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Introduction.

We shall define a group $\Gamma$ to be a polysurface group of length $n$ if there is a
filtration $\{\Gamma_{i}\}_{0\leqq i\leqq n}$ of $\Gamma$ such that

(1) $\Gamma$ is torsion free,
(2) $ 1=\Gamma_{0}\subset\Gamma_{1}\subset\cdots\subset\Gamma_{n-1}\subset\Gamma_{n}=\Gamma$ ,

and
(3) for each $i,$ $\Gamma_{i}\triangleleft\Gamma_{i+1}$ and $\Gamma_{i+1}/\Gamma_{i}$ is the fundamental group of an orientable

surface.

We call a group $\Gamma$ a polysurface group without abelian factor if for each $i,$ $\Gamma_{i+1}/\Gamma_{i}$

is the fundamental group of an orientable surface with genus $\geqq 2$ and a polysurface
group of length 1 a surface group.

In a series of his works ([JI],[J2]), F.E.A.Johnson has studied the smooth real-
ization of polysurface group without abelian factor. Here a group $\Gamma$ is called to be
smoothly realizable when there exists a smooth manifold $Xr$ whose fundamental
group is F.

Being motivated by his works, we shall consider the following

Problem. $Do$es every polysurface group $\Gamma$ embed as a discrete cocompact $su$b-
group of a non-compact connected Lie group $G$ without compac $t$ factor ?

If a polysurface group $\Gamma$ embeds as a discrete cocompact subgroup of a non-
compact Lie group $G$ , then $\Gamma$ is realized as the fundamental group of smooth closed
aspherical manifold $\Gamma\backslash G/K$ , where $K$ is a maximal compact subgroup of $G$ .

In this note, we shall use the folowing notations.
1. A Lie group is assumed to be connected,non-compact,unless the contrary stated

explicitly.
2. For a Lie group $G,$ $G^{o}$ denotes the identity component.
3. $\tilde{X}$ denotes the universal covering space of $X$ .
4. $H^{4},$ $H^{3}$ or $H^{2}$ denotes 4-dimensional, 3-dimensional or 2-dimensional hyperbolic

space,respectively.
5. For a group $G,$ $Z(G)$ denotes the center of $G$ .
6. For a subgroup $H$ of $G,$ $N_{G}(H)$ or $C_{G}(H)$ denotes the normalizer or centralizer

of $H$ in $G$ , respectively.
7. $\chi(X)$ denotes the Euler characteristic of $X$ .

1. Preliminaries
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Theorem 1. Let $\Gamma$ be a polysurface group without abelian factor and $G$ a non-
compact Lie group such that $G/R$ has no compact factor, where $R$ is the radical of
G. If $\Gamma$ is a discrete cocompact $su$bgroup of $G$ , then $R$ is trivial, $i.e$ . $G$ is semisim$ple$ .

Proof. Assume $R$ is not trivial. Since $ R/R\cap\Gamma$ is compact (see [R]) and $G/R$ is
non-compact, $\Gamma\cap R$ is a non-trivial solvable normal subgroup of $\Gamma$ . It is easy to see
that a polysurface group without abelian factor has no non-trivial solvable normal
subgroup. Hence $\Gamma\cap R$ is trivial. $\square $

2. Polysurface groups without abelian factor

In this section, we shal consider only polysurface groups without abelian factor
and hence we cal such groups polysurface group simply.

We have the following

Lemma 1. Let $\Gamma$ be a polysunface group oflength $n(n\geqq 2)$ . If $\Gamma$ is embeddable in
the product group $PSL_{2}(R)^{n}$ as a discrete cocompact subgroup, then $\Gamma$ is reducible.

For the definition and more informations about reducibility, see [R] (Chap.5 in
[R]).

Proof. If $\Gamma$ is irreducible, then it follows from a result in [BW] (Corollary 4.6 p.220
in [BW]) that the first Betti number $b_{1}(\Gamma)=0$ . Note that $\Gamma$ is given by an exact
sequence;

$1\rightarrow S_{1}\rightarrow\Gamma\rightarrow S_{2}\rightarrow 1$ ,
where $S_{2}$ is a surface group. Then it is easy to see that there exists a surjec-
tion $\Gamma/[\Gamma, \Gamma]\rightarrow S_{2}/[S_{2}, S_{2}]$ . Since rank $S_{2}/[S_{2}, S_{2}]\neq 0$ , rank $\Gamma/[\Gamma, \Gamma]\neq 0$ . This
completes the proof. $\square $

Theorem 2. Let $\Gamma$ be a polysurface group without abelian factor of length $n$ , i.e.
$\Gamma$ is defined by the following exact sequence;

$1\rightarrow S_{1}\rightarrow\Gamma\rightarrow^{p}S_{2}\rightarrow 1$ ,

where $S_{1}$ is a polysurface group without abelian factor of length $n-1$ and $S_{2}$ is a
$s$urface group. Assume $S_{1}$ is embedded in the product $PSL_{2}(R)\times\cdots\times PSL_{2}(R)$

($n-1$ times) as a discrete cocompact subgroup. Then $\Gamma$ is embedded in the product
$PSL_{2}(R)\times\cdots\times PSL_{2}(R)$ ($n$ times) as a discrete cocompac $t$ subgroup if and only
if the operator homomorphism $\theta$ : $S_{2}\rightarrow Out(S_{1})h$as finite image.

Proof. First we assume that the operator homomorphism $\theta$ : $S_{2}\rightarrow Out(S_{1})$ has
finite image. Let $S_{2}^{l}$ be the kernel of $\theta$ and $\Gamma$ ‘ the preimage of $S_{2}^{\prime}$ by $p$ . We have
the following commutative diagram;

$1\rightarrow S_{1}\rightarrow\Gamma\rightarrow^{p}S_{2}\rightarrow 1$

$\uparrow$ $\uparrow$ $\uparrow$

$1\rightarrow S_{1}\rightarrow\Gamma^{l}\rightarrow S_{2}^{l}\rightarrow 1$
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where the horizontal sequences are exact.
By assumption, $S_{2}^{\prime}$ is of finite index in $S_{2}$ , hence $\Gamma$

‘ is of finite index in $\Gamma$ .
Because of $H^{2}(S_{2}^{\prime}; Z(S_{1}))=0$ and the operator homomorphism $\theta$ : $S_{2}^{l}\rightarrow Out(S_{1})$

is trivial, we have $\Gamma$
‘ $\cong$ $S_{1}\times S_{2}^{\prime}$ . Since $S_{1}$ is a reducible discrete cocompact

subgroup of $PSL_{2}(R)\times\cdots\times PSL_{2}(R)$ ($n-1$ times) (by Lemma $1$ ), $S_{1}$ contains a
normal subgroup $S_{11}\times\cdots\times S_{1n-1}$ of finite index, where $S_{1i}$ is a surface group for
$i=1,$ $\cdots n-1$ . Hence $\Gamma$ ‘ contains the subgroup $S_{11}\times\cdots\times S_{1n-1}\times S_{2}^{l}$ of finite
index. Then we have the following exact sequence;

$1\rightarrow S_{1}^{l}\rightarrow\Gamma^{\prime}\rightarrow F\rightarrow 1$ ,

where $S_{1}^{l}$ is a product of $n$ surface groups and $F$ is a finite group. By the result in
[J], $\Gamma$ is embeddable in the product Lie group $PSL_{2}(R)\times\cdots\times PSL_{2}(R)$ ( $n$ times)
as a discrete cocompact subgroup. Thus we have completed the proof of sufficiency.

Conversely, we assume that $\Gamma$ is embedded in $PSL_{2}(R)\times\cdots\times PSL_{2}(R)(n$

times) as a discrete cocompact subgroup. Note that $\Gamma$ is reducible. Then $\Gamma$ contains
$\Gamma_{1}\times\cdots\times\Gamma_{n}$ as a normal subgroup of finite index, where $\Gamma_{i}$ is a fundamental group
of an orientable surface of genus $\geqq 2$ .

We have the following four cases;

(1) $p(\Gamma_{1}\times\cdots\times\Gamma_{n-1})=1$ and $p(\Gamma_{n})=1$

(2) $p(\Gamma_{1}\times\cdots\times\Gamma_{n-1})=1$ and $p(\Gamma_{n})\neq 1$

(3) $p(\Gamma_{1}\times\cdots\times\Gamma_{n-1})\neq 1$ and $p(\Gamma_{n})=1$

(4) $p(\Gamma_{1}\times\cdots\times\Gamma_{n-1})\neq 1$ and $p(\Gamma_{n})\neq 1$ .

It is clear that the case (1) does not occur by cohomological dimension argument.
Consider the case (4}. Since $p(\Gamma_{n})$ is a finitely generated normal subgroup of

$S_{2}$ , it is a surface group and of finite index in $S_{2}$ . Choose a non-trivial element
$x\in p(\Gamma_{1}\times\Gamma_{2}\times\cdots\times\Gamma_{n-1})$ . Then we have $x^{m}\in p(\Gamma_{n})$ for some power of $x$ . Since
$x\in C_{S_{2}}(p(\Gamma_{n}))$ , we have $x^{m}\in C_{S_{2}}(p(\Gamma_{n}))\cap p(\Gamma_{n})=Z(p(\Gamma_{n}))=1$ and hence we
have $x^{m}=1$ . This contradicts the torsion freeness of $S_{2}$ . Thus case (4) does not
occur.

Consider the case (2). First we show that $p|\Gamma_{n}$ : $\Gamma_{n}\rightarrow S_{2}$ is injective. It is
sufficient to show that $\Gamma_{n}\cap S_{1}=1$ . Note that $ S_{1}\cap\Gamma\cong\Gamma_{1}\times\cdots\times\Gamma_{n-1}\times(S_{1}\cap\Gamma_{n})/\Gamma_{1}\times$

. . . $\times\Gamma_{n-1}$ is a subgroup of $S_{1}/(\Gamma_{1}\times\cdots\times\Gamma_{n-1})$ . Since $cd(S_{1})=cd(\Gamma_{1}\times\cdots\times\Gamma_{n-1})$ ,
$S_{1}/(\Gamma_{1}\times\cdots\times\Gamma_{n-1})$ is finite, $S_{1}\cap\Gamma_{n}$ is so, which implies our assertion.

Thus we have the following commutative diagram;

$ 1\rightarrow$

$ S_{1}\uparrow$

$\rightarrow$

$\Gamma\uparrow$

$\rightarrow^{p}$

$ S_{2}\uparrow$

$\rightarrow 1$

$1\rightarrow\Gamma_{1}\times\cdots\times\Gamma_{n-1}\rightarrow\Gamma_{1}\times\cdots\times\Gamma_{n}\rightarrow p(\Gamma_{n})\rightarrow 1$

where the horizontal sequences are exact.
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We shall define a homomorphism $\lambda$ : $p(\Gamma_{n})\rightarrow\Gamma_{n}$ by the inverse of $p|\Gamma_{n}$ . Then
we have $\lambda(p(\Gamma_{n}))\subset C_{\Gamma}(\Gamma_{1}\times\cdots\times\Gamma_{n-1})$ .

Put $S_{2}^{l}=p(\Gamma_{n})$ and $S_{1}^{l}=\Gamma_{1}\times\cdots\times\Gamma_{n-1}$ . We shall identify elements $s^{\prime}\in S_{2}^{\prime}$ and
$\lambda(s^{\prime})$ .

We define a homomorphism $\phi$ : $S_{2}^{\prime}\rightarrow Aut(S_{1})$ by the formula $\phi(s^{\prime})=c_{s^{\prime}}$ , where
$c_{s^{\prime}}$ denotes the conjugation by $s^{\prime}$ . Since $c_{s^{\prime}}|S_{1}^{\prime}=id$, we have a homomorphism
$\overline{\phi}$ : $S_{2}^{\prime}\rightarrow Aut(S_{1}/S_{1}^{\prime})$ . This define a homomorphism $\psi$ : $\phi\leftrightarrow\overline{\phi}$ naturally. We shal
show that th is injective. Assume $\psi(\phi(s^{l}))=1$ . Then, for every element $s_{1}\in S_{1}$ ,
we have $s_{1}s^{l}s_{1}s^{l}=s_{1}^{l}\in S_{1}^{\prime}$ . Since $S_{1}$ , S\’i are normal in $\Gamma$ and $S_{1}\cap S_{1}^{l}=1$ , we
have $s_{1}s^{\prime}s_{1}s^{\prime}=1$ and $s_{1}^{l}=1$ . Thus we have $s^{\prime}s_{1}s^{\prime-1}=s_{1}$ . This implies $\psi$ is
injective. Thus $\phi$ has finite image, because $\overline{\phi}$ has finite image. It follows that the
restriction of the operator homomorphism $\theta$ to $S_{2}^{\prime}$ has finite image and hence there
exists a subgroup $S_{2}^{\prime l}$ of $S_{2}$ of finite index such that $\theta|S_{2}^{l/}$ is trivial. Since $S_{2}^{\prime l}$ is a
subgroup of $S_{2}$ with finite index, the image of $\theta$ is finite. This completes the proof
of our assertion.

Finally consider the case (3). This case is easily reduced to the case (2) or (4).
Thus we have completed the proof of Theorem.

We shall consider the case of length 2 in more detail. We are given an exact
sequence;

$(*)$ $1\rightarrow S_{1}\rightarrow\Gamma\rightarrow^{p}S_{2}\rightarrow 1$ ,

where $S_{1}$ and $S_{2}$ are surface groups. Let $\theta$ : $S_{2}$ $\rightarrow$ Out $(S_{1})$ be the operator
homomorphism.

${\rm Re} cal$ that $\theta$ is defined as follows. Let $\gamma_{2}$ be an element of $S_{2}$ . Choose an element
$\gamma\in\Gamma$ such that $p(\gamma)=\gamma_{2}$ . Consider the conjugation $c_{\gamma}$ : $S_{1}\rightarrow S_{1}$ which is the
automorphism of $S_{1}$ , uniquely determined up to Inn $(S_{1})$ . In other words, we have
a homomorphism $\theta$ : $S_{2}\rightarrow Out(S_{1})$ .

We have the following

Proposition 1. Assume the operator homomorphism $\theta$ is not injective. Then if $\Gamma$

is embeddable in a non-compact Lie group $G$ without compact factor as a discrete
cocompact subgroup, then $G$ is not simple.

Proof. Since $\theta$ is not injective, there exists an non trivial element $\gamma_{2}$
$\in S_{2}$ such

that $\theta(\gamma_{2})=1$ . This implies that there exists an element $\gamma$
$\in$

$\Gamma$ such that
$\gamma\gamma_{1}\gamma^{-1}=\gamma_{1}^{l}\gamma_{1}\gamma_{1}^{\prime-1}$ for every element $\gamma_{1}$

$\in S_{1}$ for some element $\gamma_{1}^{\prime}-1$ $\in S_{1}$ .
We have $(\gamma_{1}^{\prime-1}\gamma)\gamma_{1}(\gamma_{1}^{\prime-1}\gamma)^{-1}=\gamma_{1}$ . Since $\gamma$ is not in $S_{1},$ $\gamma\gamma_{1}^{-1}\neq 1$ . Thus we have
$C_{\Gamma}(S_{1})\neq 1$ . Since $S_{1}$ is centerless, $C_{\Gamma}(S_{1})\cap S_{1}=1$ .

Choose a non trivial element $\gamma$ from $C_{\Gamma}(S_{1})$ . Since $S_{1}$ is a normal subgroup
of $\Gamma$ , we have $\Gamma$

$\subset$ $N_{G}(S_{1})$ . Then we have $\Gamma\subset$ $N_{G}(A(S_{1}))$ , where $A(*)$

denotes the algebraic closure of $*$ , the smalest algebraic subgroup of $G$ which
contains $*$ . In fact, for any element $\gamma\in\Gamma,$ $S_{1}$ is stable under the conjugation
$c_{\gamma}$ : $G\rightarrow G$ and hence, for any algebraic subgroup $K$ which contains $S_{1},$ $c_{\gamma}(K)$

is also algebraic subgroup containing $S_{1}$ . This implies $c_{\gamma}(A(S_{1}))=A(S_{1})$ , in
other words, $\Gamma\subset N_{G}(A(S_{1}))$ . Since $N_{G}(A(S_{1}))$ is an algebraic subgroup of $G$ ,

–10 –



$A(\Gamma)\subset Nc(A(S_{1}))$ . By the same argument, we have $G\subset N_{G}(A(\Gamma))$ . Assume
$G$ is simple. Then it follows that we have $A(\Gamma)=G$ and $G=N_{G}(A(S_{1}))$ . If
$\gamma\in C_{G}(S_{1})$ , then $\gamma$ is also in $C_{G}(A(S_{1}))=C_{G}(G)$ , in particular $Z(\Gamma)\neq 1$ , which
is a contradiction. $\square $

By results in [J], there are three types of polysurface group of length 2;

Type 1. The operator homomorphism $\theta$ has finite image.
Type 2. $\theta$ is not injective and its image is not finite.
Type 3. $\theta$ is injective.

We have the following

Theorem 3. (1) If $\Gamma$ is of type 1, then $\Gamma$ is embedded in $PSL_{2}(R)\times PSL_{2}(R)$ as
a discrete cocompact subgroup.

(2) If $\Gamma$ is of type 2, then $\Gamma$ is not embedded in any non-compact Lie group as a
discrete $co$compact subgroup.

Proof. (1) follows from Theorem 1.
Let $\Gamma$ be of type 2. $AsSume\Gamma\subset G$ . It follows from Proposition 1 that $G$ is not

simple and hence $G=PSL_{2}(R)\times PSL_{2}(R)$ . Again it follows from Theorem 1 that
$\theta$ has finite image. $\square $

Remark: We don’t know that the group of type 3 can be embedded in $O(4,1)^{o}$ .
But the following Proposition follows immediately from Proposition 1.

Proposition 2. Let $\Gamma$ be a polysurface group of length 2. ff $\Gamma$ is embedded in
$O(4,1)^{o}$ as a discrete cocompact subgroup, then $\theta$ is injective.

Remark: Let $\Gamma$ be a polysurface group of length 2. It is proved that $\Gamma$ is not
embedded in $SU(2,1)$ as a cocompact discrete subgroup.

In fact, we have the following Proposition

Proposition 3. Let $\Gamma$ be a polysurface group of length 2. Then $\Gamma$ is not embedded
in $SU(2,1)$ as a cocompact discrete $su$bgroup.

Proof. Assume the contrary. It follows from a result in [W] that the 4-manifold $X_{\Gamma}$

with the fundamental group $\pi_{1}(X_{\Gamma})=\Gamma$ has non-zero signature $\sigma(X_{\Gamma})$ . On the
other hand, $X_{\Gamma}$ is a fiber bundle over a surface with surface as a fiber. Then it is
easy to see that the signature of $X_{\Gamma}$ is zero. $\square $

3. Polysurface group of length 2

In this section, we shall consider polysurface groups of length 2, i.e. the group
$\Gamma$ given by the following exact sequences;

(1) $1\rightarrow Z^{2}\rightarrow\Gamma\rightarrow S\rightarrow 1$ ,
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(2)
and

(3)

1 $\rightarrow S\rightarrow\Gamma\rightarrow Z^{2}\rightarrow 1$ ,

$1\rightarrow Z^{2}\rightarrow\Gamma\rightarrow Z^{2}\rightarrow 1$ .

We shall omit the case (3) since the group $\Gamma$ is a poly $Z$ group and such a group
is already studied by many people.

3.1 Polysurface group of type (1)

In this subsection, we shal consider the poly surface group of length 2 of type (1).
It follows from results in [W] that if $\Gamma$ is embeddable in a non compact Lie group
$G$ without compact factor, then $G$ is one of $Iso(R^{2}\times H^{2})^{o}$ or $Iso(R\times PSL_{2}(R))^{o}$ .
In fact, it is clear that $G$ is not solvable. It follows from results in [W] that $G$ is
one of

$Iso(H^{4})^{o},$ $Iso(H^{2}\times H^{2})^{o},Iso(R^{2}\times H^{2})^{o},$ $Iso(R\times PSL_{2}(R))^{o},$ $Iso(R\times H^{3})^{o}$

We show that $G$ is not $Iso(H^{4})^{o},$ $Iso(H^{2}\times H^{2})^{o}$ .
First we shall show that $\Gamma$ is not embedded in $Iso(H^{4})^{o}$ .
Assume that $\Gamma\subset Iso(H^{4})^{o}=O(4,1)^{o}$ . Note that $\Gamma$ is realized as the fundamen-

tal group of a 4-dimensional hyperbolic manifolds $M$ . It follows that $S_{1}\neq Z^{2}$ .
Assume $\Gamma\subset Iso(H^{2}\times H^{2})^{o}$ . Since $\Gamma$ is reducible (see Lemma 1), we have the

following commutative diagram;

1

$\uparrow$ $\uparrow$ $\uparrow$

$ 1\rightarrow$ $p_{2}(S_{1})$ $\rightarrow p_{2}(\Gamma)\rightarrow$ $F$ $\rightarrow 1$

$\uparrow$ $ p_{2}\uparrow$ $\uparrow$

$ 1\rightarrow$ $Z^{2}$ $\rightarrow$ $\Gamma$
$\rightarrow^{p}$

$S_{2}$ $\rightarrow 1$ ,

$\uparrow$ $\uparrow$ $\uparrow$

$ 1\rightarrow Z^{2}\cap PSL_{2}(R)\rightarrow$ $\Gamma_{1}$ $\rightarrow p(\Gamma_{1})\rightarrow 1$

$\uparrow$ $\uparrow$ $\uparrow$

1 1 1

where $\Gamma_{1}=PSL_{2}(R)\cap\Gamma$ and the lower vertical maps are inclusions and $S_{2}$

are surface groups, Note that $ PSL_{2}(R)\cap\Gamma$ and $p_{2}(\Gamma)$ are discrete and cocompact
subgroups of $PSL_{2}(R)$ .

If $S_{1}=Z^{2}$ , then $S_{1}\cap PSL_{2}(R)=1$ and $S_{1}\triangleleft p_{2}(\Gamma)$ , which is absurd.

It follows from a result in [W] (Prop. 10.4 in [W]) that $\Gamma$ is not embeddable in
$Iso(R\times H^{3})^{o}$ , since $\Gamma$ contains $Z^{2}$ as a normal subgroup.
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We note that a torsion free group $\Gamma$ embeds as a discrete cocompact subgroup of
$G=Iso(R^{2}\times H^{2})^{o}$ or $Iso(R\times PSL_{2}(R))^{o}$ , then the manifold $M=\Gamma\backslash G/K$ , where
Kisamaximal compact subgroup of G, isaSeifert manifold admittinga geometry
structure. It follows from results in [U] (Theorem $B$ , section 5 in [U]) that we have
the following

Proposition 3. The group $\Gamma$ has the following presentation;
$Generators:\alpha_{1},$ $\beta_{1},$ $\cdots$ , $\alpha_{g},$

$\beta_{g},$ $t_{1},$ $t_{2}$

Relations:
$\alpha_{i}(t_{1}, t_{2})\alpha_{i}^{-1}=(t_{1}, t_{2})A_{i}$ ,
$\beta_{i}(t_{1},t_{2})\beta_{i}^{-1}=(t_{1}, t_{2})B_{i}$ ,
$[t_{1},t_{2}]=1,$ $\Pi[\alpha_{i}, \beta_{i}]=t_{1}^{a}t_{2}^{b}$

where $A;,$ $B_{i}\in SL_{2}(Z)$ .
Moreover,
The case $\Gamma\subset Iso(R^{2}\times H^{2})^{o}$ .
(1) $A_{i},$ $B_{i}$ are powers of a common periodic matrix in $SL_{2}(Z)$ .
(2) If $A_{i},$ $B_{i}$ are all trivial, then the rational Euler class is zero.

The $c$ase $\Gamma\subset Iso(R\times P\overline{SL_{2}(}R))^{o}$ .
(1) $A_{i}=B_{i}=1$

(2) The rational Euler class is non zero.

Corollary. $(A)$ If $\Gamma\subset Iso(R^{2}\times H^{2})^{o}$ , then $\Gamma$ is an extension;

$1\rightarrow Z^{2}\rightarrow\Gamma\rightarrow S\rightarrow 1$

such that
(1) the operator homomorphism $\theta$ : $S\rightarrow Aut(Z^{2})h$as ffiite image;
(2) $[\Gamma]\in H^{2}(S, Z^{2})h$as finite order.

$(B)$ If $\Gamma\subset Iso(R\times P\overline{SL_{2}(}R))^{o}$ , then $\Gamma$ is an extension;

$1\rightarrow Z^{2}\rightarrow\Gamma\rightarrow S\rightarrow 1$

such that
(1) the operator homomorphism is trivial;
(2) $[\Gamma]\in H^{2}(S, Z^{2})$ has infinite order.

Now we shall consider the converse of Corollary. In other words, let $\Gamma$ be a
torsion free extension;

1 $\rightarrow Z^{2}\rightarrow\Gamma\rightarrow S\rightarrow 1$

where $S$ is a surface group of $genus\geqq 2$ .

We have the following
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Theorem 4. Let $\Gamma$ be such a group as above. Assume that
(1) the operator homomorphism $h$as finite image;
(2) $[\Gamma]\in H^{2}(S, Z^{2})$ has finite order.
Then $\Gamma$ embeds as a discrete subgroup of $Iso(R^{2}\times H^{2})^{o}$

This folows from results in [J] (see Theorem 5.1 in [J]).

Theorem 5. Let $\Gamma$ be such a group as above. Assume that
(1) the operator homomorphism is trivial;
(2) $[\Gamma]\in H^{2}(S, Z^{2})$ has infinite order.
Then $\Gamma$ embeds as a discrete $su$bgroup of $Iso(R\times PSL_{2}(R))^{o}$

Proof. Note that $\Gamma$ is an extension;

$1\rightarrow Z^{2}\rightarrow\Gamma\rightarrow S\rightarrow 1$

where $Z^{2}$ is the center of F. Let $i$ : $Z^{2}\rightarrow R^{2}$ be the inclusion. Since $[\Gamma]$

has infinite order, $i_{*}([\Gamma])\in H^{2}(S, R^{2})$ is not zero. We have the following exact
sequences;

$1\rightarrow R\rightarrow Iso(PSL_{2}(R))^{o}\rightarrow^{k}Iso(H^{2})^{o}\rightarrow 1$

and

$1\rightarrow R\times R\rightarrow R\times Iso(PSL_{2}(R))^{o}\rightarrow Iso(H^{2})^{o}\rightarrow 1$

$whereR\times RisthecenterofIso(R\times PSL_{2}(R))^{o}$ .

Put $S^{l}=k^{-1}(S)$ and $\overline{S}=R\times S^{l}$ . Then we have the following commutative
diagram;

$1\rightarrow R^{2}\rightarrow\overline{S}\rightarrow S\rightarrow 1$

$ pr\downarrow$ $ pr\downarrow$ $=\downarrow$

$1\rightarrow R\rightarrow S^{l}\rightarrow S\rightarrow 1$

Clearly $pr_{*}$ : $H^{2}(S, R^{2})\rightarrow H^{2}(S,R)$ sends $[\overline{S}]$ to $[S^{\prime}]$ . Since $H^{2}(S, R^{2})\cong R^{2}$ ,
there exists a linear isomorphism $\epsilon$ : $R^{2}\rightarrow R^{2}$ such that $\epsilon_{*}i_{*}[\Gamma]=[\overline{S}]$ . Then we
have the following commutative diagram;
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$ 1\rightarrow Z^{2}\rightarrow$ $\Gamma$ $S$ $\rightarrow 1$$\rightarrow$

$\epsilon\cdot i\downarrow$ $\downarrow$ $\downarrow$

$ 1\rightarrow R^{2}\rightarrow$ $\overline{S}$

$\rightarrow$ $S$ $\rightarrow 1$

$\downarrow$

$\iota_{-}$
$\downarrow$

$1\rightarrow R^{2}\rightarrow R\times Iso(PSL_{2}(R)^{o}\rightarrow Iso(H^{2})^{o}\rightarrow 1$

It follows from a result in [LR] that $\Gamma$ is a discrete cocompact subgroup of
$Iso(R\times PSL_{2}(R)))^{o}$ . $\square $

3.2 Polysurface group of type (2)

In this section, we shall consider polysurface group of type (2). As in subsection
3.2, the Lie group in which $\Gamma$ is embeddable as a cocompact discrete subgroup is
one of the followings;

$Iso(H^{4})^{o},$ $Iso(H^{2}\times H^{2})^{o},$ $Iso(R^{2}\times H^{2})^{o},$ $Iso(R\times PSL_{2}(R))^{o},$ $Iso(R\times H^{3})^{o}$

We have the following

Lemma 2. Let $\Gamma$ be an extension;

$1\rightarrow S_{1}\rightarrow\Gamma\rightarrow Z^{2}\rightarrow 1$

Then the aspheric$al$ manifold $M$ realizing $\Gamma$ has zero Euler characteristic.

Proof. Since $S_{2}=Z^{2}$ , then $\Gamma$ is realized as the fundamental group of an aspherical
manifold $M$ . Clearly $M$ is a fiber bundle over 2-dimensional torus $T^{2}$ with a surface
as a fiber. Note that the bundle along the fiber is orientable. It folows from a result
in [M] that the spectral sequence with rational coefficient collapses and hence the
Euler characteristic $\chi(M)$ is zero.

First we shall show that $\Gamma$ is not embedded in $Iso(H^{4})^{o}$ . Assume that $\Gamma\subset$

$Iso(H^{4})^{o}=O(4,1)^{o}$ .
Note $\Gamma$ is realized as the fundamental group of a 4-dimensional hyperbolic man-

ifolds $M$ . In this case, it follows from Lemma 2 that we have $\chi(M)=0$ , which
contradicts a result in [K].

Assume $\Gamma\subset Iso(H^{2}\times H^{2})^{o}$ . Since $\Gamma$ is reducible (see Lemma 1), we have the
following commutative diagram;
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1 1 1

$\uparrow$ $\uparrow$ $\uparrow$

1 $\rightarrow$ $p_{2}(S_{1})$ $\rightarrow p_{2}(\Gamma)\rightarrow$ $F$ $\rightarrow 1$

$\uparrow$ $p_{2}\uparrow$ $\uparrow$

1 $\rightarrow$ $S_{1}$ $\rightarrow$ $\Gamma$
$\rightarrow^{p}$ $Z^{2}$ $\rightarrow 1$

$\uparrow$ $\uparrow$ $\uparrow$

1 $\rightarrow S_{1}\cap PSL_{2}(R)\rightarrow$ $\Gamma_{1}$ $\rightarrow p(\Gamma_{1})\rightarrow 1$

$\uparrow$ $\uparrow$ $\uparrow$

1 1

where $\Gamma_{1}=PSL_{2}(R)\cap\Gamma$ and the lower vertical maps are inclusion and Note
that $ PSL_{2}(R)\cap\Gamma$ and $p_{2}(\Gamma)$ are discrete and cocompact subgroups of $PSL_{2}(R)$ .

On the other hand, $M$ is finitely covered by a product $\Sigma_{1}\times\Sigma_{2}$ of orientable
surfaces of genus $\geqq 2$ and hence $\chi(M)\neq 0$ , which contradicts Lemma 2.

We have the following

Theorem 6. Assume $\Gamma$ is embeddable in a non-compact Lie group $G$ without
compact factor as a cocompact discrete subgroup and $\Gamma$ is type (2). Then we $h$ave

(1) $G$ is one of the following

$Iso(R^{2}\times H^{2})^{o},$ $Iso(R\times H^{3})^{o}$

(2) $G$ is $Iso(R^{2}\times H^{2})^{o}$ if and only if the operator homomorphism $\theta$ : $ Z^{2}\rightarrow$

Out$(S)$ has finite image.
(3) $G$ is $Iso(R\times H^{3})^{o}$ if and only if the operator homomorphism $\theta$ : $ Z^{2}\rightarrow$

Out $(S)$ is not injective an $d$ infinite image.

Proof. (1) Assume $G=Iso(R\times P\overline{SL_{2}(}R))^{o}$ . We have the following commutative
diagram;

$ 1\rightarrow$ $R\times R$ $\rightarrow G\rightarrow^{p}Iso(H^{2})^{o}\rightarrow 1$

$\uparrow$ $\uparrow$ $\uparrow$

$ 1\rightarrow(R\times R)\cap\Gamma\rightarrow\Gamma\rightarrow$ $p(\Gamma)$ $\rightarrow 1$ .

It is well known that $p(\Gamma)$ is a discrete cocompact subgroup of $Iso(H^{2})^{o}$ and
$(R\times R)\cap\Gamma\cong Z^{2}$ is central in F. We have the following commutative diagram;
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1 1

$\uparrow$ $\uparrow$

$ 1\rightarrow S=\uparrow\rightarrow p(\Gamma)\uparrow\rightarrow$ $ F\uparrow$

$\rightarrow 1$

$ 1\rightarrow S\rightarrow$ $\Gamma$ $\rightarrow$ $Z^{2}$ $\rightarrow 1$ ,

$\uparrow$ $\uparrow$ $\uparrow$

1 $\rightarrow$

$ Z^{2}\uparrow$ $\Rightarrow z_{(1)}^{2}\uparrow\rightarrow 1$

1 1

where $F$ is a finite group. It follows that the operator homomorphism $\theta$ : $ Z^{2}\rightarrow$

$Out(S)$ restricts trivial homomorphism $Z_{(1)}^{2}\rightarrow Out(S)$ , i.e. $\theta$ has finite image.
Hence $\Gamma$ has a normal subgroup $Z^{2}\times S$ of finite index. This implies $b_{1}(\Gamma)$ is even.
This contradicts a result in [W], which states that the geometry $R\times Iso(PSL_{2}(R))$

has odd first Betti number.
(2) If $\Gamma\subset Iso(R^{2}\times H^{2})^{o}$ , then it is clear that the operator homomorphism has

finite image. Assume that the operator homomorphism $\theta$ has finite image. Then,
up to finite index, $\Gamma$ contains $Z^{2}$ as a normal subgroup, which means that $G$ is
$Iso(R^{2}\times H^{2})^{o}$ by the Wall’s classification in [W].

(3) Assume that $\Gamma\subset Iso(R\times H^{3})^{o}$ . It follow $s$ from a result in [W] (Prop. 10.4
in [W]) that $\Gamma$ contains a normal free abelian group of rank 1 whose quotient is a
lattice of $Iso(H^{3})$ . We have the following commutative diagram;

1 1 1

$\uparrow$ $\uparrow$ $\uparrow$

$1\rightarrow S\rightarrow\Gamma_{1}\rightarrow^{p}Z\oplus F\rightarrow 1$

$=\uparrow$ $\uparrow$ $\uparrow$

$ 1\rightarrow S\rightarrow\Gamma\rightarrow$ $Z^{2}$ $\rightarrow 1$ .
$\uparrow$ $\uparrow$ $\uparrow$

1 $\rightarrow Z\Rightarrow$
$z_{(1)}$ $\rightarrow 1$

$\uparrow$ $\uparrow$

1 1
This implies that the restriction of the operator homomorphism to the subgroup

$Z_{(1)}$ is trivial. Since $\Gamma$ contains no $Z^{2}$ as a normal subgroup, the operator ho-
momorphism has infinite image. It is not difficult to show that if the operator
homomorphism is not injective and has infinite image, then $G$ is $Iso(R\times H^{3})^{o}$ .
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This completes the proof of Theorem.

Remark:
(1) Let $\Gamma$ be an abstract group defined by the following exact sequence;

$1\rightarrow S\rightarrow\Gamma\rightarrow Z^{2}\rightarrow 1$

where $S$ is a surface group and the operator homomorphism of the sequence
has finite image. Then it follows from a result in [J] (Theorem 6.3 in [J])
that $\Gamma$ is embeddable in $Iso(R^{2}\times H^{2})^{o}$ as a cocompact discrete subgroup.

(2) We have the following Problem:
Problem Let $\Gamma$ be a torsion free extension;

$1\rightarrow S\rightarrow\Gamma\rightarrow Z^{2}\rightarrow 1$ ,

where $S$ is a surface group of genus $\geqq 2$ , the operator homomorphism $\theta$ :
$Z^{2}\rightarrow Out(S)$ is not injective and infinite image. Then is $\Gamma$ embeddable in
$Iso(R\times H^{3})^{o}$ ?
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