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A GENERALIZATION OF THE BANACH-STONE
THEOREM FOR COMMUTATIVE BANACH
ALGEBRAS
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ABSTRACT. Let I be an index set, not necessarily a subset of any Banach algebra.
Let A and B be unital semisimple commutative Banach algebras with maximal
ideal spaces M4 and Mpg, respectively. If surjective mappings S1,52: I — A
and T1,Ty: I — B satisty r(T1(A\) — Ta(p)) = r(S1(A) — Sa(p)) for all A\, pu € I,
where r(a) is the spectral radius of a, then there exist p, w € B, a homeomorphism
©: Mg — M4 and a closed and open subset K of Mg such that |@] = 1 on Mg

and that o
TN W(y)Sk(A K
Ti(M)(y) — p(y) = { QDM y e
D(Y)Sk N (¢(y) ye Mg\ K

for all A € I (k = 1,2). In particular, if A and B are uniform algebras, and if
S1,82: I — A and T1,T: I — B satisfy

or (T(N) = To(1) N 0w (S1N) — Sa(w) 0 (WA u € D),

— —

where o (f) is the peripheral spectrum of f, then T (\)(y) = p(y) + Sk (A)(¢(v))
forall A€ I and y € Mg (k=1,2).

1. Introduction

The study of spectrum preserving surjections between Banach algebras is one of
the most active areas in Banach algebra theory. The theorem of Kowalski and
Stodkowski [8, Theorem 1.2] states that if a complex-valued mapping T: A — C
defined on a Banach algebra A satisfies T'(a) — T'(b) = o(a — b) for all a,b € A,
then 7" is linear and multiplicative (cf. [5, Theorem 3.1]), where o(-) denotes the
spectrum of the algebra element. This result is a generalization of the theorem of
Gleason, Kahane and Zelazko [3, 7, 23].
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It seems interesting to consider a part of the spectrum instead of the spectrum.
In fact, Rao, Tonev and Toneva [18] considered the peripheral spectrum o (f) of f
defined by o (f) = {z € o(f) : |2| = max,co(y) |A|}, and proved that a surjective
mapping T: A — B between uniform algebras is an isometric isomorphism whenever
T satisfies o (T'(f) +T(g9)) = 0. (f +g) for all f,g € A under some additional
assumption on the maximum moduli of functions. Tonev and Yates introduced
norm-linear condition [T (f) + BT(9)]leo = ||af + B9l for f,g € A and o, 5 € C,
where || f]|« is the supremum norm of f. Among other things, they [21, Theorem 20]
proved that if T: A — B is a norm-linear surjective mapping between uniform
algebras with 7'(1) = 1 and 7'(i) = 4, then T is an isometric algebra isomorphism.
Tonev [20, Corollary 6] proved that if a surjective mapping T': A — B between unital
semisimple commutative Banach algebras satisfies r(a1'(a) + ST'(b)) = r(aa + ()
for all a,b € A and «, 8 € C, then T is an algebra isomorphism. Here, r(a) denotes
the spectral radius of a. Let M4 and Mp be maximal ideal spaces of A and B,
respectively. It was shown in [6] that if a surjective mapping T: A — B satisfies
r(T(a)+T (b)) =r(a+bd) for all a,b € A, then there exit a homeomorphism ¢: Mz —
M 4 and a closed and open subset K of Mpg such that

—

Tal(y) = YL(i)(y)d(w(y)) yeK
T(e)(y)ale(y) ye€ Mp\ K

for all a € A, where e is unit of A and a is the Gelfand transform of a.

In this paper we investigate surjective mappings Sy, Se: I — Aand Ty, T5: [ — B
satisfying r(77(X) —To(p)) = r(S1(A)—S2(p)) for all A, o € I, where [ is an index set.
We will prove that (S, T) are represented by a homeomorphism between maximal
ideal spaces of A and B (k = 1,2). We also investigate surjective mappings that
satisfy o (T1(\) — Ta(u)) C or (S1(N) — Sa(p)) for all A\, p € 1.

2. The main theorem

Let A be a unital semisimple commutative Banach algebra with maximal ideal space
M 4 and Shilov boundary d.A, the smallest closed boundary of A. Denote by o(a) the
spectrum of a € A, namely, o(a) ={A\ € C:a—Xe g A™'} = {a(z) € C: x € M4},
where a is the Gelfand transform of a € A. Recall that the spectral radius r(a)
of an element a € A is the maximum modulus of A in the spectrum of a, that is
r(a) = sup,eyr, |@(2)| = sup,egq|a(z)]. The peripheral spectrum o, (a) of a € A is
defined by o, (a) = {\ € C: |\| =r(a)}. The norm ||a|| of a € A and the spectral
radius r(a) are not equal in general. However, if A is a uniform algebra, then the
supremum norm ||a||« and the spectral radius r(a) of a € A coincide.
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Let A be a uniform algebra on a compact Hausdorff space X with the supremum
norm |[-||. Recall that h € A is a peaking function of A if and only if ||h] =
and h(x) # 1 implies |h(z)| < 1 for x € X. Equivalently, h € A is a peaking
function of A if and only if o, (h) = {1}. We say that K C X is a peak set of A
if K =h'(1) = {z € X : h(z) = 1} for some peaking function h of A. If the
intersection of a family of peak sets of A is a singleton, then the unique element
in the intersection is called a weak peak point, or a p-point of A. The set of all
weak peak points of A is the Choquet boundary of A, denoted by Ch(A), which is a
boundary of A, and dense in the Shilov boundary dA of A.

Theorem 2.1. Let I be an index set, not necessarily a subset of any Banach al-
gebras. Let A and B be unital semisimple commutative Banach algebras with maz-
imal ideal spaces M4 and Mg, and Shilov boundaries A and 0B, respectively. If
S1,S82: 1 — A and Ty, Ty: I — B are surjective mappings satisfying

r(Ti(A) = Ta(p)) = v(S2(A) = S2(w) - (VA pe ), (2.1)

then there exist p,w € B, a homeomorphism ¢: Mg — My and a closed and open
set K of Mg such that |w| =1 on Mp and that

—

— ) w(y)Sk(N)(ply) yeK
TkO‘)(y) - p(y) = U
w(y) SN (e(y) v e Mp\ K

forallxel (k=1,2).

Proof. Let p € I. Since T, is surjective, there exists p/ € I such that To(p') = T1(u).
According fo (2.1), (531) ~ $:) = HTi0) = o) = K7i0s) ~Ti)) =0
Since A is semisimple, Sa(p') = S1(u). Therefore, for each A € I, r(Ty(N\) =T () =
r(Ty(A) = To(p')) = r(S1(A) = S2(i)) = x(S1(A) — Si(p)). Consequently,

(

r(Ti(A) = Ta(p) = v(S2(A) = Si(w) (VA pwel). (2.2)

Define Ty: A — B by Ti(a) = T(

{A € I:51(\) = a}. Here, T1(\,) does not depend on a choice of an element in
{Ael:S(A ) = a}: for if S1(\) = S1(N), then T1(A) = T1(N) by (2.2). Since A is
semisimple, T} is well-defined. Let a; € A and take \; € I so that S1(\;) = a; for
i =1,2. According to (2.2),

o) for & € A, where ), is any element of

o —

sup [T (1) (y) — Ta(as)(y)| = sup [T () — Ti(0a) ()|

=1(T1 (M) — Ti(A2)) = 1(S1 (A1) — S1(A2))

=r(ay —ag) = sup |ay(z) — as(x)|.
TEM 4
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Thus, Tr: A — Bis an isometry with respect to the supremum norms. Since T}
is surjective, for each b e B, there exists A € [ such that T}(\) = b, and thus
Tl(m) = /1(\/\) — b. Consequently, T} is a surjective isometry between normed
linear spaces A and B. By the Mazur-Ulam theorem [12], T} is affine (cf. [22]). Set
T =T, —T1(0). Then 7: A — B is a real-linear surjective isometry with respect to
the supremum norms.

Next, we show that there exists a real-linear surjective isometry T: A — B such
that ’ﬁj\ — T, where A and B are uniform closures of A € C(My) and B C C(Mp),
respectively. It should be mentioned that the following arguments are used in [6].
Just for the sake of convenience, here we give a proof. It is well-known that A and
B are uniform algebras on M 4 and Mg, respectively, so that My = My, Mg = Mg,
OA = OA and OB = OB. Since A is the uniform closure of A, for each f e A,
there exists {a,} C A such that SUP,ens, |0n(7) — f(z)] — 0 as n — oo. Thus,
{T (a,)} C B is a Cauchy sequence since T is a real-linear isometry with respect
to the supremum norms. Therefore, there exists an element 7N'( f) € B such that
SUP, s, | T (an)(y) — T(f)(y)] = 0 as n — oo. We see that T(f) does not depend
on a choice of {@,} C A so that SUP,enr, |an(2) — f(7)] — 0 as n — oo. Thus, there
arises a well-defined, real-linear surjective isometry T: A — B such that 'ﬁ i=T
as claimed.

Let v4: A — Alpa and vp: B — Blgp are restriction mappings. Then v4 and vg

1

are isometric algebra isomorphisms. Set ﬁ =ygo T o Y4~ ", and thus the mapping

T,: Alpa — Blag is a real-linear surjective isometry.

AL>

| s

Aloa ? Blos

vy

By a result of Ellis [2, Theorem], 72(1) satisfies ]’7;(1)| =1 on 0B, and there exist
a homeomorphism ¢: 0B — 0.A and a closed and open subset FE of 9B such that

T()(Wh(e(y) yeE
T,()(h(o(y) yedB\E

for all h € Alga. Since T5(1) = T(1)|os = T(é)|os € Blos, there exists w € B such
that @ = 7T (1) € B, where e is unit of A, and thus, |w| =1 on 9B, and

F ) = U:J(y)f(¢(y)) yek 23)
w(y)f(oly)) y€OB\E

T,(h)(y) =

for all f € A.
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Choose an element fy € A such that T(fy) = 1. Such f, € A exists since T is
surjective. By (2.3), fooq§ = 1/won E and fyo ¢ = 1/ on 8B\E Set f1 = f¢ € A.
Then (2.3) shows that 7(f1) = 1/@% on OB and therefore, wT(fl) =1londB. It
follows that |w| = 1 on Mp. Define U: A — B by U(f) = T(fL)T(f) for f € A.
Then U is surjective since so is 7. By (2.3)

Uiy = 10w ver
floy)) ye€dB\E

for all f € A, where we have used &7 (fi) = 1 on dB. Here, we notice that
#(Ch(B)) = Ch(A) by (2.4). If we define e = (1 —iU(i))/2 € B, then (2.4) yields
e=1on Fand e =0o0n 9B\ E, and thus €2 = ¢ on 9B. Since OB is a boundary of
B, € is an idempotent. Now we use the idea of A. Luttman and S. Lambert in [10,
Theorem 2.1]. Set ¢ =1—¢ € B. Then € is an idempotent such that e/ = 0. Then
B’ = Be ® Bé€ is a uniform algebra on Mp with Mp = Mg. We define U: A— B
by

(2.4)

Uf) =U(fle+U(f)e  (Vf € A). (2.5)
By (2.4), with e =1 on E and e = 0 on 9B\ E, U(f) = fo ¢ on 9B for all f € A.
Since 0B is a boundary of B, U is an algebra homomorphism. We show that U is
a bijection. In fact, if L?(f) = L?(g) for f,g € A, then fo¢ = go ¢ on OB, and thus
f = g since ¢(0B) = 0.A. Hence U is injective. For each k € B’ choose ki,k, € B
such that k = kje 4+ kyoe’. There exists go € A such that U(gy) = ke + kae’ € B.
Since €2 = ¢ and e€ = 0, (2.5) shows that U(go)e = U(go)e = ke and

Ulgo)(1 =€) = Ulgo)e' = U(go)e' = Fae'.

Consequently, Z/N{(go) = kye + koe' = k, and therefore, U is surjective. Hence u
is a bijection, as claimed. Since U is an algebra isomorphism between uniform
algebras, there exists a homeomorphism ¢: Mg — M4 such that U (f) = foyp
for all f € A. According to (2.5), using €2 = ¢ and e’ = 0, Z:?(f)e = U(f)e and
U =U(f)e =U(f)(1 — €). Therefore,

U(f) =U(f)e+U(f)e

forall f € A. Set K ={y € Mg : e(y) = 1}. Smce €2 = ¢, K is a (possibly empty)
closed and open subset of Mg. Using ( )= fop,

ye K
yE€ M\ K

for all f € A. Smcefogp_ = fo¢ on 0B, we have ¢ = ¢ on 0B. Thus,
p(0B) = ¢(9B) = 0A and (Ch( )) = ¢(Ch(B)) = Ch(A).
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Finally, by the definition of U, T(f) = wiU(f) for all f € A. In addition, recall
that

— ~ — ~

T(SI0) = T(S1(0) = Ta(Si(V) — T2(0) = Ta(\) — T1(0)
for all A € I. Consequently,

— ) b(y)S N (ey) yeK
Ti(N)(y) —ply) = -
W(y)S N (e(y) ye Mg\ K

for all A € I, where p € B with p = T3(0). Since T} is surjective, for each A € I
there exists A € I such that T1(\) = To(\) and Sy (') = S5(A), where we have used
(2.1). Thus, for each y € K,

— — —

L(A(y) = ply) = Ti(N)(y) = ply) = @(y)Si1 (V) (#(y))
= () SN (W)
By the same argument, we have Tj(\)\)(y) —ply) = u?(y)S/Q(\)\)(@(y)) for all y €
Mg\ K. O

Remark 2.1. In Theorem 2.1 if we consider the case when [ = A = C(X), B =
C(Y), S; = Sy = Id, the identity mapping and 77 = T» are complex-linear, then
we have the Banach-Stone theorem [1, 19]. Theorem 2.1 is also a generalization
of Nagasawa theorem stating that any unital, surjective, complex-linear isometry
between uniform algebras is an algebra isomorphism.

Corollary 2.2. Let I be an index set, not necessarily a subset of any Banach alge-
bras. Let A and B be unital semisimple commutative Banach algebras with mazximal
ideal spaces M4 and Mg, respectively. If S1,S2: 1 — A and T1,T5: I — B are
surjective mappings satisfying

ox (T1(A) = Ta(p) Cox (S1(A) = S2(p)) (YA, pe ), (2.6)

then there exist p € B and a homeomorphism p: Mg — M4 such that

TN () — 5y) = ScN(#()
forall X el andy € Mg (k=1,2).

Proof. By (2.6), t(T1(X\) —T2(u)) = r(S1(A)—S2(p)) holds for all A, u € I. According
to Theorem 2.1, there exist p, w € B, a homeomorphism ¢: Mz — M4 and a closed
and open subset K of Mg such that |@w| = 1 on Mp and that

—_—

_ @ (y)Sk(A K
Ti(M(y) — ply) = f‘”M Ve (2.7)
W(y)Sk(M)(p(y) y € M\ K
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for all A € I (k = 1,2). Since Sy is surjective, there exists poy € I such that
Sa(po) = 0. Thus Ty(pp) = p on Mp, and consequently To(uo) = p. By (2.6),

o (T1(N) — p) C ox (S1(N)) (2.8)

for all A € I. First, we will prove that @ = 1 on Mp. Let A\g € I with S;(A\g) = e,
unit element of A. On one hand,

ox (T1(Xo) —p) C o (S1(No)) = {1},

and thus o, (T1(Ag) — p) = {1}. On the other hand, T} (\g) —p = w on Mg by (2.7),
and hence |T7(\g) —p| = || =1 on Mp. It follows that T7(\g) —p = 1 on Mg, and
consequently, w = 1 on Mg as claimed. Finally, we show that K = Mpg. Suppose,

on the contrary, that there exists y; € Mp \ K. Choose A\; € I so that S;(\;) = ie.

According to (2.7), T1(M)(y1) — p(y1) = —i and T1(\1)(y) — p(y) = £i for y € Mp.
Hence —i € o, (T1 (A1) — p). By (2.8), o, (T1(M\1) — p) C 0 (S1(\1)) = {i}, which is

a contradiction. This implies that K = Mp. Thus, m(y) —p(y) = Se(N)(p(y))
forall A € I and y € Mp (k=1,2). O

Corollary 2.3. Let I be an index set, not necessarily a subset of any Banach al-
gebras. Let A and B be uniform algebras with maximal ideal spaces M and Mp,
respectively. If S1,S2: I — A and Ty, Ty: I — B are surjective mappings satisfying

or (T1(A) = To()) Nox (S1(A) = Sa(p) #0 (YA, p € 1), (2.9)
then there exist p € B and a homeomorphism p: Mg — M4 such that

—

TN () — dy) = Sc N (e(v))
forall N €l and y € Mp (k =1,2).

Proof. According to Theorem 2.1, there exist p, w € B, a homeomorphism ¢: Mp —
M4 and a closed and open subset K of Mp such that |w| =1 on Mp and that (2.7)
holds for all A € I (k= 1,2). By the same argument to the Proof of Corollary 2.2,
we see that

o (Ti(A) = p) Nox (S1(A)) # 0 (2.10)
for all A € I. As mentioned in the proof of Theorem 2.1, we also have that
©(Ch(B)) = Ch(A).

First, we will prove that w = 1. Let A\ € I with S;1()\g) = 1, the unit element of A.
By (2.7) and (2.10), 1 € o, (T1(Xo) — p) = 0 (w). Thus, FF = {y € 0B : w(y) = 1}
is a non-empty closed subset of the Shilov boundary 0B of B. Suppose, on the
contrary, that there exists yo € 0B \ F. Since Ch(B) is dense in 0B, we may
and do assume that yo € Ch(B) \ F. Set 29 = p(yo) € Ch(A). Then ¢(F) is a
closed subset of p(0B) = 0A with o € ¢(F). Hence, there exists \; € I such
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that o, (S1(A\1)) = {1}, S1(M)(zo) = 1 and [S1(M\)] < 1 on ¢(F). On one hand,
1 € 0. (T1 (A1) —p) by (2.9). Thus T1(M\)(y1) — p(y1) = 1 for some y; € Ch(B).
Then y; ¢ F because |T1(A\1)(y) — p(y)| = [S1(M1)(p(y))| < 1 for all y € F. Hence,
w(y;) # 1 by the definition of F. On the other hand, since o, (S1(\1)) = {1},
1= [T1(A)(y1) —p(y1)| = [S1(A1)(@(y1))] implies that 51 (A1) (¢(y1)) = 1. According
to (2.7), T1(M)(y1) — p(y1) = w(y1) # 1, which is a contradiction. Consequently,
0B = F, that is w = 1 on dB. Since 0B is a boundary of B, we obtain that w =1
as claimed.

Next, we show that K # ). In fact, choose Ay € I so that S;(\y) = i. Then by
(2.7) with w = 1, m—ﬁ :ionKandm—ﬁ: —i on Mg \ K. Since
or (S1(A2)) = {i}, (2.10) yields K # . Finally, we prove that K = Mpg. Suppose
that there exists yo € Ch(B) \ K. Since K is a non-empty closed subset of My
with yo & K, there exists A3 € I so that o, (S1(A\3)) = {i}, S1(A3)(y2) = i and
|S1(A3)] < 1 on K. By (2.7), o, (Th(X\3) —p) = {—i}, which contradicts (2.10).
This shows that Ch(B) \ K = (), and thus Ch(B) C K. By the choice of Ay € I,
Ti(A2) — p = i on Ch(B). Since Ch(B) is a boundary of B, T1(A\2) — p = 4, and
thus Mp \ K is empty. Consequently, K = Mp as claimed. According to (2.7), we
conclude that m(y)—f)(y) = S/km(gp(y)) forall\ € Jandy € Mp (k=1,2). O
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