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METRICS ON $® SUCH THAT
BRIESKORN CURVE IS A GEODESIC

MASAHIRO YAMAGATA

1. Introduction.

Let (a1,a2,...,an41) be an (n + 1)-tuple of positive integers with a; >
2(i=1,2,... ,n+41). B (ay,as,... ,an41) C C**! is said to be a (2n —1)-
dimensional Brieskorn manifold if it satisfies the following two equations.

(1) 21 + |22 o F [znga |2 =1,
(2) (zl)al +(z2)az+...+(zn+1)an+1 = Q.

In particular, B'(a1,az) is called a Brieskorn curve on a unit sphere S3.

Brieskorn manifolds have interesting properties in the topological and differ-
ential view points. For example they have S'-actions with the singular orbits as
the G-manifolds, some of these are exotic spheres and they have many normal
contact metric structures(cf.[2],[4] and [5]).

Let z1, 22,23, 2% be a local coordinate system of R%. We put ! = cos 61,
z? = sinf'cosb?, z® = sin 6! sin 62 cos 6%, z* = sin6!sin 6% sin 63, where
6',6% € (0,7) and 6 € (—, 7). Then the usual metric on S? is defined by

(3) ds® = (d6")? + sin” 6*(d6?)? + sin? 6! sin? 62(d6°)?.

In general, Brieskorn curve B!(p,q) is not a geodesic on S® with the usual
metric (3).

The purpose of the present paper is to describe an adapted metric g such
that Brieskorn curve Bl(p,q) is a geodesic on sphere S3.

Theorem. A metric on S® such that Brieskorn curve B(p,q) is a geodesic is
given by

ds? = p*(d6')? + p® sin® §%(d6?)? + ¢® sin? 6" sin? 62(d63)?,
where p and g are integers with p > q > 2.
Moreover Brieskorn curve B!(p,q) is

(exp(v/=Ts/p), exp(v/"Ts/g))Bo for all s,
where By is a point of B(p, q).

The auther express his sincere thanks to Professors Y. Hatakeyama and T.
Takahashi for his valuable advice, guidance and encouragement.
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2. Preliminaries.

Denoting by z!, %,z z* a real coordinate of C? such that z! = z! ++/—1¢2
and 2% = z3 + \/=1z*, the identification of C?> with R* will always be done by
means of the correspondence (2!, 22) — (21,22, 23, z4).

Let S® be a 3-dimensional unit sphere defined by

(4) |21[* + |22|* = 1,

with the usual metric induced by the Euclidean metric on R*.

Furthermore put z! = cos8!, z; = sin6' cos8?, z3 = sin 6! sin 62 cos 62,
z* = sin 0" sin 62 sin 6%, where 6,62 € (0,7) and 63 € (-, 7). As against the
usual metric (3) on 53, we shall define new Riemannian metric by

(5) ds® = (f1)%(d8")? + (f2)? sin? 6'(d62)? + (f5)? sin? 6! sin? 62(d6°)?,

where f, is a function on S® with respect to 8, f, and f; are constants. B1(p, q)

is called a Brieskorn curve if it satisfies the equation (4) and an equation defined
by

(6) (21)” +(z2)! =0,

where p and ¢ are integers with p > ¢ > 2. By conjugate complex in (6),
z = sin® @' sin? 62 satisfies

(7 (1 —z)? = z9.

Then we can easily prove the following lemma.

Lemma 1. Let z be real number with 0 < = < 1, and p,q positive integers
with p > g > 2. Then an equation

(8) F(z)=(Q1-z)f —af

has the unique solution xo € (0,1) such that F(zo) = 0.

We put a = sin6’ sin §2(> 0). Hence from Lemma 1, the constant o have
the following properties.

(1) (1 - a2)p = a2q,
(i) 0<a®<3, and o?>=1 ifandonlyif p=gq,
(ili) a only depends on p and gq.

Therefore we hold that sin®8!(s)sin? 6%(s) is a constant along Brieskorn
curve s — (6(s), 6%(s), 63(s)).
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Now from (5), we get that a geodesic s — (8(s),6%(s), 63(s)) satisfies the
following ordinary differntial equations.

© L L (O (Y (4

ds?2 ' f, d6' \ ds? fi ds
2 3\ 2
- (f_s) sin 6* cos 6! sin? 62 (%) =0,
1
d26? ,d6Y de®  (f:\? . ., [de¥\?
(10) 7o + 2cot 8 ek (-};> sin 6 cos 8 e =0,
d*¢? , dé* de® , d6? d6® |
(11) 752 + 2cot 8 —;l;~—c—i-;—+2cot9 —d-s—m-—o,

where a parameter s is arc length of a geodesic.

3. Proof of theorem.
Assume that Brieskorn curve s — (6!(s),6%(s),63(s)) has the unit speed
geodesic. We shall determine a function f;, and constants f, and f3 in (5)

3
(A) Since (11) implies 4 sin? 6! sin® 02-51—‘?-— =0, we find
ds ds
3
(12) sin? 6! sin? 62 Ll = constant(# 0).

ds

Then we have easily the following lemma.

Lemma 2. The following conditions are equivalent.
(a) sin? 6" sin? §% = constant (# 0),

3
(b) %—é— = constant(# 0),
1 2

(c) cot 91% + cot 92% = 0.

As we have sin® 6(s)sin? #%(s) = constant along Brieskorn curve, we get

(13) | —d;; = (= constant # 0).

Therefore we obtain
(14) 6%(s) = Bs +,

where « is a constant.

(B) From (10),(13), Lemma 2 and

d 1 dé? doz\? 4262
‘2 02 - _ 2 () 427
sin” 6 ds (sin2 02 ds ) 2cot 6 ( ds ) ds?’
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we have that (10) implies

d 1 dé? f2 .\ 2
| — 1 ={ L t 6°.
(15) ds (sin2 02 dS ) (f2 ) CO

Put g(s) = cot 62(s). Then

L ap
sin? 92 ds °

(16) Lg(s)= -

By using (15) and (16), we get

d? d 1 de? fs .\
(17 a9 =g, (m x) = - (f:f’) 9(a)-
Then the differntial equation above has the solution
(18) 9(s) = Asin(Bs + ¢),

where A > 0, B = (f3/f2)B3 and ¢ are constants. Using g(s) = cot §2(s), (16)
and (18), we obtain

d_02 _ __ABcos(Bs + )
ds ~ 14 A%sin®(Bs+¢)

(19)

The solution of differential equation (19) is
(20) 6?(s) = arccot(Asin(Bs + ¢)).

(C) From a constant a = sin8'(s)sin6%(s), 0 < 6! < = and (20), we get

(21) sin§'(s) = a\/l + A?sin?(Bs + ).

Therefore we obtain

(22) 0'(s) = arcsin (a\ﬁ. + A?sin?(Bs + cp)) .

By using (21) or (22), we have

de? aA?Bsin(Bs + ¢) cos(Bs + ¢)

(23) =
ds \/1 + A?sin?(Bs +<p)\/(1 —a?) — a?A%sin%(Bs + ¢)

By virtue of (21), we choose a constant A such that

(24) a?(1+ A% =1.
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By using (6),(14),(20) and (22), we choose constant v = (pp — 7)/q. Then
we obtain

fs_9 p_4 _1 -
(25) 5P B pﬂ and ¢ p(q7+ )-

Consequently, we get

(26) ' = ev/1—a2cos(Bs+ ), z°=eV1—a?sin(Bs+ ),
3 = eacos(Bs + ), z* = easin(Bs + ),

where ¢ = +1. By assumption of Brieskorn curve with the unit speed, and
using (5),(13), (19),(23),(24) and (25), we obtain

(27) (f1)2 = A2B? sin"}(B.s + (P) (1 + A2 Sin2(B'3 + 90) - (%) (f?)zﬂz) .

Here we choose constants 8 and f; such that
1

(28) = ; and fz =p
Then from (25), (27) and (28), we have

1
(29) =5 fs=q and fi=

Now from (25), (26), (28) and (29), we have that (6) implies
(30) (\/i_-_o?exp\/—_l (% + q'y;- 7r))P + (aexp\/—_l_ ('—;- + 7))9 = 0.
Hence from (29), we find that for all s
(31) (%Cz%m¢3(2+mjw),wm¢3(§+0)€§

is in Brieskorn curve B!(p,q). Therefore theorem is completely proved.
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