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§1. Introduction

In a Sasakian manifold, a C-Bochner curvature tensor is constructed from the Bochner
curvature tensor in a Kaehlerian manifold by the fibering of Boothby-Wang [2]. Many
~ subjects for vanishing C-Bochner curvature tensor have been studied in [4] ~ [9] and so
on. One of those, done by Choi, Ki and Takano, asserts that the following theorem :

Theorem A([3]). Let M™(n > 5) be a Sasakian manifold with vanishing C-Bochner
curvature tensor. Then the scalar curvature R is constant if and only if TrRic™) is
constant for an integer m(> 2). Furthermore, if TrRic(™) is constant for a positive

integer m and the length of the n-Einstein tensor is less than ‘/(ifl_)?:_ls), then M is

a space of constant ¢- holomorphic sectional curvature.

The purpose of the present paper is to investigate a Sasakian manifold with vanish-
ing C-Bochner curvature tensor and with constant scalar curvature. Our main result
appeared in §3.

§2. Preliminaries

Let M be an n(> 3)-dimensional Sasakian manifold covered by a system of coordinate
neighborhoods {U;z"}, where here and in the sequel the indices h,i,4,... run over
the range {1,2,...,n} (The summation convention will be used with respect to these
indices). If we denote by V the operator of covariant differentiation with respect to the
Riemannian connection of M, then there exists a unit Killing vector £* satisfying

(2 1) ¢jr¢rh = —6jh + njé'ha ny = gjrér, nr¢jr = 0,
G ET =0, gre®;":° = gji — Ty Bji + B4 =0,
(2.2) bji = Vi, Vidji = —gkini + gkinj.

Because of the Ricci formula for £, it is clear that
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(2.3) Ry M = Mkgji — NjGk
and hence
(2.4) Rjré'r = (n e 1)1’]]',

where Ryjin and Rj; denote the components of the Riemannian curvature tensor K and
of the Ricci tensor Ric respectively. '
It is well known that in a Sasakian manifold the following equations hold :

(2.5) Hji + Hij =0,
(2.6) Rji = Rps9;"#;° + (n — 1)n;m;,

(2-7) VkRji - Viji =(V3er)¢jr¢i8
— {Hki — (n — 1)¢xi}nj — 2{Hij — (n — 1)¢xj}mi,

(2.8)  VkRji — (ViRrs)$, ¢;° = —{Hg; — (n — 1)dxj}m — {Hri — (n — 1) i}y,

(2.9) £V Rl =0,

where we put Hj; = ¢j"R,.,-.

We denote a tensor field W (™) with components Wji(m) and a function W, for any
positive integer m as follows :

(2.10) W™ = thWi:l Ay Wim) = TTWwim = W(m)ii.

Ji i

Also, we define the n-Einstein tensor Tj; by

R R
(2.11) Tii = Rji - (;{_—1' - 1) gji + ('m - n) N7

If the n-Einstein tensor vanishes, then M is called an n-Einstein manifold. From (2.4)
and (2.5),we have
(2.12) TTT =T, =0,

(2.13) T; £ =0,
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(2.14) Tjri™ + T, = 0.

A Sasakian manifold M is called a space of constant ¢-holomorphic sectional curva-
ture c if the curvature tensor of M has the form :

c+3
Ry, =—4‘(9ji5kh — gkib;")
c ——

1
+ T(Qkinjﬁh — g€ + memib;" — b — drid" + b — 20k50:™).

Matsumoto and Chiiman ([8]) were introduced the C-Bochner curvature tensor Bkjih
defined by

1
By =Ry + m(Rki5jh — R;ib" + griR® — gji Ry + Hrio"
— Hji¢y + ¢ H;® — ¢5:H" + 2Hyjp," + 24 H,"

(2.15) — Rrin;i€" + Rjime€™ — meni R} + niniRy")

k -1 k—4
= IR (Gud) — bt + 28R -

o 3(gki5jh — 9;i6%")

k
+ m(gkmjﬁh — g5ime€" + memib;" — nimi6),

where k = £i2=1 Tt is well-known that if a Sasakian manifold with vanishing C-

n+1l
Bochner curvature tensor is an 7-Einstein manifold, then it is a space of constant ¢-

. . — 4R—(n—1)(3n—1)
holomorphic sectional curvature ¢ = DD

By a straightforward computation, we can prove

n+3
7 VrBeii’ =ViRji — ViR — ne{Hji — (n — 1)¢ji}

(2.16) + ni{Hki — (n — 1)¢rs} + 2ni{ Hij — (n — 1)xj}
1 v
+ m{(gki — en:)6;" — (g5i — M)k
+ dri®;” — Djid + 20k;9;," } Rr,

where we put B; = V;R.

§3. Vanishing C-Bochner curvature tensor with constant scalar curvature

Let M be an n(> 5)-dimensional Sasakian manifold with vanishing C-Bochner cur-
vature tensor. By (2.1), (2.4), (2.7) ~ (2.9) and (2.16), we then obtain

(3'1) kaji :{er - (n - l)gkr}(¢jrni + ¢ir77j)
1
+ 2(n+1) {2Rk(g5i —njmi) + Rj(gki — M)
+ Ri(gkj — mkM5) — Ok " Br — brib;” Rr}-
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Now, suppose that the scalar curvature R of M is constant. Then the equation (3.1)
is reduced to

(3.2) ViRji = {Rir — (n — )grr Hé;™m: + 6:715),
which implies Vi R;; + V;Rix + V;Ri; = 0, namely, the Ricci tensor is cyclic parallel

and hence the n-Einstein tensor T is also cyclic parallel because of (2.11). Therefore,
using the Ricci formula for R;;, we find

. VAViRji = 2(Rejio R - B, P).
Applying V* to (3.2) and owing to (2.1) and (2.4), we get

VEVkRji = —2(Rji — (n — 1)gji — {R — n(n — 1)}n;m].
On the other hand, by virtue of (2.1) ~ (2.6) and (2.15), it is clear that

(n+ 3)RrjiaR™ =4R;[® — (4n — R+ 2k)Rji + {R(z) — (k — )R + (n — 1)k} g;
~{R@) + (n - 1) — (n - 1)k — kR}n;n;.

From the last three equations, we have

(3.3) R;{P = BRji + vgji + {(n —1)? — (n — 1)8 — v}n;m;,

where 3 and « are given by

(3.4) ~ (n+1)B=R-3n-35,

-1
z 1(n2+3n+4).

1 2

The scalar curvature assumed to be constant, by Theorem A we see that Ry is
constant. so are 8 and ~.
Transforming (2.11) by R,’ and making use of (2.4) and (3.3), we find

- R
T;r Ry, = (ﬁ‘*’l - n——_l) Rit+79jk+{R-n+1—(n— 1)B — v }nink,
which together with (2.11) and (2.13) implies that

@ _ 2R
T; —(5+2—m)'—’}'

+{7+(%—1) (ﬂ'*‘l—;'l_%—l)}(gji“’?j’?i)-
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If we take account of (3.4) and (3.5), then it turns out to be

2) _ n+3
(3.6) Ty == ——(R+n—-1)T;
R(z) R? 2R
+ (n——l "o taoi " (g5 — mm4)-

Thus, it is seen that

2

R 1-l-2R—n(n—l).

(3.7) Ty = Rz) — —

- We notice here that the Sasakian manifold is -Einstein if and only if T(3) > 0 and
T(2) = 0. From (3.6) and (3.7) it follows that we get

e
(38) T;® = aTy + n(—__)l'(gﬁ = N374)5

where we have put

(3.9) a=—n+31(R+n—1).

n2_

First of all we prove

Lemma 1. Let M be an n(> 5)-dimensional Sasakian manifold with vanishing C-
Bochner curvature tensor. If R+n —1 = 0, then M is an n-FEinstein manifold or M
admits a cyclic parallel almost product structure which is not parallel.

Proof. By the assumption R +n — 1 = 0, the equation (2.11) and (3.8) are respectively
reduced to '

(3.10) T;* = R} + 26;* — (n + 1)n;¢,

T(3)

2
(3.11) T, = 1 (95 = m57:)-

Suppose that M is not n-Einstein, namely T(2) # 0. Then we can define a tensor
field P of type (1,1) by

~1
T2

(3.12) P:%(I-}-n@g— T),

where I denotes the unit tensor field and T is the tensor field of type (1,1) given by
(3.10). Thus, by using (2.13) and (3.11), we see that

P’=P, PQ=0, Q*=Q,
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where Q = I — P. Accordingly P and Q define two complementary almost product
structures. Since T is cyclic parallel we see, using (3.12), that P and Q are cyclic
parallel. But P is not parallel. In fact, if P is parallel, then by (3.12) we have

T
ViTji = n—(—?)_l (Pkini + Drins)-
On the other hand, from (3.10) we get

ViTji = Rird; 1 + Rir®i"nj — 2(Sk5n5 + drin;)

because of (3.2). From the last two equations, it is seen that T(2) = 0, a contradiction.
This completes the proof.

Lemma 2. Let M be an n(> 5)-dimensional Sasakian manifold with vanishing C-
Bochner curvature tensor and constant scalar curvature. If T2y #0 and R+n -1 # 0,
then M admits a cyclic parallel almost product structure which is not parallel.

Proof. The equations (2.13) and (3.8) tell us that M has at most three constant eigen-
values of T : 0, z; and z,, where

x1=%(a+\/5), x2=%(a—\/5), D=a%+

Tioy.
n—1 @

The multiplicities of z; and z, are respectively denoted by r and ¢. Then by (2.12) and
(2.13) we have
(3.13) a(r+t)=vVD(t—r).

The trace of Tji(z) is also given by
r+t
n—1
Combining above two equations, we have (r+t—n+1)T() = 0 and hence r+t =n—1.
Thus (3.13) turns out to be T(3) = m(n — 1)a?, where m =r(n — 1 —r)/(2r — n + 1)2.
Therefore equation (3.8) is reduced to

1
T(2) = 5(7‘ + t)a2 + T(Q) - %(t — T)\/B

(3.14) TP = aTj; + ma®(gj — my7)-

By the hypothesis R +n — 1 # 0 it is clear that m # 0. Thus we can define a tensor
field P’ of type (1,1) by

1 1 1
P=————"T+~-(1—- ——)(I - ,
avdm +1 + 2( \/4m+1)( n®¢)

where T is the tensor field of type (1,1) derived from (2.11). Because of (2.13) and
(3.14) we see that

Pl2 - p! PIQI =0 Q/2 — Q/
where Q' = I — P’. As in the proof of Lemma 1, we can verify P’ is cyclic parallel and
not parallel. Thus Lemma 2 is proved.

According to (2.15), Lemma 1 and Lemma 2, we have
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Theorem 3. Let M be an n(> 5)-dimensional Sasakian manifold with constant scalar
curvature R whose C-Bochner curvature tensor vanishes. Then M is a space of constant

¢- holomorphic sectional curvature

4R—(n—1)(3n—1)
(n—1)(n+1)

or M admits a cyclic parallel almost

product structure which is not integrable.

N =

®
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