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ON SASAKIAN MANIFOLDS WITH
CONSTANT SCALAR CURVATURE WHOSE

$C$-BOCHNER CURVATURE TENSOR VANISHES
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\S 1. Introduction

In a Sasakian manifold, a C-Bochner curvature tensor is constructed from the Bochner
curvature tensor in a Kaehlerian manifold by the fibering of Boothby-Wang [2]. Many
subjects for vanishing C-Bochner curvature tensor have been studied in $[4]\sim[9]$ and so
on. One of those, done by Choi, Ki and Takano, asserts that the following theorem :

Theorem A([3]). Let $M^{n}(n\geq 5)$ be a Sasakian manifold unth vanishing C-Bochner
cumatuoe tensor. Then the scalar curvature $R$ is constant if and only if $TrRic^{(m)}$ is
constant for an integer $m(\geq 2)$ . Furthermore, if $TrRic^{(m)}$ is constant for a positive
integer $m$ and the length of the $\eta$-Einstein tensor is less than $\frac{\sqrt{2}(R-n+1)}{\sqrt{(n-1)(n-3)}}$ then $M$ is
a space of constant $\phi$-holomorphic sectional curvature.

The purpose of the present paper is to investigate a Sasakian manifold with vanish-
ing C-Bochner curvature tensor and with constant scalar curvature. Our main result
appeared in \S 3.

\S 2. Preliminaries

Let $M$ be an $n(>3)$-dimensional Sasakian manifold covered by a system of coordinate
neighborhoods $\{U;x^{h}\}$ , where here and in the sequel the indices $h,$ $i,j,$

$\ldots$ run over
the range $\{$ 1, 2, $\ldots$ , $n\}$ (The summation convention will be used with respect to these
indices). If we denote by $\nabla$ the operator of covariant differentiation with respect to the
Riemannian connection of $M$ , then there exists a unit Killing vector $\xi^{h}$ satisfying

(2.1) $\left\{\begin{array}{ll}\phi_{j}^{r}\phi_{r}^{h}=-\delta_{j^{h}}+\eta_{j}\xi^{h}, & \eta_{j}=g_{jr}\xi^{r}, \eta_{r}\phi_{J^{r}}=0,\\\phi_{r}^{h}\xi^{r}=0, g_{rs}\phi_{j}^{r}\phi_{i}^{s} & g_{ji}-\eta_{j}\eta_{i}, \phi_{ji}+\phi_{ij}=0,\end{array}\right.$

(2.2) $\phi_{ji}=\nabla_{j}\eta_{i}$ , $\nabla_{k}\phi_{ji}=-g_{kj}\eta_{i}+g_{ki}\eta_{j}$ .

Because of the Ricci formula for $\xi^{i}$ , it is clear that
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(2.3) $R_{kji}^{r}\eta_{r}=\eta_{k}g_{ji}-\eta_{j}g_{ki}$

and hence

(2.4) $R_{jr}\xi^{r}=(n-1)\eta_{j}$ ,

where Rkjih and $R_{ji}$ denote the components of the Riemannian curvature tensor $K$ and
of the Ricci tensor Ric respectively.

It is well known that in a Sasakian manifold the following equations hold:

(2.5) $H_{ji}+H_{ij}=0$ ,

(2.6) $R_{ji}=R_{r\epsilon}\phi_{j}^{r}\phi_{i}^{\delta}+(n-1)\eta_{j}\eta_{i}$ ,

(2.7) $\nabla_{k}R_{ji}-\nabla_{j}R_{ki}=(\nabla_{\epsilon}R_{kr})\phi_{j}^{r}\phi_{i}^{s}$

$-\{H_{ki}-(n-1)\phi_{ki}\}\eta_{j}-2\{H_{kj}-(n-1)\phi_{kj}\}\eta_{i}$ ,

(2.8) $\nabla_{k}R_{ji}-(\nabla_{k}R_{r\epsilon})\emptyset:\phi_{i}^{s}=-\{H_{kj}-(n-1)\phi_{kj}\}\eta_{t}-\{H_{ki}-(n-1)\phi_{ki}\}\eta_{j}$ ,

(2.9) $\xi^{r}\nabla_{r}R_{kji}^{h}=0$ ,

where we put $H_{ji}=\phi_{j}^{r}R_{ri}$ .
We denote a tensor field $W^{\langle m)}$ with components $W_{ji}^{(m)}$ and a function $W_{(m)}$ for any

positive integer $m$ as follows:

(2.10) $W_{ji}^{(m)}=W_{ji_{1}}W_{i_{2}}^{i_{1}}\ldots W_{i}^{i_{m-1}}$ , $w_{(m)}=hW^{\langle m)}=W_{i}^{(m)^{i}}$ .

Also, we define the $\eta$-Einstein tensor $T_{ji}$ by

(2.11) $T_{ji}=R_{ji}-(\frac{R}{n-1}-1)g_{ji}+(\frac{R}{n-1}-n)\eta_{j}\eta_{i}$ .

If the $\eta$-Einstein tensor vanishes, then $M$ is called an $\eta$-Einstein manifold. From (2.4)
and $(2.5),we$ have

(2.12) $hT=T_{r}^{r}=0$ ,

(2.13) $T_{jr}\xi^{r}=0$ ,
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(2.14) $T_{jr}\phi_{i}^{r}+T_{ir}\phi_{j}^{r}=0$ .

A Sasakian manifold $M$ is called a space of constant $\phi$-holomorphic sectional curva-
ture $c$ if the curvature tensor of $M$ has the form :

$R_{kji}^{h}=\frac{c+3}{4}(g_{ji}\delta_{k}^{h}-g_{ki}\delta_{j}^{h})$

$+\frac{c-1}{4}(gki\eta j\xi^{h}-gji\eta k\xi^{h}+\eta k\eta i\delta_{j}^{h}-\eta j\eta i\delta^{h}k-\phi ki\phi^{h}+\phi ji\phi^{h}-2\phi kj\phi_{i}^{h})$ .

Matsumoto and Chuman ([8]) were introduced the C-Bochner curvature tensor $B_{kji^{h}}$

defined by

$B_{kji^{h}}=R^{h}kji+\frac{1}{n+3}(kijk-gji$

$-H_{ji}\phi_{k}^{h}+\phi_{ki}H_{j}^{h}-\phi_{ji}H_{k}^{h}+2H_{kj}\phi_{i}^{h}+2\phi_{kj}H_{i}^{h}$

(2.15) $-Rki\eta j\xi^{h}+R_{j}\iota\eta k\xi^{h}-\eta k\eta iR_{j}^{h}+\eta j\eta iR^{h}k$ )

$-\frac{k+n-1}{n+3}(\phi_{ki}\phi_{j}^{h}-\phi_{ji}\phi_{k}^{h}+2\phi_{kj}\phi_{i}^{h})-\frac{k-4}{n+3}(g_{ki}\delta_{j}^{h}-g_{ji}\delta_{k}^{h})$

$+\frac{k}{n+3}(j-gji\eta k+\eta k\eta i\delta_{j}^{h}-\eta j\eta ik$
’

where $k=\frac{R+n-1}{n+1}$ It is well-known that if a Sasakian manifold with vanishing C-
Bochner curvature tensor is an $\eta$-Einstein manifold, then it is a space of constant $\phi-$

holomorphic sectional curvature $c=\frac{4R-(n-1)(3n-1)}{(n+1)(n-1)}$

By a straightforward computation, we can prove

$\frac{n+3}{n-1}\nabla_{r}B^{r}kji=\nabla kRji-\nabla R-\eta k\{Hji-(n-1)\phi ji\}$

(2.16) $+\eta_{j}\{H_{ki}-(n-1)\phi_{ki}\}+2\eta_{i}\{H_{kj}-(n-1)\phi_{kj}\}$

$+\frac{1}{2(n+1)}\{(gki^{-\eta k\eta i)\delta_{j}^{r}-}(gji^{-\eta j\eta i)\delta^{r}}k$

$+\phi_{ki}\phi_{j}^{r}-\phi_{ji}\phi_{k}^{r}+2\phi_{kj}\phi_{i}^{r}\}R_{r}$ ,

where we put $R_{j}=\nabla_{j}R$ .

\S 3. Vanishing C-Bochner curvature tensor with constant scalar curvature

Let $M$ be an $n(\geq 5)$-dimensional Sasakian manifold with vanishing C-Bochner cur-
vature tensor. By (2.1), (2.4), $(2.7)\sim(2.9)$ and (2.16), we then obtain

(3.1) $\nabla_{k}R_{ji}=\{R_{kr}-(n-1)g_{kr}\}(\phi_{j}^{r}\eta_{i}+\phi_{i}^{r}\eta_{j})$

$+\frac{1}{2(n+1)}\{2Rk(gji^{-\eta j\eta i)+R(gk\iota-\eta k\eta i)}j$

$+Ri(gkJ-\eta k\eta j)-\phi kj\phi_{i}^{r}R_{r}-\phi ki\phi_{j}^{r}R_{r}\}$ .
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Now, suppose that the scalar curvature $R$ of $M$ is constant. Then the equation (3.1)
is reduced to

(3.2) $\nabla_{k}R_{ji}=\{R_{kr}-(n-1)gkr\}(\phi_{j}^{r}\eta_{i}+\phi_{i}^{r}\eta_{j})$ ,

which implies $\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0$ , namely, the Ricci tensor is cyclic parallel
and hence the $\eta$-Einstein tensor $T$ is also cyclic parallel because of (2.11). Therefore,
using the Ricci formula for $R_{ji}$ , we find

$\nabla^{k}\nabla_{k}R_{ji}=2(R_{rjis}R^{r\epsilon}-R_{ji}^{\langle 2)})$ .
Applying $\nabla^{k}$ to (3.2) and owing to (2.1) and (2.4), we get

$\nabla^{k}\nabla_{k}R_{ji}=-2[R_{ji}-(n-1)g_{ji}-\{R-n(n-1)\}\eta_{j}\eta_{i}]$ .
On the other hand, by virtue of $(2.1)\sim(2.6)$

.
and (2.15), it is clear that

$(n+3)R_{rji\epsilon}R^{rs}=4R_{ji}^{(2)}-(4n-R+2k)R_{ji}+\{R_{(2)}-(k-4)R+(n-1)k\}g_{ji}$

$-\{R_{(2)}+(n-1)^{2}-(n-1)k-kR\}\eta_{j}\eta_{i}$ .
Rom the last three equations, we have

(3.3) $R_{ji}^{\langle 2)}=\beta R_{ji}+\gamma g_{ji}+\{(n-1)^{2}-(n-1)\beta-\gamma\}\eta_{j}\eta_{i}$ ,

where $\beta$ and $\gamma$ are given by

(3.4) $(n+1)\beta=R-3n-5$ ,

(3.5) $(n-1)\gamma=R_{(2)}-\frac{1}{n+1}R^{2}+4R-\frac{n-1}{n+1}(n^{2}+3n+4)$ .

The scalar curvature assumed to be constant, by Theorem A we see that $R_{(2)}$ is
constant. so are $\beta$ and $\gamma$ .

Transforming (2.11) by $R_{k}^{i}$ and making use of (2.4) and (3.3), we find

$T_{jr}R_{k}^{r}=(\beta+1-\frac{R}{n-1})R_{jk}+\gamma g_{jk}+\{R-n+1-(n-1)\beta-\gamma\}\eta_{j}\eta_{k}$ ,

which together with (2.11) and (2.13) implies that

$\tau_{ji}^{(2)}=(\beta+2-\frac{2R}{n-1})T_{ji}$

$+\{\gamma+(\frac{R}{n-1}-1)(\beta+1-\frac{R}{n-1})\}(g_{ji}-\eta_{j}\eta_{i})$ .
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If we take account of (3.4) and (3.5), then it turns out to be

(3.6) $\tau_{ji}^{(2)}=-\frac{n+3}{n^{2}-1}(R+n-1)T_{ji}$

$+(\frac{R_{(2)}}{n-1}-\frac{R^{2}}{(n-1)^{2}}+\frac{2R}{n-1}-n)(g_{ji}-\eta_{j}\eta_{i})$ .

Thus, it is seen that

(3.7) $\tau_{(2)}=R_{(2)}-\frac{R^{2}}{n-1}+2R-n(n-1)$ .

We notice here that the Sasakian manifold is $\eta$-Einstein if and only if $\tau_{(2)}\geq 0$ and
$\tau_{(2)}=0$ . From (3.6) and (3.7) it follows that we get

(3.8) $\tau_{ji}^{(2)}=aT_{ji}+\frac{\tau_{(2)}}{n-1}\cdot(g_{ji}-\eta_{j}\eta_{i})$ ,

where we have put

(3.9) $a=-\frac{n+3}{n^{2}-1}(R+n-1)$ .

First of all we prove

Lemma 1. Let $M$ be an $n(\geq 5)$ -dimensional Sasakian manifold wzth vanishing C-
Bochner curvature tensor. If $R+n-1=0$ , then $M$ is an $\eta$ -Einstein manifold or $M$

admits a cyclic parallel almost product structure which is not parallel.

Proof. By the assumption $R+n-1=0$ , the equation (2.11) and (3.8) are respectively
reduced to

(3.10) $T_{j}^{i}=R_{j}^{i}+2\delta_{j}^{i}-(n+1)\eta_{j}\xi^{i}$ ,

(3.11) $\tau_{ji}^{(2)}=\frac{\tau_{(2)}}{n-1}(g_{ji}-\eta_{j}\eta_{i})$ .

Suppose that $M$ is not $\eta$-Einstein, namely $T_{(2)}\neq 0$ . Then we can define a tensor
field $P$ of type $(1,1)$ by

(3.12) $P=\frac{1}{2}(I+\eta\otimes\xi-\sqrt{\frac{n-1}{\tau_{(2)}}}T)$ ,

where $I$ denotes the unit tensor field and $T$ is the tensor field of type $(1,1)$ given by
(3.10). Thus, by using (2.13) and (3.11), we see that

$P^{2}=P$, $PQ=0$ , $Q^{2}=Q$ ,
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where $Q=I-P$ . Accordingly $P$ and $Q$ define two complementary almost product
structures. Since $T$ is cyclic parallel we see, using (3.12), that $P$ and $Q$ are cyclic
parallel. But $P$ is not parallel. In fact, if $P$ is parallel, then by (3.12) we have

$\nabla_{k}T_{ji}=\sqrt{\frac{\tau_{\langle 2)}}{n-1}}(\phi_{kj}\eta_{i}+\phi_{ki}\eta_{j})$ .

On the other hand, from (3.10) we get

$\nabla_{k}T_{ji}=R_{kr}\phi;\eta_{i}+R_{kr}\phi_{i}^{r}\eta_{j}-2(\phi_{kj}\eta_{j}+\phi_{ki}\eta_{j})$

because of (3.2). From the last two equations, it is seen that $\tau_{\langle 2)}=0$ , a contradiction.
This completes the proof.

Lemma 2. Let $M$ be an $n(\geq 5)$ -dimensional Sasakian manifold urith vanishing C-
Bochner curvature tensor and constant scalar curvature. If $\tau_{(2)}\neq 0$ and $R+n-1\neq 0$ ,
then $M$ admits a cyclic parallel almost product structure which is not parallel.

Proof. The equations (2.13) and (3.8) tel us that $M$ has at most three constant eigen-
values of $T:0,$ $x_{1}$ and $x_{2}$ , where

$x_{1}=\frac{1}{2}(a+\sqrt{D})$ , $x_{2}=\frac{1}{2}(a-\sqrt{D})$ , $D=a^{2}+\frac{4}{n-1}\tau_{\langle 2)}$ .
The multiplicities of $x_{1}$ and $x_{2}$ are respectively denoted by $r$ and $t$ . Then by (2.12) and
(2.13) we have

(3.13) $a(r+t)=\sqrt{D}(t-r)$ .
The trace of $\tau_{ji}^{(2)}$ is also given by

$\tau_{(2)}=\frac{1}{2}(r+t)a^{2}+\frac{r+t}{n-1}T_{(2)}-\frac{a}{2}(t-r)\sqrt{D}$ .
Combining above two equations, we have $(r+t-n+1)T_{(2)}=0$ and hence $r+t=n-1$ .
Thus (3.13) turns out to be $T_{(2)}=m(n-1)a^{2}$ , where $m=r(n-1-r)/(2r-n+1)^{2}$ .
Therefore equation (3.8) is reduced to

(3.14) $\tau_{ji}^{\langle 2)}=aT_{ji}+ma^{2}(g_{ji}-\eta_{j}\eta_{i})$ .
By the hypothesis $R+n-1\neq 0$ it is clear that $m\neq 0$ . Thus we can define a tensor

field $P^{\prime}$ of type $(1,1)$ by

$P^{\prime}=\frac{1}{a\sqrt{4m+1}}T+\frac{1}{2}(1-\frac{1}{\sqrt{4m+1}})(I-\eta\otimes\xi)$ ,

where $T$ is the tensor field of type $(1,1)$ derived from (2.11). Because of (2.13) and
(3.14) we see that

$P^{\prime 2}=P^{\prime}$ , $FQ^{j}=0$ , $Q^{\prime 2}=Q^{\prime}$ ,
where $Q^{\prime}=I-P^{\prime}$ . As in the proof of Lemma 1, we can verify $P^{\prime}$ is cyclic parallel and
not parallel. Thus Lemma 2 is proved.

According to (2.15), Lemma 1 and Lemma 2, we have
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Theorem 3. Let $M$ be an $n(\geq 5)$ -dimensional Sasakian manifold with constant scalar
curvature $R$ whose C-Bochner curvature tensor vanishes. Then $M$ is a space of constant
$\phi$-holomorphic sectional curvature $\frac{4R-(n-1)(3n-1)}{(n-1)(n+1)}$ or $M$ admits a cyclic parallel almost
product structure which is not integrable.
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