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THE EXISTENCE OF GEODESIC
LOOPS ON ALEXANDROV SURFACES

VERNON K. SENANAYAKE

\S 1. INTRODUCTION

In this paper our discussion is directed mainly to Alexandrov surfaces with cur-
vature bounded below by a constant $k$ and having no boundary. An Alexandrov
space is a finite Hausdorff dimensional locally compact, complete length space sat-
isfying Alexandrov convexity. The idea of the existence of geodesic loops was first
proposed by Cohn-Vossen in analyzing the behavior of geodesics with variations of
the total curvature. It had been understood that the geodesics of a Riemannian
plane are all simple and not closed if there is no simple closed polygon bounding a
compact domain of total curvature greater than $\pi$ . Then the problem arose to find
conditions under which many geodesic loops exit. In 1936, Cohn-Vossen showed the
proper direction where there exist surprisingly many geodesic loops on a Riemann-
ian plane under the hypothesis that the total curvature is strictly greater than $\pi$

(Ref. [3], p. 144). Busemann extended this idea to Busemann G-planes admitting
Busemann-total excess strictly greater than $\pi$ in the case that the angular measure
is uniform at $\pi$ ( ${\rm Re} f$. [1], Theorem 44.9). By using the idea of Busemann-total
excess, Machigashira (Ref. [10]) defined the total excess and Gaussian curvature of
an Alexandrov surface. The purpose of this paper is to give a proof for the Main
Theorem, extending Cohn-Vossen’s idea to the more general case of Alexandrov
surfaces.

Main Theorem. Let $X$ be a finitely connected Alexandrov $s$urface with one end.
If the total excess $C(X)$ satisfies the relation $ C(X)>(2\chi(X)-1)\pi$ , then for any
compact set $C$ in $X$ , there exists a bounded se$tN$ of $X$ such that

(1) $C\subset N$.
(2) For any poin $tp\in X\backslash N$ , there exists a geodesic loop $\gamma_{p}$ whose base point is

at $p$ and $C$ is contained in the disk domain $bo$unded by $\gamma_{p}$ .

Here an Alexandrov surface is by definition finitely connected if it is homeomor-
phic to a closed surface without boundary from which finitely many points(ends)
are removed. The definition of the total excess $C(X)$ will be given in \S 2. We note
that $C(X)$ is equal to the total curvature of $X$ if $X$ is a smooth complete Riemann-
ian manifold with dimension 2. The Euler-characteristic of $X$ is denoted by $\chi(X)$ .
Throughout this paper we refer the basic tools of Alexandrov spaces to [4], [5] and
[8].
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\S 2. Preliminaries.
Throughout this section let $X$ be an Alexandrov surface with curvature bounded

below by $k$ possessing no boundary. . An angle between two geodesics emanating
from a point in $X$ is naturally defined. For any point $p$ in $X,$ $\Sigma_{p}$ denotes the space
of directions at $p$ which is a compact Alexandrov space with curvature bounded
below by 1 with the Hausdorff dimension $\dim_{H}\Sigma_{p}$ is equal to 1. The length of $\Sigma_{p}$

is less than or equal to $ 2\pi$ . A point $p$ in $X$ is called a singular point if $\Sigma_{p}$ is not
isometric to the unit circle $S^{1}(1)$ . The set Sing(X) of al singular points in $X$ is
a countable set in $X$ ( ${\rm Re} f$. [8], Theorem A). Now we will give the notion for the
excess $e(D)$ of a bounded domain $D$ of $X$ .

Since an Alexandrov surface is a topological manifold, for a point $p$ in $X$ and a
sufficiently small geodesic triangle $\Delta=\Delta(abc)$ in a neighborhood $U$ of $p$ with the
corners $a,$ $b,$ $c$ enclosing a disk domain, the excess $e_{o}(\Delta)$ of $\Delta$ is defined to be

$\epsilon_{o}(\Delta)$ $:=A+B+C-\pi$ ,

where $A,$ $B$ and $C$ are the inner angles of $\Delta$ at the corresponding corners.
If $p$ is an interior point of $\Delta$ , by dividing $\Delta$ into three triangles, $\Delta_{1}=\Delta(apb)$ ,

$\Delta_{2}=\Delta(\psi c)$ and $\Delta_{3}=\Delta(\varphi a)$ , we have

$\epsilon_{o}(\Delta)=\sum_{i=1}^{3}\epsilon_{o}(\Delta_{i})+2\pi-L(\Sigma_{p})$ .

Theorem [ $({\rm Re} f$. $[1],Theorem43.3)$ and (Ref. [10],Theorem $1.8)$]($The$ fun-
damental relation between the excess and the Euler-characteristic). Let
$D$ be a domain whose $bo$undary $\partial D$ consists of a finite union of simple closed
geodesic polygons. Let $\omega_{1},$ $\cdots,\omega_{l}$ be inner angles of all the corners of $\partial D$ . If
$\Delta\equiv\{\Delta_{i}\}_{i=1}^{n}$ is a finite simplical decomposition of $D$ into small geodesic triangles,
and $x_{1}\cdots x_{k}\in D$ are all the vertices of the $\Delta_{i}s$ lying in the interior of $D$ , then

(2-1) $e_{0}(D)+\sum_{i=1}^{k}(2\pi-L(\Sigma_{x_{i}}))=2\pi\chi(D)-\sum_{j=1}^{l}(\pi-\omega_{j})$ ,

where $\chi(D)$ denotes the Euler-characteristic of $D$ , an$d\epsilon_{o}(D):=\sum_{i=1}^{n}\epsilon_{o}(\Delta_{i})$ .
We have the important result proved by Machigashira(Ref. [10],Theorem 2.0)

that $\epsilon_{o}(D)\geq k\mathcal{H}^{2}(D)$ , where $\mathcal{H}^{2}(D)$ denotes the two dimensional Hausdorff mea-
sure of $D$ . Considering equation (2-1), we see that the right hand side is finite and
independent of the choice of $\triangle$ , and thus so too is the left hand side. This fact and
Machigashira’s result together help us define the excess $\epsilon(D)$ of $D$ in the following
way:

$\epsilon(D)$
$:=\lim_{\delta\rightarrow 0\Phi_{\delta}(}\inf_{D)\ni\Delta}\epsilon_{o}(D)$ ,

where $\Phi_{\delta}(D)$ denotes the set of all finite simplical decompositions of $D$ such that
I $\Delta$ I $<\delta$ . Here $|\Delta|$ denotes the maximum of the $circu\inf erences$ of al geodesic
triangles of $\Delta$ . Then the total excess $C(D)$ of $D$ is defined as

(2-2) $C(D)$ $:=\epsilon(D)+\lim_{\delta\rightarrow 0,\Phi_{\delta}(D)\ni\Delta,i}\sum_{=1}^{k}(2\pi-L(\Sigma_{x}))$
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Let $\{D_{i}\}_{i=1,2}\ldots$ be a monotone increasing sequence of relatively compact domains

in $X$ such that $X=\cup\infty D_{i}$ and $\partial D_{i}$ consists of a finite union of simple closed
$i=1$

geodesic polygons for each $i$ .
Definition 2.1. We say that $X$ admits a total excess $C(X)$ if and only if $C(X)$ $:=$

$\lim_{i}C(D_{i})$ exists, is bounded above, and its limit is independent of the choice of
$\{D_{i}\}_{i=1,2}\ldots$ .
Deflnition 2.2. A subset $U$ of $X$ is called a tube if $U$ is homeomorphic to $ S^{1}\times$

$[0, \infty)$ .
\S 3.Proof of the Main Theorem
In this section we prove the Main Theorem. The following Assertion and propo-

sition are needed for the proof of our Main Theorem. For an arbitrary compact
set $C\subset X$ we choose $C_{o}\supset C$ in $X$ be a domain such that $X\backslash C_{o}$ is a tube whose
boundary $\partial C_{o}$ is a simple closed geodesic polygon. Let $M$ $:=X\backslash C_{o}$ . For any point
$p\in X\backslash C_{o}$ we define

$\mathcal{A}_{p}$ $:=\{c|c:[0,1]\rightarrow M$ is a simple closed curve which is freely homotopic to
$\partial C_{o}$ in $M$ with the base point at $p$}

Then there exists a curve $\gamma_{p}\in \mathcal{A}_{p}$ such that $L(\gamma_{p})=\inf_{c\in \mathcal{A}_{p}}L(c)$ . Also the func-
tion $X\backslash C_{o}\ni p\mapsto L(\gamma_{p})$ is lipschitz continuous with lipschitz constant 2.

Let $\{p_{j}\}_{j=1,2},\ldots$ be a divergent sequence of points such that $\lim d(p_{j}, C_{o})=\infty$ ,
$ j\rightarrow\infty$

where $d$ is the distance function defined on $X$ and $\gamma_{j}$
$(:=\gamma_{p_{j}})\in \mathcal{A}_{p_{j}}$ satisfies $L(\gamma_{j})=$

$infL(c)$ for each $j$ . Suppose that $\gamma_{j}\cap\partial C_{o}\neq\emptyset$ . If $\omega_{k}$ , for $k=1,2,$ $\ldots,$
$b_{j}$ , are

$c\in A_{p_{j}}$

all the inner angles at the vertices of $D_{j}$ lying on $\partial C_{0}$ then clearly $\omega_{k}\leq\pi$ , where
$D_{j}$ is the domain bounded by $\gamma_{j}$ and containing $C_{0}$ . Let $\gamma$

$:=\lim_{i\rightarrow\infty}\gamma_{j(i)}$ be the limit
polygon. This $\gamma$ : $\Re\rightarrow M$ is parameterized by arc length such that $\gamma(0)\in\partial C_{o}$

and $\gamma(s)\not\in\partial C_{o}$ for all $s>0$ . With these notations we have

Assertion (Ref. $[7],Lemma(B)$ ). Let $\{\epsilon_{j}\}$ be a decreasing sequence ofpositive
numbers tending to $0$. For each $j$ there exist large $n$umbers $l_{j},m_{j},$ $l_{j}^{\prime},$ $-m_{j}^{\prime}$ such
that if

$\lambda_{j}$ : $[0, l_{j}]\rightarrow M$ and $\mu_{j}$ : $[0, m_{j}]\rightarrow M$

are minimizing geodesics with $\lambda_{j}(0)=\mu_{j}(0)=p_{j}$ , $\lambda_{j}(l_{j})=\gamma(l_{j}^{\prime})=:q_{j}$ and
$\mu_{j}(m_{j})=\gamma(m_{j}^{\prime})=:r_{j}$ then inner angles at $q_{j}$ and $r_{j}$ of the domain $E_{j}bo$unded by
$\gamma,$

$\lambda_{j}$ and $\mu_{j}$ are less than $\epsilon_{j}/2$ .

Proof of the Assertion. We need only to find for a fixed $j$ a point $q_{j}$ on $\gamma$ . Let
$g(t)$ $:=d(p_{j},\gamma(t))$ for all $t\geq 0$ . Then by the triangle inequality we have

(3-1) $|t-g(t)|\leq d(p_{j}, \gamma(0))<+\infty$ for al $t\geq 0$ .

Then $g$ is lipschitz continuous function with lipschitz constant 1. Hence $g$ is dif-
ferentiable almost everywhere. Then the first variation formula( ${\rm Re} f$. $[8]$ , Theorem
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(3-2) $ 0\leq\int_{t_{j}}^{T}(1-\cos(\alpha_{t}))dt\leq d(p_{j}, \gamma(0))-(t_{j}-g(t_{j}))<+\infty$ .

If for a given $\epsilon>0$ , there exists $t_{\epsilon}$ such that $ 1-\cos(\alpha_{t})>\epsilon$ for all $t>t_{\epsilon}$ , then by
(3-2) we $have+\infty>\int_{t_{j}}^{T}(1-\cos(\alpha_{t}))dt\geq\epsilon(T-t_{j})$ . This is a contradiction for a
large $T$ . Therefore, for $\epsilon>0$ , there exists a monotone divergent sequence on which
the integrand in (3-2) is less than $\epsilon$ . Thus the Assertion is proved.

Proposition (Ref. $[6],TheoremC$). If $\{p_{j}\}$ is a divergent sequence ofpoints in
$X\backslash C_{o}$ with $\lim_{j\rightarrow\infty}d(p_{j}, \partial C_{o})=\infty$ and for each $j,$ $\gamma_{p_{j}}\in \mathcal{A}_{p_{j}}$ with $\gamma_{p_{j}}\cap\partial C_{o}\neq\emptyset$ and

if $\theta_{j}$ is the inner angle at $p_{j}$ of the domain $D_{j}$ bounded by $\gamma_{p_{j}}$ and containing $C_{o}$

then $\lim_{j\rightarrow\infty}\theta_{j}=0$ .

Proof. Let $\omega_{k}$ , for $k=1,2,$ $\ldots,$
$b_{j}$ , be al the inner angles at the vertices of $D_{j}$

lying on $\partial C_{0}$ . We apply the equation (2-1) to the domains $D_{j}$ and $E_{j}$ respectively:

$e_{o}(D_{j})+\sum_{i=1}^{a_{j}}(2\pi-L(\Sigma_{x_{i}}))=2\pi\chi(D_{j})-\sum_{k=1}^{b_{j}}(\pi-\omega_{k})-(\pi-\theta_{j})$ ,

where $a_{j}$ has the same meaning as in the equation (2-1). By taking the $|\triangle_{j}|\rightarrow 0$ ,
we have

$C(D_{j})=2\pi\chi(X)-\pi-\sum_{k=1}^{b_{j}}(\pi-\sim\omega_{k})+\theta_{j}$ .

By taking the limit we have

$\lim_{j\rightarrow\infty}C(D_{j})=(2\chi(X)-1)\pi-\lim_{j\rightarrow\infty k}\sum_{=1}^{b_{f}}(\pi-\omega_{k})+\lim_{j\rightarrow\infty}\theta_{j}$ .
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If $U$ is the domain bounded by $\gamma$ and containing $C_{o}$ then $\lim_{j\rightarrow\infty}C(D_{j})=C(U)$ and

(3-3) $C(U)=(2\chi(X)-1)\pi-\lim_{j\rightarrow\infty k}\sum_{=1}^{b_{j}}(\pi-\omega_{k})+\lim_{j\rightarrow\infty}\theta_{j}$ .

Similarly,
$b_{j}$

$C(E_{j})\leq 2\pi\chi(E_{j})-\sum_{k=1}(\pi-\omega_{k})-2\pi+\epsilon_{j}-\pi+\beta_{j}$ ,

where $\beta_{j}$ is the angle at $p_{j}$ between $\lambda_{j}$ and $\mu_{j}$ and clearly $\beta_{j}\leq 2\pi$ . By taking the
limit we have,

(3-4) $C(U)\leq(2\chi(X)-1)\pi-\lim_{j\rightarrow\infty}\sum_{k=1}^{b_{j}}(\pi-\omega_{k})+\lim_{j\rightarrow\infty}\epsilon_{j}$ .

From (3-3) and (3-4) we have $\lim_{j\rightarrow\infty}\theta_{j}\leq 0$ , and hence $\lim_{j\rightarrow\infty}\theta_{j}=0$ .

Proof of the Main Theorem. Suppose the contrapositive of the Main Theorem.
That is, there exists a compact set $C_{o}$ in $X$ with the property that for any bounded
set $N$ containing $C_{o}$ in its interior, there exists a point $p$ in $X\backslash N$ such that there
is no geodesic loop $\gamma_{p}$ whose base point is at $p$ , such that the domain enclosed by
$\gamma_{p}$ contains $C_{0}$ .

Let $M$ $:=X\backslash C_{o}$ be any tube. There is a point $p\in X\backslash N$ such that $\gamma_{p}$ is not a
geodesic loop and hence $\gamma_{p}\cap\partial C_{o}\neq\emptyset$ .

Let $\{p_{j}\};p_{j}\in X\backslash N$ be a divergent sequence of points with $\lim_{j\rightarrow\infty}d(p_{j}, \partial C_{o})=\infty$

such that $\gamma_{p_{j}}\cap\partial C_{o}\neq\emptyset$ for each $j$ . Let $\{C_{j}\}$ be a monotone increasing sequence
of compact sets such that $ C_{o}\subset C_{1}\subset C_{2}\subset\ldots$

$,$
$\cup C_{j}=X$ , where $\partial C_{j}$ is a geodesic
$j$

polygon. Then for a given $\epsilon>0$ , there exists $j(\epsilon)$ such that $p_{j}$ for each $j>j(\epsilon)$

has the following properties:
(1) $\mathcal{A}_{p_{j}}$ $=$ { $c|c$ : $[0,1]$ $\rightarrow$ $X\backslash C_{j}$ is a simple closed curve which is freely

homotopic to $\partial C_{j}$ in $X\backslash C_{j}$ with the base point at $p_{j}$ }
Then there exists a curve

$P_{j}\in \mathcal{A}_{p_{j}}$ such that $L(P_{j})=\inf_{c\in \mathcal{A}_{p_{j}}}L(c)$ .

$P_{j}$ is a geodesic polygon such that all of its vertices with the exception of $p_{j}$ are on
$\partial C_{j}$ .

(2) The inner angle $\theta_{j}$ at $p_{j}$ of $P_{j}$ is less than or equal to $\epsilon_{j}$ .
Let $D_{j}$ be a domain bounded by $P_{j}$ containing $C_{j}$ . Choose a monotone increasing

subsequence $\{D_{k}\}$ of $\{D_{j}\}$ such that $C_{k}\subset D_{k}\subset C_{k+1}\subset D_{k+1}$ . Then $\bigcup_{k}D_{k}=X$ .
By applying (2-1) to $D_{k}$ , we have

$e_{o}(D_{k})+\sum_{i=1}^{a_{k}}(2\pi-L(\Sigma_{x_{i}}))=2\pi\chi(D_{k})-\sum_{j=1}^{b_{k}}(\pi-\omega_{j})-(\pi-\theta_{k})$ ,

$\epsilon_{o}(D_{k})+\sum_{i=1}^{a_{k}}(2\pi-L(\Sigma_{x\ell}))\leq(2\chi(X)-1)\pi+\theta_{k}$ .
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Then by taking the $|\Delta_{k}|\rightarrow 0$ , we have $C(Dk)\leq(2\chi(X)-1)\pi+\epsilon_{k}$ . Then
$\lim_{k\rightarrow 0}C(D_{k})=C(X)$ leads to a contradiction.

Remark. According to Cohn-Vossen $({\rm Re} f$. [2] $)$ tubes are classified into two groups
as expanding and contracting. Our Main Theorem always holds for the contracting
case without any restriction on the excess.
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