On the Rational Approximations to $\tan \frac{1}{k}$

Takeshi Okano

Introduction.

C. S. Davis [1, 2] proved the following theorem: Let k be a positive integer. Then the inequality

$$|e^{1/k} - \frac{p}{q}| < \frac{1}{2k} \frac{\log \log q}{q^2 \log q}$$

has an infinity of solutions in integers p and q. Further, for any $\varepsilon > 0$, there exists a number $q' = q'(k, \varepsilon)$ such that

$$|e^{1/k} - \frac{p}{q}| > (\frac{1}{2k} - \varepsilon) \frac{\log\log q}{q^2 \log q}$$

for all integers p and q with $q \geq q$.

In this paper, for any positive integer k, we establish Davis' result with $e^{1/k}$ replaced by $\tan \frac{1}{k}$, and give explicit lower bound for q'.

§ 1. The lower estimate for $|\tan 1 - \frac{p}{q}|$.

In this section, we assume that p_n/q_n is the *n*-th convergent of tan 1. Let N be a positive integer with $N \geq 50$. Let γ_N , δ_m , and γ_N^* be defined by

$$\gamma_N = (2+3/N) \frac{\log(N+3/2) + \log\log((2N+3)/e)}{\log(5(N+3/2)/7)},$$

$$\delta_m = \frac{(2m+3)\log\log q_{2m}}{\log q_{2m}},$$

and

$$\gamma_N^* = \max\{\delta_m | 1 \le m < N\},\,$$

respectively.

LEMMA 1.1. For all integers p and q with $q \geq q_{2N}$,

$$|\tan 1 - \frac{p}{q}| > \frac{\log \log q}{\gamma_N q^2 \log q}.$$

PROOF. We may assume that p/q is a convergent of tan 1, since otherwise

$$|\tan 1 - \frac{p}{q}| > \frac{1}{2q^2}$$

(cf. [3] or [7]). The continued fraction of tan 1 is

$$\tan 1 = [a_0, a_1, a_2, a_3, \cdots] = \overline{[1, 2n-1]_{n=1}^{\infty}}$$

(cf. [9]). In other words, $a_{2m} = 1$ and $a_{2m+1} = 2m + 1$ for $m \ge 0$.

Case 1: $n = 2m \ (m \ge N)$. Since $q_{2m+1} = a_{2m+1}q_{2m} + q_{2m-1} = (2m+1)q_{2m} + q_{2m-1} < 2(m+1)q_{2m}$, we have

$$|\tan 1 - \frac{p_{2m}}{q_{2m}}| > \frac{1}{q_{2m}(q_{2m+1} + q_{2m})} > \frac{1}{(2m+3)q_{2m}^2}$$

Now we must estimate q_{2m} . Since $q_{2m} \geq 2mq_{2m-2} \geq \cdots \geq 2^m m!$, we have

$$\log q_{2m} \geq m \log 2 + \sum_{\nu=1}^{m} \log \nu \geq m \log 2 + m \log m - m + 1$$

$$\geq m \log(2m/e).$$

Conversely, since $q_{2m} \leq (2m+1)q_{2m-2} \leq \prod_{\nu=1}^{m} (2\nu+1)$, we have

$$\log q_{2m} \leq \sum_{\nu=1}^{m} \log(2\nu+1) \leq (m+3/2) \log(2m+3) - m - (3/2) \log 3$$

$$\leq (m+3/2) \log((2m+3)/e),$$

 $\log \log q_{2m} \le \log(m+3/2) + \log \log((2m+3)/e).$

Since

$$l_1(x) = \frac{\log \log((2x+3)/e)}{\log(x+3/2)} \quad (x \ge 27)$$

and

$$l_2(x) = \frac{\log(x + 3/2)}{\log(5(x + 3/2)/7)} \quad (x \ge 1)$$

are strictly decreasing functions and $5(x+3/2)/7 \le 2x/e$ $(x \ge 50)$, we have

$$\log \log q_{2m} \le (1 + l_1(N)) \log(m + 3/2) \le l_2(N)(1 + l_1(N)) \log(2m/e).$$

From these inequalities, we find

$$\frac{\log \log q_{2m}}{\log q_{2m}} \le l_2(N) \cdot \frac{1 + l_1(N)}{m}
\le (2 + 3/N) \frac{\log(N + 3/2)}{\log(5(N + 3/2)/7)} (1 + \frac{\log \log((2N + 3)/e)}{\log(N + 3/2)}) \cdot \frac{1}{2m + 3}
= \frac{\gamma_N}{2m + 3}.$$

Therefore,

$$|\tan 1 - \frac{p_{2m}}{q_{2m}}| > \frac{\log \log q_{2m}}{\gamma_N q_{2m}^2 \log q_{2m}}.$$

Case 2: n = 2m + 1 $(m \ge N)$. Since $q_{2m+2} = a_{2m+2}q_{2m+1} + q_{2m} = q_{2m+1} + q_{2m}$, we have

$$|\tan 1 - \frac{p_{2m+1}}{q_{2m+1}}| > \frac{1}{q_{2m+1}(q_{2m+2} + q_{2m+1})} > \frac{1}{3q_{2m+1}^2}.$$

As we can see that $\log \log x / \log x$ $(x \ge 16)$ is a strictly decreasing function, we have

$$\frac{\log \log q_{2m+1}}{\log q_{2m+1}} \le \frac{\log \log q_{101}}{\log q_{101}} < \frac{\log \log 16}{\log 16} = 0.36780 \dots < 2/3 < \gamma_N/3,$$

therefore

$$|\tan 1 - \frac{p_{2m+1}}{q_{2m+1}}| > \frac{\log \log q_{2m+1}}{\gamma_N q_{2m+1}^2 \log q_{2m+1}}.$$

This completes the proof.

THEOREM 1.2. For all integers p and q with $q \geq 2$,

$$|\tan 1 - \frac{p}{q}| > \frac{\log \log q}{\gamma q^2 \log q},$$

where

$$\gamma \geq \max\{\gamma_N, \gamma_N^*\}$$

for any positive integer $N \geq 50$.

PROOF. It suffices only to consider that p/q is an n-th convergent of tan 1.

Case 1: $n=2m \ (m \ge 1)$. From the definition of γ_N^* , we have the following inequalities

$$|\tan 1 - \frac{p_{2m}}{q_{2m}}| > \frac{1}{(2m+3)q_{2m}^2} = \frac{\log \log q_{2m}}{\delta_m q_{2m}^2 \log q_{2m}}$$

$$\geq \frac{\log \log q_{2m}}{\gamma_N^* q_{2m}^2 \log q_{2m}} \quad (1 \leq m < N).$$

And from Lemma 1.1, we have

$$|\tan 1 - \frac{p_{2m}}{q_{2m}}| > \frac{\log \log q_{2m}}{\gamma_N q_{2m}^2 \log q_{2m}} \quad (m \ge N).$$

Case 2: $n = 2m + 1 \ (m \ge 1)$. We can see easily that

$$|\tan 1 - \frac{p_{2m+1}}{q_{2m+1}}| > \frac{\log \log q_{2m+1}}{\gamma_N q_{2m+1}^2 \log q_{2m+1}} \quad (m \ge 2).$$

And we have the following inequality

$$|\tan 1 - \frac{p_3}{q_3}| = 0.01402 \dots > \frac{\log \log q_3}{\gamma_N q_3^2 \log q_3}.$$

This completes the proof.

COROLLARY 1.3. For all integers p and q with $q \geq 2$,

$$|\tan 1 - \frac{p}{q}| > \frac{\log \log q}{4q^2 \log q}.$$

PROOF. For N=50, we have $\gamma_{50}=2.98968\cdots$ and $\gamma_{50}^*=\delta_5=3.23672\cdots$. Hence we can choose γ so that $\gamma=4$.

§ 2. The lower estimate for $|\tan \frac{1}{k} - \frac{p}{q}|$ for $k \ge 2$.

In this section, we assume that k is a positive integer with $k \geq 2$, and p_n/q_n is the n-th convergent of $\tan \frac{1}{k}$.

Let N be a positive integer with $N \geq 5$. Let γ_N , δ_m , and γ_N^* be defined by

$$\gamma_N = k(2 + \frac{3}{N-1})(1 + \frac{\log\log(2k(2N+1)/e)}{\log(N+1/2)}),$$

$$\delta_m = \frac{k(2m+1)\log\log q_{2m}}{\log q_{2m}},$$

and

$$\gamma_N^* = \max\{\delta_m | 1 \le m < N\},\,$$

respectively.

LEMMA 2.1. For all integers p and q with $q \geq q_{2N}$,

$$|\tan\frac{1}{k} - \frac{p}{q}| > \frac{\log\log q}{\gamma_N q^2 \log q}.$$

PROOF. We may assume that p/q is a convergent of $\tan \frac{1}{k}$, since otherwise

$$|\tan\frac{1}{k} - \frac{p}{q}| > \frac{1}{2q^2}.$$

The continued fraction of $\tan \frac{1}{k}$ is

$$\tan\frac{1}{k} = [a_0, a_1, a_2, a_3, \cdots] = [0, k-1, \overline{1, (2n+1)k-2}]_{n=1}^{\infty}$$

(cf. [9]). In other words, $a_0 = 0$, $a_1 = k - 1$, and for $m \ge 1$, $a_{2m} = 1$ and $a_{2m+1} = k(2m+1) - 2$.

Case 1: n = 2m $(m \ge N)$. Since $q_{2m+1} = a_{2m+1}q_{2m} + q_{2m-1} = (k(2m+1)-2)q_{2m} + q_{2m-1} < (k(2m+1)-1)q_{2m}$, we have

$$|\tan\frac{1}{k} - \frac{p_{2m}}{q_{2m}}| > \frac{1}{q_{2m}(q_{2m+1} + q_{2m})} > \frac{1}{k(2m+1)q_{2m}^2}.$$

Now we must estimate q_{2m} . Since $q_{2m} \geq 2k(m-1)q_{2m-2} \geq \cdots \geq (2k)^m(m-1)!$, we have

$$\log q_{2m} \geq m \log(2k) + \sum_{\nu=1}^{m-1} \log \nu \geq m \log(2k) + (m-1) \log(m-1) - m + 2$$

$$\geq (m-1) \log(2k(m-1)/e).$$

Conversely, since $q_{2m} \leq k(2m-1)q_{2m-2} \leq k^m \prod_{\nu=1}^m (2\nu-1)$, we have

$$\log q_{2m} \leq m \log k + \sum_{\nu=1}^{m} \log(2\nu - 1) \leq m \log k + (m + 1/2) \log(2m + 1) - m$$

$$\leq (m + 1/2) \log(2k(2m + 1)/e),$$

$$\log \log q_{2m} \leq \log(m + 1/2) + \log \log(2k(2m + 1)/e).$$

As we can see that

$$l(x) = \frac{\log \log(2k(2x+1)/e)}{\log(x+1/2)} \quad (x \ge 5)$$

is a strictly decreasing function, we have

$$\log \log q_{2m} \le (1 + l(N)) \log(m + 1/2) \le (1 + l(N)) \log(2k(m - 1)/e).$$

From these inequalities, we find

$$\begin{split} &\frac{\log\log q_{2m}}{\log q_{2m}} \leq \frac{1+l(N)}{m-1} \\ &\leq k(2+\frac{3}{N-1})(1+\frac{\log\log(2k(2N+1)/e)}{\log(N+1/2)}) \cdot \frac{1}{k(2m+1)} \\ &= \frac{\gamma_N}{k(2m+1)}. \end{split}$$

Therefore,

$$|\tan \frac{1}{k} - \frac{p_{2m}}{q_{2m}}| > \frac{\log \log q_{2m}}{\gamma_N q_{2m}^2 \log q_{2m}}.$$

Case 2: $n = 2m + 1 \ (m \ge N)$. Since $q_{2m+2} = a_{2m+2}q_{2m+1} + q_{2m} = q_{2m+1} + q_{2m}$, we have

$$|\tan\frac{1}{k} - \frac{p_{2m+1}}{q_{2m+1}}| > \frac{1}{q_{2m+1}(q_{2m+2} + q_{2m+1})} > \frac{1}{3q_{2m+1}^2}.$$

This completes the proof.

THEOREM 2.2. For all integers p and q with $q \geq 2$,

$$|\tan\frac{1}{k} - \frac{p}{q}| > \frac{\log\log q}{\gamma q^2\log q},$$

where

$$\gamma \geq \max\{\gamma_N, \gamma_N^*\}$$

for any positive integer $N \geq 5$.

PROOF. It suffices only to consider that p/q is a (2m)-th convergent of $\tan \frac{1}{k}$. From the definition of γ_N^* , we have the following inequalities

$$|\tan \frac{1}{k} - \frac{p_{2m}}{q_{2m}}| > \frac{1}{k(2m+1)q_{2m}^2} = \frac{\log \log q_{2m}}{\delta_m q_{2m}^2 \log q_{2m}} \ge \frac{\log \log q_{2m}}{\gamma_N^* q_{2m}^2 \log q_{2m}} \quad (1 \le m < N).$$

And from Lemma 2.1, we have

$$|\tan \frac{1}{k} - \frac{p_{2m}}{q_{2m}}| > \frac{\log \log q_{2m}}{\gamma_N q_{2m}^2 \log q_{2m}} \quad (m \ge N).$$

This completes the proof.

COROLLARY 2.3. For all integers p and q with $q \geq 2$,

$$|\tan\frac{1}{2} - \frac{p}{q}| > \frac{\log\log q}{6q^2\log q}.$$

PROOF. For N=34, we have $\gamma_{34}=5.98929\cdots$ and $\gamma_{34}^*=\delta_{11}=5.11381\cdots$. Hence we can choose γ so that $\gamma=6$.

COROLLARY 2.4. For all integers p and q with $q \geq 2$,

$$|\tan\frac{1}{3} - \frac{p}{q}| > \frac{\log\log q}{9q^2\log q}.$$

PROOF. For N=41, we have $\gamma_{41}=8.98303\cdots$ and $\gamma_{41}^*=\delta_{40}=7.02577\cdots$. Hence we can choose γ so that $\gamma=9$.

§ 3. The main thorem.

THEOREM 3.1. There is an infinity of solutions of the inequality

$$|\tan\frac{1}{k} - \frac{p}{q}| < \frac{1}{2k} \frac{\log\log q}{q^2 \log q}$$

in integers p and q. Further, for any $\varepsilon>0$, there exists a number $q^{\cdot}=q^{\cdot}(k,\varepsilon)$ such that

$$|\tan\frac{1}{k} - \frac{p}{q}| > (\frac{1}{2k} - \varepsilon) \frac{\log\log q}{q^2 \log q}$$

for all integers p and q with $q \geq q$.

PROOF. We prove the first statement. Since $q_{2m+1} > 2kmq_{2m}$, we have

$$|\tan\frac{1}{k} - \frac{p_{2m}}{q_{2m}}| < \frac{1}{q_{2m}q_{2m+1}} < \frac{1}{2kmq_{2m}^2}.$$

Now

$$\log q_{2m} = m \log m + O(m) = m \log m \{1 + O(1/(\log m))\},\$$

so

$$\log \log q_{2m} = \log m + \log \log m + O(1/(\log m))$$

$$= \frac{\log q_{2m}}{m} + \log \log m + O(1),$$

and hence

$$\frac{1}{m} < \frac{\log \log q_{2m}}{\log q_{2m}}$$

for all sufficiently large m. Thus

$$|\tan \frac{1}{k} - \frac{p_{2m}}{q_{2m}}| < \frac{1}{2kmq_{2m}^2} < \frac{\log \log q_{2m}}{2kq_{2m}^2 \log q_{2m}}$$

for an infinity of p_{2m} and q_{2m} , as asserted.

The second statement follows immediately from Lemma 1.1 and Lemma 2.1. This completes the proof.

References

- [1] C. S. Davis, Rational approximations to e, J. Austral. Math. Soc. Ser. A, 25 (1978), 497-502.
- [2] C. S. Davis, A note on rational approximation, Bull. Austral. Math. Soc., 20 (1978), 407-410.
- [3] S. Lang, Introduction to diophantine approximations, Addison-Wesley, Reading, Massachusetts, 1966.
- [4] T. Okano, A note on the rational approximations to $\tanh \frac{1}{k}$, Proc. Japan Acad., 69A (1993), 161-163.
- [5] T. Okano, On the rational approximations to $\tanh \frac{1}{k}$, Tokyo J. Math., to appear.
- [6] T. Okano, On the rational approximations to $\tanh \frac{1}{k}$. II, Proc. Japan Acad., 70A (1994), 315-316.
- [7] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- [8] I. Shiokawa, Rational approximations to the values of certain hypergeometric functions, Number Theory and Combinatorics, Japan 1984, World Scientific Publ. Co., Singapore (1985), 353-367.
- [9] R. F. C. Walters, Alternative derivation of some regular continued fractions, J. Austral. Math. Soc., 8 (1968), 205-212.

Department of Mathematics, Saitama Institute of Technology, 1690 Fusaiji, Okabe-machi, Saitama 369-02, Japan

Received April 15, 1995