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CONE-SEMICONTINUITY OF SET-VALUED MAPS
BY ANALOGY WITH REAL-VALUED

SEMICONTINUITY

YUUYA SONDA, ISSEI KUWANO, AND TAMAKI TANAKA

Abstract. In the paper, we propose how we can treat several kinds of semi-

continuity with respect to cone for set-valued maps by analogy with semiconti-

nuity for real-valued functions and investigate the inheritance properties on cone-

(semi)continuity of parent set-valued maps via scalarization.

1. Introduction

In general, it is well known that the composite function of two continuous func-

tions is also continuous. Göpfert, Riahi, Tammer and Zălinescu [2] show several

continuity properties of the composition of two set-valued maps or of a function

with a set-valued map. Kuwano, Tanaka and Yamada [6] prove inheritance proper-

ties on continuity of set-valued maps via scalarization. These studies are concerned

with several types of inheritance property on continuity of parent functions for com-

posite functions. If we obtain some scalarizing function ϕ which preserves some

kinds of continuity of a parent vector-valued or set-valued function f , then we can

get a clue to confirm the continuity of its parent function by checking the continuity

of its composite function ϕ ◦ f .
On the other hand, it is well known that there are various definitions of semicon-

tinuity for real-valued functions. Let X be a topological space, then a real-valued

function f : X → R is lower semicontinuous at x̄ ∈ X if lim infx→x̄ f(x) ≥ f(x̄),

which is equivalent to the following condition: for any a ∈ R with f(x̄) > a, there

exists an open neighborhood V of x̄ such that f(x) > a for all x ∈ V . In other words,

f is lower semicontinuous at x̄ if for any interval (a, b) ⊂ R with f(x̄) ∈ (a, b), there

exists an open neighborhood V of x̄ such that f(x) ∈ (a, b)+R+ for all x ∈ V where
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R+ := {r ∈ R : r ≥ 0}. Regarding R+ as an ordering cone, the lower semicontinuity

of f is characterized by an order structure of real numbers. In the case of vector-

valued functions, Luc [7] introduces the notion of cone-continuity as follows: given

a convex cone C in a vector space Y , a vector-valued function f : X → Y is C-

continuous at x̄ ∈ X if for any neighborhood V of f(x̄), there exists a neighborhood

U of x̄ such that f(x) ∈ V +C for all x ∈ U . By the same discussion in the case of

real-valued functions, the C-continuity of f is characterized via the order structure

induced by the ordering cone C. In the case of set-valued maps, various notions

of cone-(semi)continuity are introduced in [2]. By using an order structure with an

ordering cone, we can regard the notion of cone-continuity for set-valued maps as

an analogous concept with semicontinuity of real-valued functions.

In the paper, we focus on the case of set-valued maps, and consider two types of

composite functions of a set-valued map and each of certain scalarizing functions,

which are proposed in [6]. Then, we investigate the inheritance properties on cone-

continuity of parent set-valued maps via this kind of scalarization.

The organization of the paper is as follows. In Section 2, we introduce a mathe-

matical methodology [4] on comparison between two sets in an ordered vector space

and several definitions of continuity and cone-continuity for set-valued maps (see

[2]). Moreover, we consider relationships between continuity notions for set-valued

maps and semicontinuity for real-valued functions. In Section 3, we introduce two

types of nonlinear scalarizing functions for sets proposed in [6]. Also we investigate

how certain kinds of cone-continuity for set-valued maps are inherited to composite

functions with the scalarizing functions.

2. Mathematical Preliminaries

Let Y be a real topological vector space with the vector ordering ≤C induced by

a proper convex cone C (C ̸= ∅, C ̸= Y and C+C = C) with nonempty topological

interior as follows:

x ≤C y if y − x ∈ C for x, y ∈ Y .

It is well known that ≤C is reflexive and transitive where C is a convex cone, and

that ≤C has invariable properties to vector space structure as translation and scalar

multiplication. Then, the space Y is called an ordered topological vector space. In

particular, if C is pointed, then ≤C is antisymmetric, and hence Y is a partially

ordered topological vector space.

Throughout the paper, we assume that X is a real topological vector space, Y a

real ordered topological vector space and F a set-valued map from X into 2Y \ {∅},
respectively. For any A ⊂ Y , we denote the interior, closure and complement of A

by intA, clA and Ac, respectively.
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At first, we review some basic concepts of set-relation and several definitions of

continuity and cone-continuity for set-valued maps.

Definition 2.1 (set-relation, [4]). For nonempty sets A, B ⊂ Y and convex cone C

in Y , we write

A ≤(1)
C B by A ⊂

∩
b∈B(b− C), equivalently B ⊂

∩
a∈A(a+ C);

A ≤(2)
C B by A ∩

(∩
b∈B(b− C)

)
̸= ∅;

A ≤(3)
C B by B ⊂ (A+ C);

A ≤(4)
C B by

(∩
a∈A(a+ C)

)
∩B ̸= ∅;

A ≤(5)
C B by A ⊂ (B − C);

A ≤(6)
C B by A ∩ (B − C) ̸= ∅, equivalently (A+ C) ∩B ̸= ∅.

Proposition 2.1 ([4]). For nonempty sets A,B ⊂ Y , the following statements hold.

A ≤(1)
C B implies A ≤(2)

C B; A ≤(1)
C B implies A ≤(4)

C B;

A ≤(2)
C B implies A ≤(3)

C B; A ≤(4)
C B implies A ≤(5)

C B;

A ≤(3)
C B implies A ≤(6)

C B; A ≤(5)
C B implies A ≤(6)

C B.

Proposition 2.2 ([5]). For nonempty sets A,B ⊂ Y , the following statements hold.

(i) For each j = 1, . . . , 6,

A ≤(j)
C B implies A+ y ≤(j)

C B + y for y ∈ Y , and

A ≤(j)
C B implies αA ≤(j)

C αB for α > 0;

(ii) For each j = 1, . . . , 5, ≤(j)
C is transitive;

(iii) For each j = 3, 5, 6, ≤(j)
C is reflexive.

Proposition 2.3 ([5]). For nonempty subsets V, V ′ ⊂ Y and direction k ∈ C \
(−clC), the following statements hold.

(i) For each j = 1, . . . , 6, V ≤(j)
C tk + V ′ implies V ≤(j)

C sk + V ′ for any s ≥ t;

(ii) For each j = 1, . . . , 6, tk + V ′ ≤(j)
C V implies sk + V ′ ≤(j)

C V for any s ≤ t.

Next, we recall usual definitions of continuity for set-valued maps.

Definition 2.2 (lower continuous, [2]). A set-valued map F is said to be lower

continuous (l.c., for short) at x̄ if for every open set V ⊂ Y with F (x̄) ∩ V ̸= ∅,
there exists an open neighborhood U of x̄ such that F (x)∩V ̸= ∅ for all x ∈ U . We

shall say that F is lower continuous on X if F is lower continuous at every point

x ∈ X.

Definition 2.3 (upper continuous, [2]). A set-valued map F is said to be upper

continuous (u.c., for short) at x̄ if for every open set V ⊂ Y with F (x̄) ⊂ V , there

exists an open neighborhood U of x̄ such that F (x) ⊂ V for all x ∈ U . We shall say

that F is upper continuous on X if F is upper continuous at every point x ∈ X.
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Classically, we find the terms “lower semicontinuous” and “upper semicontinuous”

for these notions. Instead, in this paper, we use the terms “lower continuous” and

“upper continuous” along the lines of [2], because both notions above coincide with

the usual continuity of single-valued functions when the set-valued map is singleton,

that is, F (x) = {f(x)} for some function f : X → Y .

For cone-continuity of set-valued maps, there are many concepts; see [3] in 1999,

[1] in 2000 and [2] in 2003. In this paper, we use the following typical definitions of

cone-continuity for set-valued maps based on [2].

Definition 2.4 (C-lower continuous, [2]). A set-valued map F fromX into 2Y \{∅} is
said to be C-lower continuous (C-l.c., for short) at x̄ if for every open set V ⊂ Y with

F (x̄)∩V ̸= ∅, there exists an open neighborhood U of x̄ such that F (x)∩(V +C) ̸= ∅
for all x ∈ U . We shall say that F is C-lower continuous on X if F is C-lower

continuous at every point x ∈ X.

Definition 2.5 (C-upper continuous, [2]). A set-valued map F from X into 2Y \{∅}
is said to be C-upper continuous (C-u.c., for short) at x̄ if for every open set V ⊂ Y

with F (x̄) ⊂ V , there exists an open neighborhood U of x̄ such that F (x) ⊂ V +C

for all x ∈ U . We shall say that F is C-upper continuous on X if F is C-upper

continuous at every point x ∈ X.

Remark 2.1. When Y = R and C = R+, C-lower continuity and C-upper conti-

nuity for singleton set-valued maps coincide with the usual lower semicontinuity

for real-valued functions. Also, (−C)-lower continuity and (−C)-upper continuity

for singleton set-valued maps coincide with the usual upper semicontinuity for real-

valued functions. By symbolic interpretation, C and −C correspond to “lower” and

“upper,” respectively.

3. Relationships between Cone-Semicontinuity of Set-Valued

Maps and Semicontinuity of Real-Valued Functions

At first, we introduce the definition of two types of nonlinear scalarizing functions

for sets proposed by a unified approach in [5]. Let V and V ′ be nonempty subsets

of Y , and direction k ∈ intC. For each j = 1, . . . , 6, I
(j)
k,V ′ : 2

Y \ {∅} → R ∪ {±∞}
and S

(j)
k,V ′ : 2

Y \ {∅} → R ∪ {±∞} are defined by

I
(j)
k,V ′(V ) := inf

{
t ∈ R

∣∣∣V ≤(j)
C tk + V ′

}
,

S
(j)
k,V ′(V ) := sup

{
t ∈ R

∣∣∣ tk + V ′ ≤(j)
C V

}
,

respectively. These functions are called unified types of scalarizing functions for sets.
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In this section, we introduce relationships between cone-continuity of set-valued

maps and semicontinuity of certain composite functions with the unified types of

scalarizing functions. This is along the lines of [5, 6] but different from the approach

of [8]. For any x ∈ X and for each j = 1, . . . , 6, we consider the following composite

functions:

(I
(j)
k,V ′ ◦ F )(x) := I

(j)
k,V ′(F (x)),

(S
(j)
k,V ′ ◦ F )(x) := S

(j)
k,V ′(F (x)).

Then, we can directly discuss inheritance properties on cone-continuity of parent set-

valued map F to semicontinuity of I
(j)
k,V ′ ◦F and S

(j)
k,V ′ ◦F in an analogous fashion to

linear scalarizing function like inner product. For this end, we consider the following

level sets;

levlr(f) := {x ∈ X|f(x) ≤ r},

levur (f) := {x ∈ X|r ≤ f(x)},

where f : X → R∪ {±∞}. Then, we show how certain kinds of cone-continuity for

parent set-valued maps are inherited to these composite functions with the unified

types of scalarizing functions.

Theorem 3.1 ([6]). Let F be a set-valued map and k ∈ intC. Then, the following

statements hold.

(i) For each j = 1, 4, 5,

(a) if F is lower continuous on X, then I
(j)
k,V ′ ◦ F is lower semicontinuous

on X,

(b) if F is upper continuous on X, then I
(j)
k,V ′ ◦ F is upper semicontinuous

on X.

(ii) For each j = 2, 3, 6,

(c) if F is lower continuous on X, then I
(j)
k,V ′ ◦ F is upper semicontinuous

on X,

(d) if F is upper continuous on X, then I
(j)
k,V ′ ◦ F is lower semicontinuous

on X.

Theorem 3.2 ([6]). Let F be a set-valued map and k ∈ intC. Then, the following

statements hold.

(i) For each j = 1, 2, 3,

(a) if F is lower continuous on X, then S
(j)
k,V ′ ◦ F is upper semicontinuous

on X,

(b) if F is upper continuous on X, then S
(j)
k,V ′ ◦ F is lower semicontinuous

on X.

(ii) For each j = 4, 5, 6,
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(c) if F is lower continuous on X, then S
(j)
k,V ′ ◦ F is lower semicontinuous

on X,

(d) if F is upper continuous on X, then S
(j)
k,V ′ ◦ F is upper semicontinuous

on X.

To show main results, we give the following lemma.

Lemma 3.1. Let A be a subset in Y and C a convex cone in Y . Then, the following

statements hold.

(i) {cl (A+ C)}c = {cl (A+ C)}c − C and {cl (A− C)}c = {cl (A− C)}c + C;

(ii) int (A+ C) = int (A+ C) + C and int (A− C) = int (A− C)− C.

Proof. Since C is a convex cone, we can prove easily by the definitions of the closure

and interior. �

Theorem 3.3. Let F be a set-valued map, C a convex cone in Y and k ∈ intC.

Then, the following statements hold.

(i) For each j = 1, 4, 5,

(a) if F is C-lower continuous on X, then I
(j)
k,V ′ ◦F is lower semicontinuous

on X,

(b) if F is (−C)-upper continuous on X, then I
(j)
k,V ′ ◦ F is upper semicon-

tinuous on X.

(ii) For each j = 2, 3, 6,

(c) if F is (−C)-lower continuous on X, then I
(j)
k,V ′ ◦ F is upper semicon-

tinuous on X,

(d) if F is C-upper continuous on X, then I
(j)
k,V ′ ◦F is lower semicontinuous

on X.

Proof. The proof throughout the whole of the theorem is given by the same method,

and so we shall prove in cases of j = 3, 5.

First, we prove (a) and (d). For j = 3, 5, we show that

levlr(I) := {x ∈ X | (I(j)k,V ′ ◦ F )(x) ≤ r}

is closed for any r ∈ R, that is, for any net {xα}α∈J ⊂ levlr(I),

xα → x̄ ⇒ x̄ ∈ levlr(I),

where J is a directed set. Assume that there exist r̄ ∈ R, {xβ}β∈J ⊂ levlr̄(I), and

x̄ ∈ X such that

xβ → x̄ and x̄ ̸∈ levlr̄(I).

Let tx̄ := I
(j)
k,V ′ ◦ F (x̄). Then there exist ϵ > 0 and δ > 0 such that r̄ < r̄ + ϵ <

r̄ + ϵ + δ < tx̄ because x̄ ̸∈ levlr(I). Let tβ := I
(j)
k,V ′ ◦ F (xβ) for any β ∈ J . Then
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tβ ≤ r̄. Therefore, tβ ≤ r̄ < r̄ + ϵ < r̄ + ϵ+ δ < tx̄ and so we obtain

F (x̄) ̸≤(j)
C (r̄ + ϵ+ δ)k + V ′ and F (xβ) ≤(j)

C (r̄ + ϵ)k + V ′. (3.1)

(a) we consider the case of j = 5. By (3.1) and the definition of type (5) set-

relation, we have

F (x̄) ̸⊂ (r̄ + ϵ+ δ)k + V ′ − C and F (xβ) ⊂ (r̄ + ϵ)k + V ′ − C. (3.2)

Since C is a convex cone, k ∈ intC and δ > 0,

cl ((r̄ + ϵ)k + V ′ − C) ⊂ (r̄ + ϵ+ δ)k + V ′ − C,

and then

{(r̄ + ϵ+ δ)k + V ′ − C}c ⊂ {cl ((r̄ + ϵ)k + V ′ − C)}c . (3.3)

Hence, by (3.2) and (3.3), we have

F (x̄) ∩ ({cl ((r̄ + ϵ)k + V ′ − C)}c) ̸= ∅,

and

F (xβ) ∩ ({cl ((r̄ + ϵ)k + V ′ − C)}c) = ∅.

By Lemma 3.1, we obtain

{cl ((r̄ + ϵ)k + V ′ − C)}c = {cl ((r̄ + ϵ)k + V ′ − C)}c + C.

Consequently, we have

F (x̄) ∩ ({cl ((r̄ + ϵ)k + V ′ − C)}c) ̸= ∅,

and

F (xβ) ∩ ({cl ((r̄ + ϵ)k + V ′ − C)}c + C) = ∅.

This is a contradiction to the C-lower continuity of F on X. Consequently, I
(5)
k,V ′ ◦F

is lower semicontinuous on X.

(d) we consider the case of j = 3. By (3.1) and the definition of type (3) set-

relation, we obtain

(r̄ + ϵ+ δ)k + V ′ ̸⊂ F (x̄) + C and (r̄ + ϵ)k + V ′ ⊂ F (xβ) + C. (3.4)

Assume that F (xβ) ⊂ F (x̄)− δk +C, then we obtain (r̄ + ϵ)k + V ′ ⊂ F (xβ) +C ⊂
F (x̄)− δk+C, hence, (r̄+ ϵ+ δ)k+V ′ ⊂ F (x̄)+C. This is a contradiction to (3.4),

and so we have

F (xβ) ̸⊂ F (x̄)− δk + C. (3.5)

Moreover, since C is a convex cone, k ∈ intC and δ > 0,

F (x̄) ⊂ F (x̄) + C ⊂ int (F (x̄)− δk + C). (3.6)
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Hence, by (3.5) and (3.6), we have F (x̄) ⊂ int (F (x̄)− δk + C) and F (xβ) ̸⊂
int (F (x̄)− δk + C). By Lemma 3.1, we obtain

int (F (x̄)− δk + C) = int (F (x̄)− δk + C) + C.

Consequently, we have

F (x̄) ⊂ int (F (x̄)− δk + C) and F (xβ) ̸⊂ int (F (x̄)− δk + C) + C.

This is a contradiction to the C-upper continuity of F on X. Consequently, I
(3)
k,V ′ ◦F

is lower semicontinuous on X.

Second, we prove (b) and (c). For each j = 3, 5, we show that

levur (I) := {x ∈ X|r ≤ (I
(j)
k,V ′ ◦ F )(x)}

is closed for any r ∈ R, that is, for any {xα}α∈J ⊂ levur (I),

xα → x̄ ⇒ x̄ ∈ levur (I),

where J is a directed set. Assume that there exist r̄ ∈ R, {xβ}β∈J ⊂ levur̄ (I), and

x̄ ∈ X such that

xβ → x̄ and x̄ ̸∈ levur̄ (I).

Let tx̄ := I
(j)
k,V ′ ◦ F (x̄). Then there exist ϵ > 0 and δ > 0 such that tx̄ < r̄ − ϵ <

r̄ − ϵ + δ < r̄ because x̄ ̸∈ levur̄ (I). Let tβ := I
(j)
k,V ′ ◦ F (xβ) for any β ∈ J . Then

r̄ ≤ tβ. Therefore, tx̄ < r̄ − ϵ < r̄ − ϵ+ δ < r̄ ≤ tβ and so we obtain

F (x̄) ≤(j)
C (r̄ − ϵ)k + V ′ and F (xβ) ̸≤(j)

C (r̄ − ϵ+ δ)k + V ′. (3.7)

(b) we consider the case of j = 5. By (3.7) and the definition of type (5) set-

relation, we have

F (x̄) ⊂ (r̄ − ϵ)k + V ′ − C and F (xβ) ̸⊂ (r̄ − ϵ+ δ)k + V ′ − C. (3.8)

Since C is a convex cone, k ∈ intC and δ > 0,

(r̄ − ϵ)k + V ′ − C ⊂ int ((r̄ − ϵ+ δ)k + V ′ − C). (3.9)

Hence, by (3.8) and (3.9), we have

F (x̄) ⊂ int ((r̄ − ϵ+ δ)k + V ′ − C) and F (xβ) ̸⊂ int ((r̄ − ϵ+ δ)k + V ′ − C).

By Lemma 3.1, we obtain

int ((r̄ − ϵ+ δ)k + V ′ − C) = int ((r̄ − ϵ+ δ)k + V ′ − C)− C.

Consequently, we have

F (x̄) ⊂ int ((r̄ − ϵ+ δ)k + V ′ − C) and F (xβ) ̸⊂ int ((r̄ − ϵ+ δ)k + V ′ − C)−C.

This is a contradiction to the (−C)-upper continuity of F on X. Consequently,

I
(5)
k,V ′ ◦ F is upper semicontinuous on X.
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(c) we consider the case of j = 3. By (3.7) and the definition of type (3) set-

relation, we obtain

(r̄ − ϵ)k + V ′ ⊂ F (x̄) + C and (r̄ − ϵ+ δ)k + V ′ ̸⊂ F (xβ) + C. (3.10)

Assume that F (x̄) ⊂ F (xβ)− δk + C, then we obtain (r̄ − ϵ)k + V ′ ⊂ F (x̄) + C ⊂
F (xβ)−δk+C, hence, we have (r̄−ϵ+δ)k+V ′ ⊂ F (xβ)+C. This is a contradiction

to (3.10), and so we have

F (x̄) ̸⊂ F (xβ)− δk + C. (3.11)

Moreover, since C is a convex cone, k ∈ intC and δ > 0,

F (xβ) ⊂ cl (F (xβ) + C) ⊂ F (xβ)− δk + C. (3.12)

Hence, by (3.11) and (3.12), we have F (x̄) ∩ ({cl (F (xβ) + C)}c) ̸= ∅ and F (xβ) ∩
({cl (F (xβ) + C)}c) = ∅. By Lemma 3.1, we obtain

{cl (F (xβ) + C)}c = {cl (F (xβ) + C)}c − C.

Consequently, we have

F (x̄) ∩ ({cl (F (xβ) + C)}c) ̸= ∅ and F (xβ) ∩ ({cl (F (xβ) + C)}c − C) = ∅.

This is a contradiction to the (−C)-lower continuity of F on X. Consequently,

I
(3)
k,V ′ ◦ F is upper semicontinuous on X.

�

Theorem 3.4. Let F be a set-valued map, C a convex cone in Y and k ∈ intC.

Then, the following statements hold.

(i) For each j = 1, 2, 3,

(a) if F is (−C)-lower continuous on X, then S
(j)
k,V ′ ◦ F is upper semicon-

tinuous on X,

(b) if F is C-upper continuous on X, then S
(j)
k,V ′◦F is lower semicontinuous

on X.

(ii) For each j = 4, 5, 6,

(c) if F is C-lower continuous on X, then S
(j)
k,V ′◦F is lower semicontinuous

on X,

(d) if F is (−C)-upper continuous on X, then S
(j)
k,V ′ ◦ F is upper semicon-

tinuous on X.

Proof. By the same way as the proof of Theorem 3.3, the statements are proved. �
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By Theorems 3.1–3.4, we summarize the inheritance properties on continuity and

cone-continuity of parent set-valued maps via the unified types of scalarizing func-

tions in Table 3.1. By symbolic interpretation, (semi-)continuity notions with pre-

fixes C and −C are inherited to the semicontinuity with “lower” and “upper,”

respectively.

Table 3.1. Inherited properties on semicontinuity of set-valued maps

via scalarization.

F
I
(j)
k,V ′ ◦ F S

(j)
k,V ′ ◦ F

j = 1, 4, 5 j = 2, 3, 6 j = 4, 5, 6 j = 1, 2, 3

l.c. on X l.s.c. on X u.s.c. on X l.s.c. on X u.s.c. on X

u.c. on X u.s.c. on X l.s.c. on X u.s.c. on X l.s.c. on X

C-l.c. on X l.s.c. on X (∗) l.s.c. on X (∗)
C-u.c. on X (∗) l.s.c. on X (∗) l.s.c. on X

(−C)-l.c. on X (∗) u.s.c. on X (∗) u.s.c. on X

(−C)-u.c. on X u.s.c. on X (∗) u.s.c. on X (∗)

Example 3.1. Let X = R, Y = R2 and C = R2
+. We consider a set-valued map

F : X → 2Y defined by

F (x) :=



[(
x

x

)
,

(
x

0

)]
(x ≤ −1),

[(
x

x+ 2

)
,

(
x

3

)]
(−1 < x < 1),

[(
x− 1

0

)
,

(
x− 1

x

)]
(1 ≤ x),

where [a, b] := {c ∈ Y | a ≤C c, c ≤C b}. It is easy to check that F is C-upper

continuous on X. Let k =
(
1
1

)
and V ′ =

[(
0
0

)
,
(
1
1

)]
, and hence we have

(I
(3)
k,V ′ ◦ F )(x) =



x (x ≤ −1),

x+ 2 (−1 < x < 1),

x− 1 (1 ≤ x).

Hence I
(3)
k,V ′ ◦ F is lower semicontinuous on X.

Remark 3.1. If F is neither lower continuous on X nor upper continuous on X, we

can not apply the results in [6] to the composite functions of F and each of the unified
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types of scalarizing functions. However, by Theorems 3.3 and 3.4, we get a clue to

confirm cone-continuity of a parent set-valued map F by checking semicontinuity of

the scalarizing functions.

Example 3.2. Let X = R, Y = R2 and C = R2
+. We consider a set-valued map

G : X → 2Y defined by

G(x) :=



[(
x

0

)
,

(
x

x2

)]
(x ≤ −1),

[(
x

0

)
,

(
x

x+ 3

)]
(−1 < x < 1),

[(
x

0

)
,

(
x

5x

)]
(1 ≤ x),

where [a, b] := {c ∈ Y | a ≤C c, c ≤C b}. It is easy to check that G is C-upper

continuous on X. Let k =
(
1
1

)
and V ′ =

[(
0
0

)
,
(
1
1

)]
, and then we have

(I
(5)
k,V ′ ◦G)(x) =



x2 − 1 (x ≤ −1),

x+ 2 (−1 < x < 1),

5x− 1 (1 ≤ x).

Hence I
(5)
k,V ′ ◦G is neither lower semicontinuous nor upper semicontinuous on X.

Example 3.3. Let X = R, Y = R2 and C = R2
+. We consider a set-valued map

H : X → 2Y defined by

H(x) :=



[(
x− 1

0

)
,

(
x− 1

−x

)]
(x < −1),

[(
x

0

)
,

(
0

1

)]
(−1 ≤ x ≤ 0),

[(
0

0

)
,

(
x+ 2

x+ 2

)]
(0 < x),
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where [a, b] := {c ∈ Y | a ≤C c, c ≤C b}. It is easy to check that H is (−C)-lower

continuous on X. Let k =
(
1
1

)
and V ′ =

[(
0
0

)
,
(
1
1

)]
, and then we have

(S
(5)
k,V ′ ◦H)(x) =



x− 2 (x < −1),

−1 (−1 ≤ x ≤ 0),

x+ 1 (0 < x).

Hence S
(5)
k,V ′ ◦H is neither lower semicontinuous nor upper semicontinuous on X.

Remark 3.2. Each cell with (∗) in Table 3.1 is undetermined on semicontinuity for

the scalarizing functions. By Examples 3.2 and 3.3, I
(5)
k,V ′ ◦G and S

(5)
k,V ′ ◦H are neither

lower semicontinuous on X nor upper semicontinuous on X.
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