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On the Rational Approximations to tan i
Takeshi Okano

Introduction.

C. S. Davis [1, 2] proved the following theorem: Let k be a positive integer. Then the
inequality
e/t — P < 1 loglogg
g 2k q*loggq
has an infinity of solutions in integers p and q. Further, for any ¢ > 0, there exists a
number ¢* = q’ (k,€) such that

yk _ Py 1 _ |leglogg
le ql (55— ¢ Zlogq
for all integers p and q with q > q°.
In this paper, for any positive integer k, we establish Davis’ result with e!/* replaced by
tan -}c-, and give explicit lower bound for ¢’.

§1. The lower estimate for |tan1 — 2|.
q

In this section, we assume that p,/q, is the n-th convergent of tan1.
Let N be a positive integer with N > 50. Let vy, 6,., and ~n be defined by

log(N + 3/2) + loglog((2N + 3)/e)

=(2+4+3/N )
W =(2+3/N) log(5(N + 3/2)/7)
5 — (2m + 3) log log g2,
m log d2m
and
v = max{én|l <m < N},
respectively.
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LEMMA 1.1. For all integers p and q with ¢ > gan,

loglog q

|tan1—1—o|> 5 .
g = Ing*logq

PROOF. We may assume that p/q is a convergent of tan 1, since otherwise

1
tanl — =| > —
jtan1 = 21> oo
(cf. [3] or [7]). The continued fraction of tan1 is
T 700

tanl = [ag, a1,02,0a3, -] =[1,2n — 1], _,

(cf. [9]). In other words, az, =1 and asm41 = 2m + 1 for m > 0.
Case 1: n =2m (m > N). Since gam41 = @G2m41@2m + @2m-1 = (2m + 1)g2m + Pm-1 <
2(m + 1)g2m, we have

m 1 1
D2 I>

tanl — > .
| d2m q2m (q2m+1 + q2m) (2m + 3)qgm

Now we must estimate gop,. Since gam > 2mgzm-2 = -+ - > 2™m!, we have

loggam > mlog2+ ) logr > mlog2 +mlogm —m+1
v=1

> mlog(2m/e).

Conversely, since ¢zm < (2m + 1)g2m—2 < H(2u + 1), we have

v=1

log gzm < D log(2v +1) < (m+3/2)log(2m + 3) —m — (3/2)log3

v=1

< (m+3/2)log((2m + 3)/e),

log log g2 < log(m + 3/2) + loglog((2m + 3)/e).

Since
_ loglog((2z + 3)/e)
W@ = gz r32) ©22D
and
n L(z) = log(z + 3/2) (z>1)
2 log(5(z +3/2)/7) T
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are strictly decreasing functions and 5(z + 3/2)/7 < 2z/e (z > 50), we have
loglog gom < (1 + L(N))log(m + 3/2) < L(N)(1 + I1(N))log(2m/e).

From these inequalities, we find

log log q2m < L(N) - 1+ L(N)
log gom — m

log(N + 3/2) loglog((2N + 3)/e) 1

<(2+3/N .

<(@+3/ )log(S(N + 3/2)/7)( log(N +3/2) ) 2m+3

IN
T 2m+3
Therefore,

|tan1 — p2m| > log log gam

Gam  YNG3m 10Z G2m
Case2: n=2m+1 (m > N). Since @am+2 = Gam+2@2m+1 + @2m = @2m+1 + G2m, We have

1 1
|tan1—p2m+1|>

> .
92m+1 G2m+1(@2m+2 + Gam+1) ~ 3G

As we can see that loglogz/logz (z > 16) is a strictly decreasing function, we have

log log g2m+1 < log log ¢101 < loglog 16

=0.36780--- < 2/3 < 3,
loggam+1 ~ logqim log 16 / I~/

therefore
Pom+1 > log log d2m+1

|tanl — > .
@m+1 YNGem+1108 @2m41

This completes the proof.

THEOREM 1.2. For all integers p and q with ¢ > 2,

loglog ¢

P
tanl — =| >
| q| vq?log g’

where
v > max{yn, Yy}

for any positive integer N > 50.

ProoOF. It suffices only to consider that p/qis an n-th convergent of tanl.
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Case 1: n=2m (m >1). From the definition of v5, we have the following inequalities

Pam 1 log log g2m
tanl — —| > =
| om! T @mAE - mgd log dom
1
_BloBdm () 1y o ),
IND2m log ¢2m

And from Lemma 1.1, we have

p2m| > log log g2 m > N).

|tan1 — > >
92m TNy, lOg 92m

Case 2: n=2m+1 (m > 1). We can see easily that

D2m+1 > 108 lOg d2m+1

|tanl — > (m > 2).
Gom+1  YNGIm+1108 G2mir
And we have the following inequality
logl
ltanl — 22| = 0.01402. .. > —5 8%
g3 N3 log g3

This completes the proof.
COROLLARY 1.3. For all integers p and q with ¢ > 2,

p, _ loglogqg
|tan1 ql > i logq

PROOF. For N = 50, we have y5 = 2.98968 --- and v;, = 85 = 3.23672---. Hence we
can choose v so that v = 4.

§2. The lower estimate for |ta.n-ll; - £| for £ > 2.

q
In this section, we assume that k is a positive integer with k > 2, and p,/g, is the n-th

convergent of tan 7.
Let N be a positive integer with N > 5. Let vy, 6,,, and 75 be defined by

_ 3 loglog(2k(2N + 1)/e)
5 — k(2m + 1) loglog g2m

log g2m
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and
TNy = max{d,|l <m< N},

respectively.
LEMMA 2.1. For all integers p and q with ¢ > qon,

El S loglog q

1
tan — — .
| k' q¢ ~ng?loggq

PROOF. We may assume that p/q is a convergent of tan %, since otherwise

1 »p 1
|tan 7‘:' -_ ;l > 5;5
The continued fraction of tan } is
1
tan - = [ao, a1, a2,a3,---] = [0,k — L,1,2n+ 1)k — 2],

k

(cf. [9]). In other words, ap = 0, a; = k — 1, and for m > 1, a;,, = 1 and Aomy1 =
k(2m +1) — 2.

Case 1: n =2m (m > N). Since @2m+1 = Goms192m + Qam—1 = (E(2m + 1) — 2)g2m +
gom-1 < (k(2m + 1) — 1)¢2p,, we have

| tan 1 szl > ! > 1
k q2m 92m (q2m+l + q2m) k(2m + 1)q%m .

Now we must estimate ¢,,,. Since ga,, > 2k(m — 1)ggp_g > -+ > (2k)™(m — 1)!, we have

m-~1
log g2 > mlog(2k) + Z logv > mlog(2k) + (m — 1)log(m — 1) —m + 2
v==1

> (m—1)log(2k(m — 1)/e).

Conversely, since gz < k(2m — 1)g2m—2 < k™[] (2v — 1), we have

v=1

loggzm < mlogk+ > log(2v—1) < mlogk + (m + 1/2)log(2m +1) —m
v=1

< (m+1/2)log(2k(2m + 1)/e),

log log gom < log(m + 1/2) + loglog(2k(2m + 1) /e).
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As we can see that
_ loglog(2k(2z + 1)

=) = =gz + 1/2)

is a strictly decreasing function, we have

log log ¢2m < (1+ I(N))log(m +1/2) < (1 +I(N)) log(2k(m — 1)/e).

[9) (z>5)

From these inequalities, we find

log log gam < 1+ I(N)

loggam ~— m-—1

3 loglog(2k(2N + 1)/e) 1
<k(24+—)(1 . -
S+ D0+ TN i/2) ) FEmED)
=N
T k(2m+1)

Therefore,
| tan 1_ P > logzlog Bm
k' @m’  YNGIm10g gom
Case2: n =2m+1 (m > N). Since ¢am+2 = G2m+292m+1 + @2m = g2m+1 + g2m, We have
Itan l _ D2m+1 > 1 2]- .
k' gamn G2m+1(@2m+2 + Gam+1)  3@m4a

This completes the proof.
THEOREM 2.2. For all integers p and q with q¢ > 2,
1 1
|tan + — 2| > loglogd
kg 79°loggq
where _
v 2 max{yn, 7}
for any positive integer N > 5.

PROOF. It suffices only to consider that p/q is a (2m)-th convergent of tan +. From the
definition of v}, , we have the following inequalities

ltan 1 pom | 1 _ _logloggam  _loglog gam

= > 1<m< N).
k' qm =~ k2m4+1)gs, Sndinlogdem — YNGEm10g g2m ( )

And from Lemma 2.1, we have

1 pom,. logloggom
tan L _ Pom) o, loglogg,

m > N).
k' Gam’ = YNGEm10g Gom 2 N)

—182 —



This completes the proof.
COROLLARY 2.3. For all integers p and q with ¢ > 2,
1 p loglog ¢
tan= — &£ > —=—29
| 2 ql 6¢2log ¢
PROOF. For N = 34, we have 734 = 5.98929 - .- and Y34 = 611 = 5.11381
can choose v so that v = 6.
COROLLARY 2.4. For all integers p and q with q¢ > 2,
1
|tan = — 2| loglogq
3 ¢ 9q¢%logg

PROOF. For N = 41, we have 74, = 8.98303--- and 7}, = 85 = 7.02577
can choose v so that vy = 9.

§3. The main thorem.
THEOREM 3.1. There is an infinity of solutions of the inequality

1 El < 1 loglogg

t
| AT q 2k q¢%*loggq

---. Hence we

---. Hence we

in integers p and q. Further, for any € > 0, there exists a number q' = q' (k,€) such that

1 p, 1 log log ¢
t —_—— — —_—— —
| %mk ql>(2k € q?logq

for all integers p and q with ¢ > q.

PROOF. We prove the first statement. Since gomy1 > 2kmgsy,, we have

1 DP2m 1 1
tan — — < < .
| k gom | 2m92m+1 2kmq3,,
Now
log ¢2m = mlogm 4+ O(m) = mlogm{1 + O(1/(logm))},
so

loglog ¢2m = logm +loglogm + O(1/(log m))

= }o_g% + log log m + O(1),
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and hence
1 < log log gam

m log ¢om

for all sufficiently large m. Thus

1 m 1 log 1
|ta.n—-—p2 |< Og 0g q2m

k d2m 2 k mq%m 2 k qgm log do2m

for an infinity of ps;, and gam, as asserted.
The second statement follows immediately from Lemma 1.1 and Lemma 2.1. This com-
pletes the proof.
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