and 0 < ϵ < 1. It follows from the change of variables x = ϵt and

Definition 5.2 that
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∣∣∣∣cη(m,ϵ),n√
ϵc(ϵ)

∣∣∣∣ =

∣∣∣∣⟨ f(x)√
ϵc(ϵ)

, ψη(m,ϵ),n(x)

⟩∣∣∣∣
=

∣∣∣∣⟨ f(x)√
ϵc(ϵ)

,
2m/2

√
ϵ
ψ

(
2mx

ϵ
− n

)⟩∣∣∣∣
=

∣∣∣∣⟨f(ϵt)c(ϵ)
, ψm,n(t)

⟩∣∣∣∣
≤ M∥ψm,n∥Kr

= M sup
t∈R,0≤α≤r

er|t|
∣∣∣2m/2ψ (2mt− n)(α)

∣∣∣
= M2m/2 sup

t∈R,0≤α≤r
er|t|2mα

∣∣ψ(α) (2mt− n)
∣∣

≤ M2m(r+1/2) sup
t∈R

er|t|e−r|2mt−n|

≤ M2m(r+1/2)er|n|.

If we choose 0 < ϵ0 < 1 and put l = η(m, ϵ0) = m + log2(1/ϵ0) = m − log2 ϵ0 > 0,

we obtain that there exists C > 0 such that

|cl,n| =
√
ϵ0c(ϵ0)M2(l+log2 ϵ0)(r+1/2)er|n| ≤ C2l(r+1/2)er|n|.

�
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[12] D. Rakić,Multiresolution expansion in D′
Lq(Rn), Integral Transform and Special

Functions 20 (2009), 231–238.

[13] K. Saneva, Asymptotic behavior of wavelet coefficients, Integral Transform and

Special Functions 20 (2009), 333–339.

[14] K. Saneva, Application of the quasaiasymptotic boundedness of distributions on

wavelet transform, Publ. Inst. Math. (Beograd) 86(100) (2009), 115-122.

[15] K. Saneva and J. Vindas, Wavelet expansions and asymptotic behavior of dis-

tributions, J. Math. Anal. Appl. 370 (2010), 543–554.

[16] B. K. Sohn and D. H. Pahk, Wavelets in the generalized tempered distributions,

Tsukuba J. Math. 23 (1999), 529–538.

[17] S. Sznajder and Z. Zielezny, Solvability of convolution equations in K′
1, Proc.

Amer. Math. Soc. 57(1) (1976), 103–106.

[18] S. Sznajder and Z. Zielezny, On some properties of convolution operators in K′
1

and S ′, J. Math. Anal. Appl. 65 (1978), 543-554.

[19] J. Vindas, Structural theorems for quasiasymptotics of distributions at infinity,

Publ. Inst. Math. (Beograd) (N.S.) 84(98) (2008), 159–174.

[20] J. Vindas, The structure of quasiasymptotics of Schwartz distributions, Banach

Center Publ. 88 (2010), 297–314.

[21] J. Vindas and R. Estrada, Distributional Point Values and Convergence of

Fourier Series and Integrals, J. Fourier Anal. Appl. 13(5) (2007), 551–576.
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