Nihonkai Math. J.
Vol.5 (1994), 69-99

Doubly warped product and the periodicity of geodesics

Kunio Sakamoto

§0. Introduction.

A Riemannian manifold (M,g) is called a CL—manifold (and g
called a CL—metric) if every geodesic is a closed curve with
the same length L. The known examples are Zoll surface of
revolution ([3], [10]), CL-surface studied by Guillemin ([51],
see also Kiyohara [7]), n-dimensional sphere Sn with Zoll
metric generalized by Weinstein ([3]), RPn, CPn, HPn, Cay Pz
and S™ with the canonical metrics. '

The induced metric on Zoll surfaces of revolution is a
warped product metric

2 2

(0.1) as? = dr 2

+ v(r)zde ’
where r denotes the distance from the north pole and v(r) the
Euclidean distance from the axis of rotation. We demand
certain conditions at 0 and L/2 for v to give a smooth metric.
Furthermore, in'[3], the necessary and sufficient condition for
v to be a CL—metric was given (cf. 8§83).

In this paper, we shall consider a metric on a complex

2-dimensional complex projective space CPZ, which corresponds

to the metric (0.1) on Sz. Our construction of the metric g on
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CP2 is as follows. Let M* be the 4-dimensional manifold
obtained by removing a ball centered at an arbitrarily fixed
point P from CPZ. It is well-known that M* is diffeomorphic
to the disc bundle associated to the Hopf bundle u : S3 —_ Sz.
The submanifold S_ consisting of points at infinity is regarded
as the base manifold. We note that the metric on SM* induced
from the canonical metric 8ecan OO CPZ is obtained by rescaling
the canonical metric 8o of 83 on the fiber direction ¥ with
factor sinzr coszr and on its orthogonal complement A with
factor coszr, where r denotes the distance (with respect to
gcan) from S_. So, it is very natural that we consider a

metric obtained by replacing sinzr coszr and cos2

r by vz(r) and
hz(r) respectively which satisfy some conditions to define a
smooth metric (cf. (1.6)). Thus the metric can be given by

(0.2) g = dr?

+ vir)?gyl, + h(r)?ggl,,
which was used to make examples with various geometric
conditions (for instance, see [1], [2], [41, (81, [91).

Let g be a metric of the form (0.2) on CPZ. The pufpose
of this paper is to study the periodicity of geodesics. 1In
virtue of Green’s theorem (cf. [3]), we can easily see that if g
_is a C;-metric, then g = g__  (cf. Cor. 4.5). However, it'is
significant to study how many geodesics are closed under what
conditions on h and v. If g = 8can ©O0 M* obtained by removing
a small ball from CPZ, it is trivial that all complete
geodesics in M* are closed curves with the same length. We do
not intend to study such metrics.

In §1, we explain the metric g of the form (0.2). In §2,

we calculate the Cristoffel symbols of g and give the equation
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of geodesics. From this equation we derive Clairaut’s first
integral analogous to one of geodesics on a surface of
revolution. We also prove that S, is a totally geodesic
submanifold of constant sectional curvature and, for each q
€ S_, geodesics emanating from Pg to q form a totally geodesic
submanifold Sq. The induced metric on Sq is of the form (0.1).
In §3, we explain the Zoll metric on Sz. Moreover, we give a
sufficient condition for a geodesic passing through S, to be
closed (Th. 3.4). In 8§84, we deal with geodesics which are
contained in a geodesic sphere centered at Py and geodesics
which do not pass through S, and are not contained in any
geodesic sphere. Our main result is stated in Theorem 4.7.
The author wishes to express his hearty thanks for

referee’s valuable comments.

§1. Doubly warped product.

Let I be the closed interval [0,n/2]. Let mW : 83 _ S2
be the Hopf fibering which is defined by

2

(1.1) M(z),2,) = (2,7, ?13- (|z1|2-|z2|2)) es?ccxR

3 c € x €. The complex projective space CPZ of

for (zl,zz) € S
complex dimension 2 is topologically equivalent to
((I x S3)/A)/~, where A = {n/2} x 83 and (s,x) ~ (t,y) if and

only if s = t and

X =Yy (S t#O)'

n(x) = n(y) (s =1t =0).

Namely, A collapses to a point and {0} x 83 fiberwise to Sz.
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We introduce coordinates (r,0,¢,¢¥) € (0,n/2) x (0,2n) x (0,n/2)

x (0,n) on an open subset (0,n/2) x U, where U is an open

subset in S° such that U = S°. We note that the fiber through

(zl,zz) € 83(1) is the subset {(zleie,zzeie) : € [0,2r)} in

Ss(l). If we put
ivl i¢2
z1 = CcosS @ e ’ z2 = s8sin ¢ e ’
then

i("l-@z)

n(zl,zz) = (% sin 2¢ e , cos 2¢).

o=

Putting 2y = ¢, — @, We see that
(1.2) n(z,e'?, 2,1

= % (sin 2¢ cos 2¢, sin 2¢ sin 2y, cos 2¢) € R3.
Therefore the image ﬂ(Ss(l)) is a sphere 82(1/2) with radius

1/2. The equation (1.2) means that 2¢ (resp. 2¢y) denotes the
i z
'e2

So we let U be the maximal open subset where the coordinates

angle between ﬂ(zle ele) and (0,0,;/2) (resp. (1/2,0,0)).

(8,0,¥%) are valid. We can write

(1.3) x = (cos ¢ ei(¢+e), sin ¢ e

i('*"‘e))
for arbitrary x € U.
The Fubini Study metric 8can ©0 CP2 is a metric such that

Hopf fibering S°

—_— CPZ is a Riemannian submersion (cf. [2]).
If the mgtric on 85 is of constant sectional curv#ture 1, then
the holomorphic sectional curvature of (CPz,gcan) is equal to 4.
In the sequel, Po will be an arbitrarily fixed point in CPZ.

The cut-locus of Py with respect to gcan will be denoted by Sm,
which is isometric to 82(1/2). We note that the distance from

P, to S_ is equal to n/2. The first component r in the

coordinates {r,0,¢.¥} denotes the distance measured from S_-
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Let 83(1) be the unit sphere in the tangent space TP CPZ at Po*

0

AS X € SQ coincides with n

The map sending X € 83(1) to expp 5

0
S3(1) —_ Sz(1/2) ((1.2)). For each q € S_, geodesics from Py

to q form a submanifold Sq which is isometric to Sz(1/2) and

the intersection Tp Sq n 83(1) is the fiber n—l(q). Therefore
0

the topological description of CP2 stated above is explained as
follows. The boundary eDr of the disc bundle Dr of Su, which
is the geodesic sphere with center Py and radius n/2 - r, is
diffeomorphic to {r} x 83 for each r € (0,n/2) and collapses to
P, as r — /2. On the other hand, if r — 0, then Sq N aDr
= the boundary of the fiber of Dr over q) collapses to q. The
vertical line Vp at p € aDr‘(r € (0,n/2)) will be the tangent
line of Sq (2] aDr, where, if y is the minimal geodesic from P,

to p, then 9 = y(n/2). The horizontal plane at p will be

4
P
the orthogonal complement of Vp in the tangent space TpaDr.

Let go be the canonical metric on Ss(a abr) of constant

curvature 1. It is easily verified that

(1.4) g = dr2 + sin2

2 2
can r cos‘r g0|v + cos'r gOlK"

where gOlV (resp. ) denotes the restriction of gO to the

20|

vertical line ¥ (resp. horizontal plane #£). In the subsequent

sections, we shall study geodesics of the following metric on

cp?

(105) g=dr2

2 2
+ v(r) gOIV + h(r) gOI# .
We need some conditions for v and h in order that g is a smooth
complete metric on CPZ. We shall assume that v and h are smooth

functions defined on [0,n/2] and satisfy (cf. [31[6])

v > 0, h >0 on (0,n/2),
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v(0) =0, v7(0) =1, v(z) =0, v(3 =-1,
(1.6) V(Zk)(O) = V(2k)(%) =0 for positive integer k,
h(0) =1, h7(0) =0, h(z) =0, h(7 =-1,

h(2k+1)(0) = h(Zk)(%) =0 for positive integer k.

§2. Equation of geodesics.

We shall give the equation of geodesics of the metric
(1.5), from which we derive two Clairaut’s first integrals. We
number the coordinates {r,0,¢,¢¥} as

x1 = r, x? = 9, x3 = @, x4 = V.

We note that the vertical line ¥ is spanned by 8/86 and
horizontal plane X by 8/8¢ and - cos 2¢ 8/80 + 8/8¢. It is easy

to calculate the components of the metric g.

Lemma 2.1. The components gij = g(a/axl,a/axa)
(i,j=1,...,4) are given by

_ .2 _ _ .2 _ .2
812 = 1» B3 SV 4 8p4 = 8yp =V cos Ze, &35 = h,
844 = v2 c0822¢ + h2 sin22¢, 8ij = 0 (i,J : the others).
The contravariant components are given by
2 2 2 '
_gll =1, g22 = 1 +vl_ cot?2e, g 4 _ g4 - - cos 2¢ ,
2 2 2 . 2
v h h™ sin 2¢
g33 = lz-, gt - ‘i“'lT’ gid = 0 (i,j : the others).
h h™ sin™2¢
Since the Christoffel’s symbols {jik} (i,d,k ¢ 1,...,4)
are given by the formula :
i _ 1 i _



where we use

Lemma 2.1,

the Einstein’s summation convention,

The

we have, from

Christoffel symbols of the metric g are

{214} = {412} = - vv~ cos 2¢,
{414} = = (vv” COSZZQ + hh~ sin22¢),
_ Vv’ 2 _ 2 . (v_ _h’
= v {1 4} = {4 1} - (v_' E"") cos 2¢,
2
v
= — cot 2¢,
hZ
2
_ { 1 (1 v_) cos 20}
- sin 2¢ L2 sin 2¢7’
- 2
_h 3y _ ¢34y _ve .
=5 {2 4} {4 2} = hz sin 2¢,
2 -
. 4y _ 44y _h
F) sin 4(” {1 4} {4 1} - h ]
__v:
- n2 sin 2¢"'
v2
(2 - —5) cot 2¢,
h

the others).

Let v be the covariant differential operator with respect

Lemma 2.2.
iven b
{212} = - vv’,
{1} = - 07,
{122} = {221}
(%) = %)
{324} = {423}
{133} {331}
(%) =-«
() = %)
{344} = {443}
() =0 (dk
to g.

For each q € S“, the tangent spaces of the submanifold

Sq are spanned by 8/8r and 8/88. Since
= i i
i i _ v’
Vo or8/88 = {,*,}8/8x™ = T-8/80,
Vs/608/088 = {,*,}a70x" = - vv7a/ser
because of Lemma 2.2, is totally geodesic.

we see that every Sq
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Proposition 2.3.

(1) Every geodesic issuing from Py with respect to go

is also a geodesic with respect to g.

(2) The submanifold Sq is totally geodesic for each q € S_.

(3) The submanifold S_ is totally geodegsic and isometric

to 82(1/2) of constant sectional curvature 4.

Proof. We sketch the proof of (3). Since the coordinates
{r,0,0,¥} is not valid on S_, we introduce

u1 = r cos 6, u2 = r sin 0, u3 = @, u4 = ¥
on a neighbourhood of S_. The calculation of components of g
and the Christoffel symbols with respect to this coordinates is
routine. As a result, we see that, as r — 0, they contéin
only the first and second derivatives of v and h. Since
functions v and h satisfy (1.6), they coincide with those of
g as r — 0. The fact that (3) is true for €can is well

can

known. Q.E.D.

The equation of geodesics is given by

2 i dx dx
(2.1) { }ds = =0 (i =1,...,4),
ds
where s is the arclength parameter. By Lemma 2.2, we have

Lemma 2.4. Let r = r(s), 0 = 08(s), o = ¢(s), ¥ = ¥(s) be
a _geodesic. Then (2.1) becomes

dzr

(48,2, de av _
(2.2) ;;f (d ) 2vv~ cos 2¢ ds ds hh~ (d )
- (vv”~ 00322¢ + hh™ sin 20)(d¢ 2 < 0,

— 76 —



2 . - -
d™e v_ dr de v. _h” dr dy
(2:3) 2 * 2y gsdas t e TR cos 2 g5
2
ve e de
+ 2 hz cot 2¢ ds ds
- 2{___1__ + (1 - XE) °05220} de dv _
sin 2¢ h2 sin 2¢° ds ds ’
2 - 2
de h” dr de Y_ ai de dy
(2.4) . + 2 h s ds + 2 hz sin 2¢ ds ds
2
- (1 - XE) sin 4¢ (-g-!-)2 =0,
_ h s
2 - 2 3 4ed4d
(2.5) d¥ ., ,h drdy , v 1 d6 de
2 h ds ds 2 sin 2¢ ds ds
ds h
2
A de dy _
+ 2(2 h2) cot 2¢ ds ds 0.
Since s is the arclength parameter, we have
(2.6) (g£ 2 Z(Q% + cos 2¢ g%)z
2

+ h {(d ) + 8in“2¢ ( ) } =

Lemma 2.5. Along an eodesic, the following c¢c and d are

constant
c = vz(%g + cos 2¢ dw)’ d = h {( ) 31n22¢ ( )2 1/2.
Proof. Differentiating c, we get
2 2
dc 2 d7e - dr de 2 d™ v
=— =V —F + 2vV =— — + v° cos 2¢ —
ds dsz ds ds dSZ
+ 2vv™ cos 2¢ %g %% - 2v2 sin 2¢ g% g%.
The right hand side of this equation is equal to

v2 (L.H.S. of (2.3)) + v cos 2¢ (L.H.S. of (2.5)).

Similarly, we differentiate dz. Then we see that the
derivative of d2 is equal to
2n* S¢ (L.H.s. of (2.4)) + 2n* sin®2¢ & (L.H.s. of (2.5)).

QoEoDo
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The geometric interpretation of the constants c and d is
as follows. Let a (resp. 8) be the angle between the unit

tangent vector i of a geodesic y and the vertical line ¥ (resp.

horizontal plane #£). Let xl,...,x4 be orthonormal vectors
defined by
= 8 =18 =18
Xy =30 X238 X3°% s
= 1 8 _ .
X4 = hsin Z¢ (By. - ©°8 2¢ 55
Then we can write
. _ dr de day de - ay
Y = 35 Xl + v(ds + cos 2¢ ds)X2 + h Is X3 + h sin 2¢ ds X4
because of Lemma 2.1. Since ¥ is spanned by X2 and £ is

spanned by {X3,X }, we have

cos o = %ﬂ + cos 2¢ 2! ’
cos B = h{(a—) + s1n22¢ ( )z 1/2.
s
It follows that
lcl = v cos a, d = h cos 8.

These equations are analogous to the Clairant’s relation of

geodesics on surfaces of revolution.

§3. Special geodesics.

In the present and next sections, we shall study the
periodicity of geodesics of the metric g. 1In particular, it is
shown that the Fubini Study metric gcan is the only Cn-metric
in the class of metrics of the form (1.5). We have already seen
that the length of geodesics passing through Py or tangent to

S_ is equal to m. Now let us suppose that g is a Cn-metric.
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Then, by Proposition 2.3 (2), Sq must be a Cn—manifold with the

induced metric dr2 2

+ v(r)zde for each q € S_. Cn—metric of
this type on a 2-dimensional sphere (Zoll surface) was studied
in [3,10]. The following explanation of Zoll metric

(3.1) ds? = dr?

+ v(r)zde2
on a surface of revolution M (differomorphic to Sz) is owing to
[3], where r denotes the distance from the north pole and v(r)

the distance from the axis. For each geodesic y on M, we have

Clairaut’s relation (cf. Lemma 2.5) that

_ .2 de
(3.2) c = v 3
is constant on y. Taking (2.6) into account, we see that |c|
_ . ., dr _
< v(r) and v(ro) = |c¢| if and only if i 0 at Sg? vhere ry
= r(so). Let v’(rl) = 0. Then the latitude r = ry is a
geodesic. Using the second variation formula for an one

parameter family of geodesics passing fhrough a point on this
latitude, we can show v”(rl) < 0., Therefore v is monotone
increasing on [O,rl) and decreasing on (rl,n/2]. It follows

*
that ¥y lies between the latitudes r = r, and r = ro y Where

* * .
v(ro) = v(r0 ) = |c|] and 0 < ro £ ry, < n/2., In particular, Ty
*
=ry, =71 if and only if y is the equator (latitude r = rl).
Also we note that ¢ = 0 if and only if ¥ is a meridian. Let

c # 0. If y is not the equator, then y is tangent to latitudes
* .

r =r, and r = r, at one point respectively. The rotation

angle between these two tangent points is equal to n. Therefore

we have, from (2.6) and (3.2),

X
r
(3.3) f 0 [l dr = n.
r0 v,/v2 - c2

Next we change the parameter r for x defined by
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(3.4) v(r) =%sinx

where x € [0,n] and we note that the maximum v(rl) of v is

equal to % since the length of the equator is equal to n. If
we put
_1 .

(3.5) lel = 7 8in x,,
then (3.3) becomes

-X sin x, f,(cos x)
(3.6) - Iﬂ 0 0 1 dx = &

x . . 2 . 2
0 sin x ,/sin'x - sin X,

for some positive function f1 on [-1,1] such that fl(—l) = fl(l)
=1, It is shown in p.p. 103 ~ 104 in [3] that (3.6) holds for
every x, € (0,n/2] if and only if a function ny ¢ {-1,1] —
(-1,1) defined by nl(t) = fl(t) - llis an odd function which
satisfies nl(—l) = nl(l) = 0., Conversely, if (3.6) holds for
every X, € (O,r/21, then (3.1) is a Cn—metric on Sz. In this
way, v must be a function which gives a Zoll metric on Sq for
each q € S_. We note that geodesics lie on Sq for some q € S,
if and only if d = 0.

Next we deal with geodesics satisfying ¢ = 0, d = O. In
the following Lemmas 3.1(2), 3.2, 3.5 and Proposition 3.3, we
shall assume that g is a Cn—metric. Under this assumption, we
have h(r) = cos r (Lemma 3.5). Since (r,¢)-surface is
diffeomorphic to RP2 and totally geodesic as shown in the proof
of Lemma 3.1(2), the induced metric dr2 + h(r)2d¢2 on this
surface gives a Cn—metric on RPZ. Thus by L.W. Green’s theorem
(cf. [3]), it must be the canonical metric and hence we can
conclude that h(r) = cos r. However, to be self-contained and
to complete this paper; we shall repeat this proof by the

method written in [3].
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Lemma 3.1. (1) Let S(so) be the geodesic sphere with

center P, and radius s, € (0,n/2). The submanifold S(so) is

0
totally geodesic if and only if v’(ro) = h’(ro) = 0, where r

0

(2) If the metric g is a Cn-metric, then h is monotone

decreasing, i.e., h"(r) < 0 on (0,n/21.

Proof. (1) : Let U* = {expp sX : s € (0,n/2), X € U}.
0

Since {06,¢,¥} is a local coordinates defined on U* n S(so) and
8/8r is the unit normal vector of S(so), S(so) is totally
geodesic if andkonly if {jlk} = 0 for j,k = 2,3,4. The
assertion follows from Lemma 2.2,

(2) : Firstly we show that (r,w)—surface (6,¢ : constant)
is totally geodesic. Vectors 8/86 and 8/8¢y are normal to the

surface. The tangential components of ¥ a/8e0, va/ara/aw,

8/8r
v8/8¢8/89 and va/awa/aw vanish because of Lemma 2.2. Using
Weingarten equation for the surface in (CPz,g), we see that
(r,¢)-surface is totally geodesic. Assume thaf h'(ro) = 0 for
some r; € (0,n/2). Then ¢-curve (r = ryo 8, ¥ : constant) is a
geodesic since equations (2.2) ~ (2.5) reduce to dzw/ds2 =0
and (2.6) implies that |d¢/ds| = l/h(ro). Let p be a fixed
point in U* such that r(p) = rye Consider the (r,¢)-surface M
containing p. Let ¥y be the geodesic through p which coincides
with ¢-curve on M and J be the Jacobi field along ¥y induced

from variation consisting of geodesics which pass through p and

. . . * . .
lie on M in the domain U . Then J is proportional to X1
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(= 8/8r). Since, using Lemma 2.2,
h”(ro)
R(X)»X3)X3 = = R(zg)
where X3 = (8/8¢)/h and R denotes the curvature tensor, the

Jacobi equation becomes
v. %= hT(i—r())—) J.
0

L 4
Since J(0) = J(nx) = 0, we obtain

Iﬂ 2 h”(ro) In 2
02-[ne Jn? as nanl ds.
0 hiry) Jy

1 4

We have proved h”(ro) < 0. The length of ¥y is equal to nh(ro).
Hence h(ro) = 1. Taking account of h(0) = 1, we have a
contradiction. : Q.E.D.

Lemma 3.2. Assume that g is a Cn—megric. Let ¥y be a

geodesic such that y(0) € CPZ AN ({po} U Sw), c =0 and d = 0.

Then y transversally intersects Sa. Moreover, there exists Ty
€ (0,n/2) such that r < r, along y and i(so) is contained in

the horizontal space, where r(so) = rg.

Proof. There uniquely exists r, € (0,n/2) such that h(ro)
=d for 0 < d< 1. Since h(r) 2 d along y, r(s) < ro along vy.
Assume that y is tangent to a geodesic sphere S(n/2 - rl).’
Then dr/ds = 0 at the tangent point. Since ¢ = 0, we have
cos 8 = 1 at the tangent point and hence h(rl) = d. Therefore
ry = Ty because h is monotone decreasing. If ¥ (or a segment
of ) is contained in S(n/2 - ro), then (2.2) reduces to
2

hh’{(%%)z + sin%2¢ (%%)2} =0

on S(n/2 - ro), where we have used the assumption ¢ = 0 and



Lemma 2.5, and hence d = 0 which is a contradiction. From

these facts, we can easily prove the assertion. . Q.E.D.
Remark. We see from the above proof that each connected
component in CP2 N\ S_ of a geodesic y with ¢ = 0 and d = 0 is

tangent to a geodesic sphere S(n/2 - ro) at only one point.

Proposition 3.3. Assume that g is a Cn-getric. Then h

satisfies
r
(3.7) ZIO——h——dr=n,
o [ZT_ 2
r
(3.8) zj'o——l——dr=n,
0 17 . 42
for any 0 < d < 1, where h(ro) = d.

Proof. We first show that the projection to S°° of a

geodesic y with ¢ = 0 and d # 0 by the map P : sz N {po}

LS

— S_ defined by P(expp sX) = exp 5 X is a great circle.

0 Po
For ¥y with ¢ = 0 and d # 0, equations of geodesics (2.2)

~ (2.5) reduce to

© 42 2, .
(3.9) d;—df;:o,
ds h
de dy _
(3.10) 35 ' cos 20 ds ~ 0,
2 -
a% , , b7 dr de _ v,z _
(3.11) , 5 * 2 h- ds ds sin 4¢ (ds) = 0,
s
2 -
d ¥ h” dr dy de dy _
(3.12) dsz + 2 h ds ds | 4 cot 2¢ ds ds 0.
Moreover, (2.6) reduces to
2
dr,2 d™ _
(3.13) (Eg) + ;7 = 1

— 83 —



which implies (3.9). We change the parameter s for t defined
by

t =[5 =9  4s
I he(r(s))

on each connected component of y([O0,n]) \ S, (y(0) € Sw). Then

we get, from (3.11) and (3.12),

2
(3.14) L2 _ gin 40 (%2 = o,
dtz dt
2
dy de dy _
(3.15) - + 4 cot 2¢ dt at - 0.
dt
The definition of the parameter t implies
doy2 . _io2,0 (d¥y2
(3.16) (dt) + sin"2¢ (dt) = 1.

It follows that the image of each connected component of

y([O,n]) N\ S_ by the map P is a segment of a great circle on‘S°°

(= 82(1/2)) with the induced metric ds2 = d¢z + sin22¢ d¢2 and
t is the arclength parameter of the great circle. Since y is a
closed curve with length n, we have
r
2 [0 B 4 -2
0 /hz _ d2
for some positive integer m, where we have used (3.13). Since

y approaches to a geodesic passing through Py when d — 0, we
must have m = 1 because of the continuity. Hence we see that

y([O,nx]) n S_ consists of one point and P(v) is a whole great

circle. Therefore
r
) P
0 h/hz _ d2
which is the length of P(vy). Q.E.D.

Theorem 3.4. Let g be a metric of the form (1.5) on CPZ,

where h and v satisfy (1.6). If h is a monotone decreasing
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function on [0,n/2] and satisfies

h

Jn2 - 4%

and (3.8) for an arbitrarily given d such that 0 < d < 1, where

To
(3.17) 2f dr = L < «
0

h(ro) = d, then every geodesic y whose Clairaut’s first

integrals are equal to 0 (= ¢c) and d is a closed curve with

length L.

Proof. Let ry satisfy h(ro) = d. Then r < Ty along Y.

Let y(0) € CP2

N\ (S; v {p}). By argument similar to the proof
of Lemma 3.2, we see that y is not contained in any geodesic
sphere centered at Pg- We may assume that dr/ds > 0 at s = 0.

If dr/ds > 0 on (0,»), then there exists ry (< ro) such that

r(s) — ry and dr/ds — 0 as s — o, From (3.13), we have d
= h(rl), so that ry, = ry. Therefore we have

r

0 h dr = w

0 h2 _ d2 |
which contradicts to (3.17). Hence dr/ds = 0 at some S0 where

2 < 0 on each connected

r(so) = rg. Equation (3.9) shows dzr/ds
component of y((-=,»)) \ S_ - It follows that ¥y is tangent to

S(n/2 - ro) only one time and transversally intersects S_ at s

s, + L/2 and s = L/2 - s,. We put q = y(L/2 - so) and q~

0 0

visy, + L/2).

Next we prove q = q°. Reparametrize y by arclength

parameter in such a way that y(-L/2) = q, v(L/2) = q° and r(0)
= rg. Equations (3.14) ~ (3.16) hold for y with ¢ = 0 and d
# 0, Thus the curve P(y) projected to S_ is a whole great

circle because of (3.8). Since ds/dt > 0 along ¥y, the
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projection P is one to one. It follows that q = q”.

We prove y(L/2 - 0) = (- L/2 + 0) to show that y is a
closed curve. The vector d¢/ds 8/8¢ + dy/ds 8/8y is the
tangent vector of the great circle P(y). So we have
de/ds(L/2 - 0) = de¢/ds(- L/2 + 0) and dy¥/ds(L/2 - 0)
= d¢/ds(- L/2 + 0). Put u1 = r cos 8 and u2 = r s8in 6 on a

neighborhood of q (cf. Proof of Prop. 2.3). Then

1 2
%%— = %§ cos 8 - r %% sin 0, %%— = %§ sin 6 + r %% cos 0.

Since d@/ds is bounded on (-L/2,L/2) because of (3.10), we have

921(1 L/2 + 0)
ds -

%g(; L/2 + 0) cos 8 (+ L/2 + 0),

(3.18)

du2 -
g (+ L/2 £+ 0)

$E(F L/2 + 0) sin @ (% L/2 + 0).

By a suitable coordinate change on S“, we may assume that the
great circle P(y) is defined by 2¢ = n/2, ¥ = t + n/2 (- n/2

< t < n/2). Then 8 is consfant on (-L/2,L/2) because of (3.10).
In the normal plane at q of S_, 0 is the angle measured from

the tangent vector &x(n/Z) of the geodesic ox : 8 — exp sX,

0
where X = (cos ¢e1¢,sin ¢e-1w) € 83(1) c Tp CPZ‘ Since
0
é_x(n/Z) = - éx(n/Z) and dr/ds(+ L/2 +0) =+ /1 - dz, we see
from (3.18) that y(L/2 - 0) = v(- L/2 + 0). Q.E.D.
Let us consider the condition (3.8). If g is a Cn-metric,

then (3.8) holds for every d such that 0 < d < 1.

Lemma 3.5. Let g be a metric of the form (1.5) on CPZ.

If it is a Cn—metric, then h(r) = cos r.
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Proof. The idea is similar to 4.14 in p. 103 [3]. We
change the parameter r for y defined by y = arccos h(r) (0 < y

£ n/2). We easily see that h""(0) < 0, and so there exists

vy (0 + 0), which is equal to Y- h""(0). Define a monotone
increasing function v : [0,1] — [0,n/2] by v(t)

= h_l( 1 - tz for 0 < t < 1. Hence we have v(sin y) = r for y

€ [0,n/2] and

(3.19) dr = ——SIny 4o,
h”(v(sin y))
We put
£,(t) = - _:_13__
h” (v(t))
for 0 < t < 1. Then f2 is a positive function on [0,1]. It is

smooth on (0,1), satisfies £,(0 + 0) = 1 / J- h""(0) and £,(1)

= 1 which is derived from (1.6). Using (3.19), we can rewrite

(3.8) as

(3.20)

dy = =,

y f,(sin y)
24 f 0 2
0 j 2 2
cos y jcos'y - cos'y,
where 0 < Yo < /2 and d = cos Yo Since

Y
2d f 0 dy = n,
0

j 2 2
cos y Jcos'y - cos'y,

(3.20) is equivalent to

y n,(sin y)
(3.21) f 0 2

=0

cos y JCoszy - coszyo
for the function no defined by nz(t) = fz(t) -~ 1. Here we note

that nz should satisfy

ny(0 + 0) = — 1 ., ny(1) = o.

J- h™7(0)
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We show that n, satisfies (3.21) for every Yo € (0,n/2) if and

only if n, = 0. We put, for a € [0,n/2],

a .
I(a) = I 31n’z cos z H(z) dz,
0 Jcoszz - cosza
where
z n,(sin y)
H(z) = I dy.
0 2

cos y Jéoszy - cos“z
Let Ta denote the domain {(y,z) € R2 : 22y, 0y < a}. Then

we have

(3.22) I(a)

sin z cos z nz(sin y)
= II dydz
2 2 2 2
a cos y Jcos“z - cos“a Jcos“y - cos"'z
- Ia n2(51n v) (Ia sin z cos z dz)d
o ©o8 YV y 2 2 2 2 v
cos“z - cos"a Jcos"y - cos“z
because of Fubini’s theorem. Substituting
X = jcoszz - cosza /‘/coszy - coszz
into (3.22), we have
a n,(sin y) o a n,(sin y)
wa) = [ Egs— v [ ——ax = 3 [ e v
0 01 + x 0

If (3.21) holds for every Yo € (0,n/2), then I(a) = 0 for every
a € (0,n/2) and hence n, = 0. We easily see that n, = 0

implies h(r) = cos r. . Q.E.D.

If we examine the above proof, we have

Theorem 3.6. Let h be a monotone decreasing function on
[0,n/2) satisfying (1.6) and h""(0) = - 1. For an arbitrarily

fixed T (0 < T < n/2), there exists a lot of noncanonical




metrics of the form (1.5) on CPZ such that all geodesics which

pass through S°° and whose Clairaut’'s first integral d satisfies

d 2 h(r) are closed.

Proof. We have only to choose n, as any smooth function
satisfying

n,.= 0 on [0,/1 - h(;)zl,

ngo(1) = 0.

Then we have h by solving

h" = -1 - 0%/ £,(J1 - n?).

Since

v T 1

1
- r
lim 0 = < w,
rory [hé - a2 /- 2dh” (r,)

the integral (3.17) is finite.

Q.E.D.

Remark. In the above theorem, the restriction for v is

only conditions given in (1.6).

84. General geodesics.

We shall consider geodesics with ¢ # 0 and d = 0.

first, we prove

Lemma 4.1. Let v be a geodesic with ¢ = 0 and d = 0.

P be the projection CPZ AN {po} — S_

introduced in the proof of Prop. 3.3.
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Then P(y)

Let



is a small circle with perimeter dm / /cz + dz.

Proof. Change the parameter s for t defined by

h(r(s))
Then the equations (2.4) and (2.5) of the geodesic y reduce to
2
a®e _ A¥)2 . 5 S Lt g 9G¥
(4.1) dtz sin 4¢ (dt) + 2 g sin 2¢ ac = 0,
2
a’y do dv _ ,c_1 _ de _
(4.2) dtz + 4 cot 2¢ dt at 2 d 5in 2¢ at - 0.

From the definition of d given in Lemma 2.5, we have (3.16).
Namely, t is the arclength of P(y) since the induced metric on

22¢ dwz. If we denote P(y) by o and

SQ is given by d@z + sin
the Riemannian connection by ¥ on S_» then (4.1) and (4.2) are

equivalent to

(4.3) V.o =23N,
o
= - gi dv 8, 1 _do 9 ;
where N = sin 2¢ It 3¢ + sin Z¢ dt 9v" It is easy to see
that N is the unit normal vector of o. Since (4.3) is the

equation of small circles with perimeter dm / /cz + dz, we have

the assertion. Q.E.D.

Let v and h be smooth functions on [0,n/2] such that they
satisfy (1.6) and

-

v > 0 on [O,rl), v'(rl)

0, v™ < 0 on (rl,n/2],
(4.4)

h™ < 0 on (O,r/21, v(r,)

\
o] =

Define F : (0,n/2) — R by

(4.5) F=1-%55- %
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for each 0 < ¢ £ 1/2 and 0 < d < 1. Moreover we define

functions a,b and vw defined on (O,rl] by

° = _ v h3
- - =
h~ v3
(4.6)
2 2
1 w 1 7
a=1/ [-L+2 b=aw/ [—L+2 .
v2 h2 ’ v2 h2
Then we "have
2 2
(4.7) 1 -8__b__ o,
2 2
v h

Lemma 4.2, Let g be a metric of the form (1.5). Let h
and v satisfy (1.6) and (4.4). If a geodesic y with the

Clairaut’s first integrals c and d lies on a geodesic sphere

S(n/2 - u) (0 < u < n/2), then we have
(1) F(u) = 0, F (u) = 0, |
(2) c = 0,
(3) if d = 0, then u < ry
(4) d =0 if and only if u = r, (and hence v is the

equator of Sq for some q € S_).

Proof. Since r = u (constant) along ¥, (2.2) reduces to
- - () (48 dv 2
0 = v(u)v (u)(ds + cos 2¢ ds)
- de,2 . 2 dy,2
+ h(u)h” (u){(55)" + sin"2e(57)"}
c2 d2
= 3 vi(u) + 3 h” (u)
v(u) h(u)
_1
-_Z‘F(u)o
If ¢c = 0, then d = 0 and hence y is a geodesic issuing from Pg-.
This is a contradiction. If d # 0, then v '(u) > 0 i.e., u < ry.
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The constant d is equal to zero if and only if v ' (u) = 0.

Q.E.D.

Let ¥y be a geodesic with ¢ # 0, d # 0. Since P(y) is a

2

small circle with perimeter dn //c2 + d° (Lemma 4.1), we may

assume that ¢ is a constant along ¥y such that cos 2¢

=c / /cz + d2 > 0. Then we get, from (4.1),

d¢ _ ¢ _1 _1 /.2 2
(4.8) dt " dcos 2¢ _dv°® + d-.
Since
e . de av
vz = s + cos 2¢ ds
de (o]
= == + =,
ds h2
we have
de _ 1 _ 1
(4.9) E—C(—z— 2).
v h

We give a necessary and sufficient condition for all
geodesics which lie on geodesic spheres centered at Py to be

closed and have the same length.

Theorem 4.3. Under the same assumption as in Lemma 4.2,

every geodesic ¥ on geodesic spheres S(n/2 - u) (0 < u < rl) is

closed and of the same length n if and only if h and v satisfy

4 p? 2

(4.10) h 0

on [O,rll-

Proof. The necessity is proved as following. Ffom
(4.8), we have

%=}-2- c2+d20
h
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If y is a closed geodesic on S(n/2 - u) (0 < u < rl) and of
length nt, then we see that

1 2 7 11
(4.11) ;7 c” 4+ d° = m, c(;i 2) = n

h

for some integers m and n. By virtue of Lemma 4.2 (1) and
(4.6), we have ¢ = a(u) and d = b(u). It follows that the

geodesic L for any 0 < u < rys
r = u, 0 = a(u)( 1 5 - 1 5)8,
v(u) h(u)

% arccos a(u) , v 1 2‘/a,(u)z + b(u)2 s
Jatw)? + b(w)? h(u)

forms a l-parameter family of geodesics. By continuity, we

<
]

know that m and n in (4.11) for Y, do not depend on u. Since
if u tends to zero, then v, converges to the equator (2¢ = n/2,
¥ = 8) on S°° and if u tends to Ty then L converges to the

equator of Sq for some q (Lemma 4.2 (4)), we conclude that m =

In] = 1, where we note that a(rl) = % and b(rl) = 0. We have
shown
(4.12) al; - L) =1, a’ + b% = n®
v h
on (0,r1] (we may assume that n = 1). The second equation is

equivalent to
(4.13) v’ (1 - h%) = (¥ - vh) = O.

On the other hand, the first equation of (4.12) is equivalent

to
3 2 2
(4.14) vB enhs s Y _ K% -2y = o,
v 2 2
v h
Since h™ = 0 on (0.r1], we get, from (4.13) and (4.14),
2 2 3 .3
(1 - 0% (B + 5 - n? - 2) + (L - vh) = o0,
v 3
\% h h
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from which
nt - n? + v =0
on ‘O,rll.
Differentiating (4.10), we have
2h3h” - hh” + wvv° = 0,
which implies (4.&3) and (4.14). Therefore (4.12) holds and we
have shown the sufficiency. Q.E.D.

Therefore, if we choose v and h in such a way that dr2

+ vzde2 is a Zoll metric and h is a monotone decreasing
function which satisfies (4.10) on (0,r1] and (1.6), then we

have

Corollary 4.4. There is a lot of noncanonical metrics of
the form (1.5) on CPZ such that all geodesics on each Sq (a |
€ S“), S, and geodesic spheres centered at P, are closed and of
the same length n.

We also have

Corollary 4.5. Let g be a metric of the form (1.5), where

h and v satisfy (1.6) and (4.4). If, in addition to the above
geodesics, all geodesics which pass through points in Sn are

closed and of length n, then g coincides with 8can® In

particular, if g is a Cn—metric, then g = g .

Proof. By virtue of Proposition 3.3 and Lemma 3.5 (where
we have assumed that g is a Cn—metric, but the assertions hold

under the present assumption), h(r) = cos r on [0,n/2]. It
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follows from (4.10) that v(r) = sin r cos r on [O,rl] where ry
should be n/4. Therefore n, = 0 on [0,1] (for the detail, see
[3]). Since ny is an odd function, n, = 0O on [-1,1], i.e.,

v(r) = sin r cos r on [O,n/2]. Q.E.D.

Finally, we study geodesics which satisfy c # 0, 4d = 0 and

are not contained in any geodesic sphere centered at Pg-

Lemma 4.6. Under the same assumption as in Lemma 4.2, we

see that if h gsatisfies (4.10), then there exists a unique zero

of F- and F7~ < 0 at _the zero.

Proof. Since
lim F(r) = 1lim F(r) = - o,
r-0+0 r-n/2-0

there is a point where F attains the maximum. Let r be

arbitrarily fixed zero of F°. Since
~ c? ~ a? ~
F'(r) = 2(—= 3 vi(r) + =3 h“(r)) = 0,
v(r) h(r)
we know that r < r,. It suffices to prove that F"7(T) < 0. By
a straightforward computation,
(4.15) Lo p(F) + ¢ BB (56 (F) = 0.
2 ~.3
c h(r)
Let us assume that F""(r) = 0. Then w (T¥) = 0. Since
o = lf (ab” - a’b),
a
we have ab” = a”b at r = r. Moreover (4.10) implies (4.12),

from which we get

aa” + bb~ - 2(a® + b?) %- = 0.

Substituting ab”™ = a”b into the above equation, we have a”
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= 2ah”"/h at r = r. From the first equation of (4.12), we have

(4.16) a’(l— - l—) = za(_V.§ - h§)
v h v h

and hence h"/h = v'/v at r = r. However h™ < 0 and v- > 0 on

(O,r We have shown that F “(¥) = 0.

1)
Next, assume that F " (r¥) > 0. Then (4.15) implies « (T)

> 0. Differentiating the defining equation of a, we see that
a”(T¥) <.0. Therefore v(r) > h(T) since the right hand side of
(4.16) is positive on (O,rl). Taking account of (4.4), we know
that v > h on [;,rll. By the assumption F (r) = 0 and F 7 (T)

> 0, F(r) >0 if r € (r,r+g), where g (> 0) is sufficiently
small. It follows from Rolle’s theorem that there is another
zero r* € (;,rl) of F~ such that F”(r*) < 0. However, if we
apply the argument of the preceding paragraph to r*, then we
have F”(r*) < 0 and hence w’(r*) <0 because of (4.15). So
a’(r*) > 0. This inequality and (4.16) imply that h > v at r*

€ (;,rl). We have a contradiction. ' Q.E.D.

Let y be a geodesic whose Clairaut’s first integrals do
not vanish. Furthermore we assume th;t ¥ is not contained in
any geodesic sphere centered at Py Since F(r(s)) = (dr/ds)2
2 0 along ¥, we know that Wy £r«< Wo along ¥, where Wy and W,
are the zeroes of F determined by the Clairaut’s first
integrals c, d of ¥y (by virtue of Lemma 4.6, F has only two

zeroes).

Theorem 4.7. Let g be a metric of the form (1.5), where

h and v satisfy (1.6), (4.4) and (4.10) on [0,r1]. Let ¥ be a
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geodesic with ¢ =# 0, d = 0. Suppose that ¥y is not contained in

any geodesic sphere centered at Py - The geodesic ¥ is a closed
curve with length L if h and v satisfy

W
(4.17) ) J’ 2 dédr _ dn__
w, h2/F 2, 42
\ "4
(4.18) 2 J' 2 °2dr = (1 + —S_n,
w, v JF ch R d2
. \"J
(4.19) 2 [29E - ¢a,
w1 JF

Proof. We derive from (2.2)
2

d ; - X§ c2 + EE d2
ds v h

-1 -

=3 F (r(s)).

.Note that F’(wl) > 0 and F’(wz) < 0. Therefore, by the similar
argument to the first paragraph in the proof of Theorem 3.4, we

see that y is tangent to the geodesic spheres S(n/2 - wi) and

S(n/2 - wz) alternately and the length between consecutive two
points where y is tangent to S(n/2 - wi) is equal to L because
of (4.19). However, such consecutive two points -0 and q, on
S(n/2 - wl) must coincide. This can be proved as following.

The projection P gives a one to one correspondence between the
segment of y from a, to a, and the small circle P(y). By
(4.17), we know that , and q, are contained in the same Sq for

some q € S_. From (4.17) and (4.18), we have
Y2 1 1

2 (—§ - —g)
w1 v h

Therefore (4.9) implies that Q; = a, since ¥ and 6 change from

—% dr = n.
J/F

0 ton (cf. (1.3)).
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It is easy to prove that i(ql) = i(qz). Q.E.D.

Remark. In the proof of Lemma 4.6, we have T < ry and

hence Wy < ry. Equation (4.10) implies that v(rl) hz(rl)

= 1/2. Since F(r) = 0 along ¥y, we have
(h2)2 - (1 + a®>)n? + 2+ a2 <0
on (O,rl], where the equality holds if and only if r = Wy
_Therefore
(4.20) 1 - d% 2 2¢

and if ry 2 wz,»then

1 1,.2 73 )
-Z-‘f{d +1-j(1-d) ‘40_}

or

(4.21) 1 - a2 < %(1 + 4c2).

If r, 2 Wy, the conditions (4.17) ~ (4.19) can be rewrited in
terms of only h. Equations (4.20), (4.21) give a restriction

for the Clairaut’s first integrals ¢, d of geodesics with ry

2 wzl
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