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Abstact The purpose of this paper is to show that a complete

$n(\geq 3)$ -dimensional Kaehler manifold with positively lower bounded

totally real bisectional curvature and constant scalar curvature is

globaly isometric to a complex projective space $P_{\mathfrak{n}}(C)$ with Fubini-

Study metric

$0$. introduction

RL Bishop and S. L Goldberg [2] introduced the notion of totaly real bisec-

tional curvature $B(X, Y)$ on a Kaehler manifold $M$. It is determined by a totaly

real plane [X, $Y$ ] and its image $[JX, JY]$ by the complex structure $J$, where [X, $Y$ ]

denotes the plane spanned by linearly independent vector fields $X$, and Y. More-

over the above two planes [X, $Y$] and $[JX, JY]$ are orthogonal to each other. And

it is known that two orthonormal vectors $X$ and $Y$ span a totaly real plane if and

only if $X,Y$ and $JY$ are orthonormal

C.S. Houh [7] showed that $(n\geq 3)$ -dimensional Kaehler manifold with constant

totaly real bisectional curvature is congruent to a complex space form of constant
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holomorphic sectional curvature $H(X)=c$, where $H(X)$ is determined by the

holomorphic plane [X, J $X$]

On the other hand, S.L Goldberg and S. Kobayashi [5] introduced the notion

of holomorphic bisectional curvature $H(X, Y)$ , which is determined by two holo-

morphic planes [X, $ J\eta$ and [ $Y,$ $JY$} and asserted that a complex projective space

$P_{\mathfrak{n}}(C)$ is the only compact Kaehler manifold with positive holomorphic bisectional

curvature $\cdot$ $H(X, Y)$ and constant scalar curvature If we compare the notion of

$B(X, Y)$ with $H(X, Y)$ and $H(X)$ , it can be easily seen that the poeitiveness of

$B(X, Y)$ is weaker than the positiveness of $H(X, Y)$ , because $H(X, Y)>0$ implies

that both of $B(X, Y)$ and $H(X)$ are positive but neither $B(X, Y)>0$ nor $H(X)>0$

implies $H(X, Y)>0$.

In section 1 we introduce a local formula for Kaehler manifolds, which wil be

used to prove our main result And in section 2 let us find a relation between the

totally real bisectional curvature and the sectional curvature of a Kaehler manifold

$M$. Also the further relation between the totally real bisectional curvature and the

holomorphic sectional curvature of $M$ wil be treated. $Mor\infty ver$ in this section we

calculate the totaly real bisectional curvature of the complex quadric $Q_{n}$ immersed

in a complex projective space $P_{\mathfrak{n}+1}(c)$ with the constant holomorphic sectional

curvature $c$ In section 3 we wil prove that a complete Kaehler manifold $M$ with

positively lower bounded totaly real bisectional curvature $B(X, Y)\geq b>0$ and

constant scalar curvature is congruent to a complex projective space $P_{\mathfrak{n}}(C)$ . Before

to obtain this result we should $veri\Phi$ that a Kaehler manifold $M$ with $B(X, Y)\geq b>$

$0$ is Einstein Moreover we also show that the positive constant $b$ in the above
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estimation is best possiblq because we can find that there is a complete Kaehler

manifold with non-negative totally real bisectional curvature $B(X, Y)\geq 0$ but not

Einstein

The present author would like to express his sincere gratitude to the referee for

his valuable commenta

1. Local formulas.

This section is concerned with local formula for Kaehler manifolds. Let $M$ be

a complex n-dimensional connected Kaehler manifold Then we can choose a local

unitary ffame field $\{E_{A}\}=\{E_{1}, \ldots, E_{n}\}$ on a neighborhood of $M$. With respect

to this frame field, let $\{\omega_{A}\}$ be its local dual frame fields Then the Kaehlerian

metric tensor $g$ of $M$ is given by $g=2\Sigma_{A}\omega_{A}\otimes\overline{\omega}_{A}$ . The canonical forms $\omega_{A}$ and the

connection forms $\omega_{AB}$ of $ Msatis\Phi$ the folowing equations:

(1.1) $d\omega_{A}+\Sigma\omega_{AB}\wedge\omega_{B}=0$, $\omega_{AB}+\overline{\omega}_{BA}=0$,

$d\omega_{AB}+cc_{B}=\Omega_{AB}$ ,
(1.2)

$\Omega_{AB}=\Sigma R_{\overline{A}BCD}\alpha_{C}\wedge\overline{\omega}_{D}$ ,

where $\Omega_{AB}$ (resp $R_{\overline{A}BCD}$ ) denotes the Riemannian curvature form (resp the

components of the Riemannian curvature tensor $R$) on $M$.

The second equation of (1.1) means the skew-hermitian symmetry of $\Omega_{AB}$ ,

which is equivalent to the symmetric conditions

$R_{\overline{A}BC\overline{D}}=\overline{R}_{\overline{B}AD\overline{C}}$ .
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The Bianchi identities $\Sigma_{B}\Omega_{AB}\wedge\omega_{B}=0$ obtained by the exterior derivative of (1.1)

and (1.2) give the further symmetric relations

(1.3) $R_{\overline{A}BCD}=R_{\lambda CBD}=R_{DBC\lambda}=R_{DCB\overline{A}}$.

Now, with respect to the ffime chosen abovq the Ricci-tensor $S$ ofM can be

expressed as $foloW\mathfrak{F}$

$S=\Sigma(S_{CD}\alpha e\otimes\overline{\omega}_{D}+S_{CD}\overline{\infty}\otimes\omega_{D})$ ,

where $S_{CD}=\Sigma_{B}R_{BBCD}=S_{DC}=\overline{S}_{CD}$ . The scalar curvature $r$ is ako given by

$r=2\Sigma_{D}S_{DD}$ .

The Kaehlerian manifold $M$ is said to be Einstein if the Ricci tensor $S$ is given

by

$S_{CD}=\lambda\delta_{CD}$ , $\lambda=\frac{r}{2n’}$

for a constant $\lambda$, where $\lambda$ is caled the Ricci curvature of the Einstein manifold

The component $R_{\lambda BCDE}$ and $R_{\overline{A}BCDB}$ of the covariant derivative of the Rie-

mannian curvature tensor $R$( $r\infty p$ $S_{ABC}$ and $S_{ABC}$ of the Ricci tensor $S$) are

defined by

$\Sigma_{B}(R_{\lambda BCDE}\omega_{B}+R_{\lambda BCDB}\overline{\omega}_{E})=dR_{\lambda BCD}-\Sigma(R_{BBCD}\overline{\omega}_{EA}$

$+R\omega+R\omega_{E}+R\overline{\omega}_{ED})$ ,

$\Sigma_{C}(s_{A\overline{B}c^{\alpha}\mathfrak{v}+s_{A\overline{B}\overline{c}^{\overline{t_{4}}}\iota)=dS_{A\overline{B}}-\Sigma(rB}}S_{C\overline{B}^{tt}CA}+S_{A\overline{C}^{\overline{[l}}})$ .
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The second Bianchi formula is given by

(1.4) $R_{\overline{A}BC\overline{D}E}=R_{\overline{A}BEDC}$ ,

and hence we have

(1.5) $s_{ABc=S_{CBA}=\Sigma_{D}R_{BACDD}}$ , $r_{A}=2\Sigma_{C}S_{BCC}$ ,

where $dr=\Sigma_{C}(rct_{k}c+\overline{r}_{C}\overline{t_{Ir)}}$ . The components $S_{ABCD}$ and $S_{ABCD}$ of the covari-

ant derivative of $S_{ABC}$ are expressed by

$\Sigma_{D(S\omega_{D}+S\overline{\omega}_{D})=dS-\Sigma_{D}(S}ABCDABCDABCDBc^{\omega_{DA}}$

$(1.6)$

$+S_{ADC}\overline{\omega}_{DB}+S_{ABD}\omega_{DC})$ .

By the exterior differentiation of the definition of $S_{ABC}$ and by taking account of

(1.6) the Ricci formula for the Ricci tensor $S$ is given as fogows

(17) $S_{ABCD}-S=\Sigma(RS-RS)$ .

The sectional curvature of the holomorphic plane $P$ spanned by $u$ and $Ju$ is

caUed the holomorphic sec $t$ iona1 cu rvatu $xe$, which is denoted by $H(P)=H(u)$ . A

Kaehler manifold $M$ is said to be of $co$nst $ad$ holomorphic sect iona1 $cu$ rvature if its

holomorphic sectional curvature $H(P)$ is constant for al $P$ and for all points of $M$.
Then $M$ is called a complex space form, which is denoted by $M_{\mathfrak{n}}(c)$ , provided that

it is of constant holomorphic sectional curvature $c$, of complex dimension $n$. The

standard models of complex space forms are the following three kinds the complex

Euclidean space $C^{\mathfrak{n}}$ , the complex $pro\dot{p}$ctive space $P_{n}(C)$ or the complex hyperbolic

space $H_{n}(C)$ , according as $c=0,$ $c>0$ or $c<0$.
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Now, the Riemannian curvature tensor $R_{\lambda BCD}$ of $M_{\mathfrak{n}}(c)$ is given by

(1.8) $R_{\overline{A}BCD}=\frac{c}{2}(\delta_{AB}\delta_{CD}+\delta_{AC}\delta_{BD})$ .

First of all, let us introduce a fundamental property for the generalized maximal

principal due to EOmori [10] and S.T. Yau [12}

Theorem 1.1. Let $M$ be an n-dimensional $R\dot{x}$mannian ma$nihH$ whose $R\dot{r}$ci

$cu$ rvature is bounded fro$m$ bekw on M. Let $F$ be a $C^{2}- A$nct $\dot{n}n$ bounded fiom

belOw on $M,$ $t$ ben $br$ any $\epsilon>0,$ $tk$Je $e\dot{m}s$ a $\mu id$ psach that

$|\nabla F(p)|<\epsilon$, $\triangle F(p)>-\epsilon$ and $infF+\epsilon>F(p)$ .

2. Totally real bisectional curvature.

Let $(M, g)$ be an n-dimensional Kaehlerian manifold with almost complex struc-

ture $J$. In this section, we consider a Kaehlerian manifold with totally real bisec-

tional curvaturq which is determined by a totaly $\cdot$ real plane $[u, v]$ and its image

$[Ju, Jv]$ by the complex structure $J$. That is, the totally real bisectional curvature

is defined by

(Z1) $B(u, v)=4R(u, Ju)Jv,$ $v$),

where $[u, v]$ means the totaly real plane section such that $du,$ $u$) $=dv,$ $v$) $=1$ ,

$\aleph u,$ $v$) $=0$ and $Xu,$ $Jv$) $=0$. Then for a Kaehlerian manifold, using the ffist

Bianchi-identity to (21), we get

$B(u, v)=4R(u, Jv)Jv,$ $u$) $+dR(u, v)v,$ $u$)
(22)

$=K(u, v)+K(u, Jv)$ ,
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where $K(u, v)$ means the sectional $c$urvature of the plane spanned by $u$ and $v$.

Now $if$ we put $u^{\prime}=u\star_{2}^{v}$ and $v^{\prime}=\frac{J(u-v)}{\sqrt{2}}$, then it is easily seen that $du^{\prime},$
$u^{\prime}$ ) $=$

$Xv^{\prime},$
$v^{\prime}$ ) $=1$ , and $du^{\prime},$ $Jv^{\prime}$) $=a$ Thus $B(u^{\prime}, v^{\prime})=dR(u^{\prime}, Ju^{\prime})Jv^{\prime},$ $v^{\prime}$) implies that

(23) $4B(u^{l}, v^{\prime})-2B(u, v)=H(u)+H(v)-4K(u, Jv)$ ,

where $H(u)=K(u, Ju)$ , and $H(v)=K(v, Jv)$ means the holomorphic sectional

curvatures of the plane $[u, Ju]$ and $[v, Jv]$ respectively

If we put $u^{\prime\prime}=\frac{u+Jv}{\sqrt{2}}$ and $v^{\prime/}=\frac{Ju+v}{\sqrt{2}}$ then we $getdu^{\prime l},$ $u^{\prime\prime}$ ) $=4v^{l/},$ $v^{\prime\prime}$ ) $=1$

and $du^{\prime\prime},$
$v^{\prime\prime}$ ) $=0$. Using the similar method as in (23), we get

(24) $4B(u^{\prime\prime}, v^{\prime\prime})-2B(u, v)=H(u)+H(v)-4K(u, v)$ .

Summing up (2.3) and (24), we obtain

(25) 2$B(u^{l}, v^{\prime})+2B(u^{\prime\prime}, v^{\prime\prime})=H(u)+H(v)$ .

Now we calculate the totally real bisectional curvatures of some manifolds

Example 2.1 Let $M_{n}(c)$ be a complex space form of constant holomorphic

sectional curvature $c$ and $[u, v]$ be a totally real plane section Then

$B(u, v)=XR(u, Ju)Jv,$ $v$)

$=\frac{c}{4}\{4u,$ $v$) $dJu,$ $Jv$) $-du,$ $Jv$) $4Ju,$ $v$) $+dJu,$ $v$) $d-u,$ $Jv$)

$-XJu,$ $Jv$) $4-u,$ $v$) $-24Ju,$ $Jv$) $d-u,$ $v$)}

$=\frac{c}{2}$.
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Thus $M_{n}(c)$ is a space of complex space form of constant totally real bisectional

curvature $\frac{c}{2}$

As a Kaehler manifold which is not of constant totaly real bisectional curva-

turq we introduce the folowing example

Example 2.2 Let $Q_{\mathfrak{n}}$ be a complex quadric in $P_{\mathfrak{n}+1}(c)$ and $[u, v]$ a totaly real

plane section Since $Q_{\mathfrak{n}}$ is represented as a Hernitian symmetric $8pace$ of compact

typq its sectional curvature is $non- negativ\triangleleft cf[8]$). Thus by (22) we lmow that

the totally real bisectional curvature $B(u, v)$ of $Q_{\mathfrak{n}}$ is non-negative Now let us

estimate the upper bounds of $B(u, v)$ of $Q_{\mathfrak{n}}$ . For the action of $G=SO(n+2)$ on

$Q_{\mathfrak{n}}$ , the isotropy group $H$ turns out to be $SO(2)\times SO(n)$ , where $SO(n)$ denotes the

group of special orthogonal $nx$ n-matrices

The canonical decomposition of the Lie algebra of the group $G$ is

$\mathcal{G}=\mathcal{H}+\mathcal{M}$ ,

where $\mathcal{G}=$
$ 00\eta$ $-\ell\eta-\ell 0\xi)|\xi,$ $\eta\in R^{n}$ }, and $o(n)$

denotes the Lie algebra of the special orthogonal group $SO(n)$ .

$Identi\Phi ing(\xi, \eta)\in R^{\mathfrak{n}}+R^{\mathfrak{n}}$ with the above matrix in $\mathcal{M}$ , we deffie an inner

product $g$ on $\mathcal{M}x\mathcal{M}$ by

$X(\xi, \eta),$ $(\xi^{\prime}, \eta^{l}))=2c\dashv<\xi,$ $\xi^{\prime}>+<\eta,$ $\eta^{l}>$ },
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where $<\xi,$ $\xi^{l}>$ is the standard inner product in $R^{n}$ . We also define a complex

structure $J$ on $\mathcal{M}$ by

$J(\xi, \eta)=(-\eta, \xi)$ .

The curvature tensor $R$ at the origin is given by the folowing

$R((\xi, \eta),$ $(\xi^{l}, \eta^{l}))=a\{\lambda 00$ $-\lambda 00$ $B00)$ , $B\in O(n)$ ,

where $\lambda=<\xi^{\prime},$ $\eta>-<\xi,$ $\eta^{l}>,$ $B=c4\dashv\xi\wedge\xi^{l}+\eta\wedge\eta^{l}$}, and ( $\xi$ A $\xi^{l}$) $\eta=c4\dashv<$

$\xi^{\prime},$ $\eta>\xi-<\xi,$ $\eta>\xi^{\prime}$}. Thus for unit elements $u=(\xi, \eta),$ $v=(\xi^{l}, \eta^{\prime})$ in $\mathcal{M}$, the

holomorphic bisectional curvature is given by

$H(u, v)=XR(u, Ju)Jv,$ $v$) $=2c\dashv<-B\eta^{\prime},$ $\xi^{\prime}>+<B\xi^{\prime},$ $\eta^{l}>$ } $+\frac{c}{2}dv,$ $v$)

(2.6)
$=8\dashv_{c}<\xi,$ $\xi^{l}><\eta$

)
$\eta^{l}>-<\xi,$ $\eta^{\prime}><\xi^{l},$ $\eta>$ } $+\frac{c}{2}$

And the holomorphic sectional curvature $H(u)$ is given by

$H(u)=4R(u, Ju)Ju,$ $u$) $=\frac{8}{c}(|\xi|^{2}|t^{2}-<\xi, \eta>^{2})+\frac{c}{2}\geq\frac{c}{2}$.

In fict, since the complex quadric $Q_{\mathfrak{n}}$ is a Hermitian symmetric space of compact

type with rank 2, by KOgiue and R. Takagi [9] the holomorphic $s\propto$tional curvature

$H(u)$ of $Q_{n}$ is holomorphically pinched as $\frac{c}{2}\leq H(u)\leq c$.

Now we consider the totally real bisectional curvature of the complex quadric

$Q_{n}$ . Let $[u,v]$ be a totally real plane section such that $u=(\xi, \eta),$ $v=(\xi^{l}, \eta^{\prime})$ , and
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$Jv=(-\eta^{l}, \xi^{l})$ . Then $u,$ $v,$ $Ju$ and $Jv$ constitute orthonormal unit elements in $\mathcal{M}$ .
That is

$4^{u,v)=}2c\dashv<\xi,$ $\xi^{l}>+<\eta,$ $\eta^{l}>$ } $=0$,

$du,$ $Jv$) $=2\dashv_{c}<\xi,$ $-\eta^{l}>+<\eta,$ $\xi^{\prime}>$ } $=0$.

From these together with (26) the totaly real bisectional curvature is given by

$B(u, v)=^{8_{<\xi,\xi^{\prime 2}}}-\dashv>+<\xi,$
$\eta^{l}>^{2}$}$+\frac{c}{2}c$

From this, using the elementary method of Lagrange multiplier rulq it can be easily

seen that the totally real bisectional curvature $B(u, v)$ is bounded as

$-\frac{3}{2}c\leq B(u, v)\leq\frac{1}{2}c$,

where the upper equality holds if and only if $\xi$ is orthogonal to $\xi^{l}$ and $\eta^{l}$ in $R^{\mathfrak{n}}$ .
Accordingly, it follows that

$0\leq B(u, v)\leq\frac{1}{2}c$

for any totally real plane $[u, v]ofM$, because we have already known that the totaly

real bisectional curvature of the complex quadric $Q_{\mathfrak{n}}$ is non- negative

3. Complete Kaehler manifolds with positive totally real bisectional

curvature.

Let $M$ be an n-dimensional Kaehler manifold with the complex structure $J$. We

can choose a local field of orthonormal ftames $u_{1},$
$\ldots,$

$u_{\mathfrak{n}},$ $u_{1}\cdot=Ju_{1},$
$\ldots,$

$u_{\mathfrak{n}}\cdot=Ju_{\mathfrak{n}}$
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on a neighborhood on $M$. With respect to this frame field, let $\theta_{1},$

$\ldots,$

$\theta_{n},$ $\theta_{1}\cdot,$

$\ldots,$

$\theta_{\mathfrak{n}}$ .
be the field of dual hames

Let us denote by $\theta=(\theta_{AB}, \theta_{AB}, \theta_{AB}\cdot, \theta_{AB}\cdot),$ $A,$ $B=1,$ $\ldots,$
$n$ the connection

form of $M$. Then we have

(3.1) $\theta_{AB}=\theta_{AB}\cdot,$ $\theta_{AB}\cdot=-\theta_{AB},$ $\theta_{AB}=-\theta_{BA}$, and $\theta_{AB}\cdot=\theta_{BA}\cdot$ .

Now we set $e_{A}=\frac{1}{\sqrt{}}2\prec u_{A}-iu_{A}$), $e_{\overline{A}}=\mu_{2}^{1}u_{A}+iu_{A}$). Then $\{e_{A}, e_{\overline{A}}\}$ constitute

a local field of unitary $\Re mae$. And let us denote by $\omega_{A}=\theta_{A}+i\theta_{A}$. and $\overline{\omega}_{A}=$

$\theta_{A}-i\theta_{A}$. its dual frame fields respectively Then the components ofKaehler metric

$g=2\Sigma_{A}\omega_{A}\otimes\overline{\omega}_{A}$ and the metric components of the Riemannian curvature tensor

are given by the folowing respectively

(3.2) $ g_{B}o=g_{BC}+ig_{BC}\cdot$ ,

(3.3) $R_{\overline{A}BCD}=-\{K_{ABCD}+K_{ABCD}+i(-K_{ABCD}+K_{ABCD})\}$ ,

where $R_{ABCD}=g\lambda ER^{E}BCD$ . Thus for the case of $A=B,$ $C=D,$ $B\neq C$ in (3.3),

the totally real bisectional curvature is given by

(3.4) $R=-K\cdot\cdot=K\cdot\cdot=B(uB, uc)$ .

For the $c$ase of $A=B=C=D$ in (3.3), the holomorphic sectional curvature is

given by

(3.5) $R_{\overline{B}BBB}=4R(u_{B}, Ju_{B})Ju_{B},$ $u_{B}$ ) $=H(u_{B})$ .

–23 –



Remark 3.1 From (1.8) and (3.4) we know that for any totally real plane

section $[u, v]$ the totally real bisectional curvature $B(u, v)$ of a complex space form

$M_{\mathfrak{n}}(c)$ is $2c$-which is the same value as in Example 21.

On the other hand, S. L Goldberg and S. Kobayashi [5] showed that a Kaehler

manibld with positive holomorphic bisectional curvature and cooetant scalar cur-

vature is Einstein It is wel known that the Ricci 2-form is harmonic $if$ and only
‘ if the scalar curvature is constant In order to prove that the second Betti number

of a compact connected Kaehler manifold $M$ with positive holomorphic bisectional

curvature $H(X, Y)>0$ is one they have used the tiact that $H(X)>0$. Thus the

Ricci 2-form is propotional to the Kaehler 2-form , so that $M$ becomes to an Ein-

stein manifold But the condition $B(X, Y)>0$ is weaker than the condition of

$H(X, Y)>0$ we can not use $H(X)>0$ to obtain the above result lirom this point

of view by means of Theorem 1.1 we can obtain the fOllowing

Theorem 3.1 Let $M$ be a compkte n-dime$ns\dot{n}na1$ Kaehk $r$ manibH wit $h$

$co$nstant scalar curvat $u\iota e$. Assume that $tktot$ally rea1 $bjsect\dot{r}$mal $cu$ rvatu $\iota e$ is

lower bounded fOr some posit $ive$ constant $b$. $T$hen $M$ is Einstein

Proof Since $(S_{BC})$ is a Hermitian matrir it can be diagonalizable Thus

$S_{BC}=\lambda_{B}\delta BC$ , where $\lambda_{B}$ is a real valued $fi\iota nction$ From this it folows that

$r=2\Sigma BS_{BB}=2\Sigma_{B}\lambda_{B}$ . Now we put $S_{2}=\Sigma_{B,C}S_{BC}S_{CB}$ . Then it yields easily that

(3.6) $S_{2}-\frac{r^{2}}{4n}=\Sigma\lambda_{B}^{2}-\frac{(\Sigma\lambda_{B})^{2}}{n}=\frac{1}{2n}\Sigma_{B,C}(\lambda_{B}-\lambda_{C})^{2}$.
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Since we have assumed that the scalar curvature $r$ of $M$ is constant from (1.5)

it folows $\Sigma_{B}S_{BBC}=\Sigma_{B}S_{CBB}=0$. Together with this fict using (1.5) and the

Ricci formula (1.7) we have that

$\triangle S=\Sigma_{D}S=\Sigma_{D}S$

$=\Sigma_{E,D}(RS-RS)$,

ffom $whic\ddot{h}$ if we use the ffit Bianchi-identity (1.3) to the ffial term, we have

$\triangle S_{BC}=\Sigma_{E}(S_{BB}S_{EC}-\Sigma_{D}R_{DEBC}S_{DB})$

$=\lambda_{B}S_{BC}-\Sigma_{A}\lambda_{A}R_{\lambda ABC}$ .

Thus we get

(3.7) $\frac{1}{2}\triangle S_{2}=12\dashv\nabla S|^{2}+\Sigma_{B,C}S_{CB}(\lambda_{B}S_{BC}-\Sigma_{A}\lambda_{A}R_{\overline{A}ABC})$ ,

where $|\nabla\partial^{2}=2\Sigma S_{ABC}\overline{S}_{ABC}$ . Since the second term of the right hand side is

reduced to

$\Sigma_{AB}(\lambda_{B}^{2}R_{\overline{A}AB\overline{B}}-\lambda_{A}\lambda_{B}R_{\overline{A}ABB})=\frac{1}{2}\Sigma_{A,B}(\lambda_{A}-\lambda_{B})^{2}R_{\lambda ABB}$ ,

we get the folowing inequality by (3.7)

(3.8) $\triangle S_{2}\geq\Sigma(\lambda_{A}-\lambda_{B})^{2}R_{\overline{A}ABB}$ ,

where the above equality holds if and only if the Ricci tensor $S$ is parallel on $M$.
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Now let us consider a non-negative function $f=S_{2}-\frac{r}{4n}$. Then $hom(3.6),(3.8)$

and the assumption it folows that

(3.9) $\triangle f\geq 2nbf$,

where the above equality holds $if$ and only $if$ the Ricci tensor $S$ is parallel on $M$.

In order to prove this theorem, we need the folowing lemma

Lemma a2 Uoder $tk$ sazoe assu $m\beta\dot{n}n$ as $d$at $ed$ in $T$heoxem 3.1 $tkR\dot{r}c\dot{\}}$

$cu$ rvatu le is $b$ ounded &m $b$ elOw.

Proof From the assumption and (25) it folows that

$H(u)+H(v)\geq 4$.

Using (3.5) to the above equation for $u=u_{A},$ $v=u_{B},$ $A\neq B$, then we can rewrite

the above inequality as the following

$R_{\overline{A}AA\overline{A}}+RBBBB\geq 4$

If we put $R_{A}=R_{\lambda AA\overline{A}}$, then

(3.10) $R_{A}+R_{B}\geq ae$ $(\# B)$ .

Thus $\Sigma_{A<B}(R_{A}+R_{B})\geq 2n(n-1)b$ implies that

(3.11) $\Sigma_{A}R_{A}\geq 2nb$,

where the equality holds if and only if $R_{A}=2b$ for any $A$
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On the other hand, from the ffit that

$r=2\Sigma_{A}S_{A\lambda}=2\Sigma_{A,B}R_{\lambda ABB}=2(\Sigma_{A}R_{A}+\Sigma_{*B}R_{\lambda ABB})$

$\geq 2\Sigma_{A}R_{A}+2n(n-1)b$

it fOllows

(3.12) $\Sigma_{A}R_{A}\leq\frac{r}{2}-n(n-1)b$,

where the equality holds $if$ and only if $R_{\overline{A}ABB}=b$ for any A $B(A\neq B)$ . In this case

due to C.S. Houh [7] $M$ is congruent to $M_{n}(2b)$ . From (3.11) and (3.12) we know

that $r\geq 2n(n+1)b$. Thus &om the assumption the scalar curvature $r$ is positive

constant Also (3.10) gives $\Sigma_{B=2}^{\mathfrak{n}}(R_{1}+R_{B})\geq 4(n-1)b$ , so that

(3.13) $(n-2)R_{1}+\Sigma_{B}R_{B}\geq 4(n-1)b$.

From this and (3.12) it follows

$(n-2)R_{1}\geq 4(n-1)b-\Sigma_{B}R_{B}\geq 4(n-1)b-\{\frac{r}{2}-n(n-1)b\}$ .

Thus if we use the similar method to the other index, we can assert the folowin$g$

$(n-2)R_{B}\geq(n-1)(n+4)b-\frac{r}{2}$

for any index $B$, so that $R_{B}$ is bounded from below for $n\geq 3$. Moreover the above

equality holds for some index $B$ ifand only ifM is congruent to $M_{\mathfrak{n}}(2b)$ . Accordingly

the Ricci-curvature is given by

$\lambda_{A}=S_{A\overline{A}}=\Sigma_{B}R_{\overline{A}AB\overline{B}\not\in B}=R_{A}+\Sigma_{d}R_{\overline{A}ABB}$

$\geq R_{A}+(n-1)b$.
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Thus the Ricci-curvature is also bounded $hom$ below. Now Lemma 3.2 is proved

Now we wil complete the proof of Theorem 3.1. For a constant $a>0$, we

consider a $sm\infty th$ positive imction $F=(f+a)^{-*}$. Thus, from Lemma 3.2 we can

apply Theorem 1.1 (EOmori [10] and S.T. Yau [12]) to the function $F=(f+a)^{-k}$

for the given $f$. Given any positive number $\epsilon>0$, there exists a point $p$ such that

(3.15) $|\nabla P$] $(p)<\epsilon$, $\triangle F(p)>-\epsilon$, $ F(p)<\inf F+\epsilon$.

On the other hand, the Laplacian of the function $F$ can be calculated by

$\triangle F=\Sigma_{k}\{(f+a)^{-L}\}_{kk}=\frac{3}{4}F^{5}\Sigma_{k}f_{k}f_{k}-\frac{1}{2}F^{3}\Delta f$,

where $f_{k}$ and $f_{\overline{k}}$ denote $\partial z_{k}\perp\partial$ and $\partial\overline{z}_{h}\perp\partial$ respectively From this and (3.15), together

with the fict that

$|\nabla f|=|$ grad $\eta^{2}=2\Sigma_{k}F_{k}F_{k}=.\frac{1}{2}F^{6}\Sigma_{k}f_{\overline{k}}fk$

it follows that

(3.16) $\epsilon(3\epsilon+2F(p))>F(p)^{4}\triangle\lambda p)\geq 0$.

Thus for a convergent sequence $\{\epsilon_{m}\}$ such that $\epsilon_{m}>0$ and $\epsilon_{m}\rightarrow 0$ as $ m\rightarrow\infty$, there is

a point sequence $\{\mu_{n}\}$ so that the sequence $\{F(p_{n})\}$ satisfies (3.15) and converges

to $F_{0}$ , by taking a subsequencq if necessary, because the sequence $\{F(n_{n})\}$ is

bounded From the definition of the infimum and (3.15) we have $F_{0}=infF$ and

hence $f(Rn)\rightarrow f_{0}=supf$. It follows from (3.16) that we have

$\epsilon_{m}\{3\epsilon_{m}+2F(r_{n})\}>F(m)^{4}\triangle\lambda r_{n})$
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and the left hand side converges to $0$ because the function $F$ is boundeA Thus we
get

$F(p_{n})^{4}\triangle\lambda p_{n})\rightarrow 0$ $(m\rightarrow\infty)$ .

As is already seen, the Ricci-curvature is bounded from below $ie$ , so $is$ any $\lambda_{B}$ .
Since $r=2\Sigma_{B}\lambda_{B}$ is constant, $\lambda_{B}$ is bounded from above Hence $F=(f+a)^{-}$ } is

bounded &om below by a positive constant From (3.17) it follows that $\triangle f(n_{n})\rightarrow 0$

as $ m\rightarrow\infty$ . Since $b>0$, by (3.9) we have that

$\triangle f(\rho_{n})\geq\frac{n}{2}bf(n_{\mathfrak{n}})\geq 0$.

Thus we have $f(p_{n})\rightarrow 0=\inf f$. Since $f(\rho_{n})\rightarrow\sup f$, we have $\sup f=\inf f=0$.
Hence $f=0$ on $M$ That is, $M$ is Einstein This completes the above proof of

Theorem 3.1.

Remark 3.2 The positive constant $b>0$ in Theorem al is best possible

Because there is a complete Kaehler manifold with non-negative totally real bisec-

tional curvature $B(u, v)\geq 0$ but not Einstein as follows Consider a product mani-

fold $M=P_{n^{1}}(c_{1})xP_{n^{2}}(c_{2})$ . Then from (3.8) we know that its totally real bisectional

curvature is given by

$R_{\overline{A}ABB}=\left\{\begin{array}{ll}R_{\delta abb}=c_{2}\perp & (A=a, B=b),\\0 & (A=a, B=s),\\R_{rrsi}=\underline{c}_{2^{L}} & (A=r, B=s),\end{array}\right.$

where indices A $B(A\neq B),$ $\ldots;1,$
$\ldots,$

$n_{1},$ $n_{1}+1,$
$\ldots,$

$n_{2}$ , and $a,$ $b,$ $..;1,$
$\ldots,$

$n_{1},$ $r,$ $s,$ $..;n_{1}+$

$1,$
$\ldots,$

$n_{2}$ .
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And its Ricci-tensor is given by the folowing

$S_{AB}=\Sigma_{C}R_{BACC}=\Sigma_{a}R_{BAal}+\Sigma_{r}R_{B4rr}$

$=\{$

$o^{L_{c_{1}\delta_{bc}}^{1}}n_{2}\lrcorner$
$(B=c, A=b)$ ,
$(B=s, A=b)$,

$\mathfrak{n}_{2}\lrcorner\pm\underline{1}c_{2}\delta_{\ell e}$ $(B=s, A=t)$.

Thus for the case where $(n_{1}+1)c_{1}\neq(n_{2}+1)c_{2},$ $M=P_{n^{1}}(c_{1})xP_{n}(c_{2})$ is notEinstein

Since a complete Kaehler manifold $M$ with the $as8umption$ in Theorem 3.1 is

known to be Einstein and its scalar curvature $r$ is positive constant, its Ricci-tensor

is positive deffiite Thus by using a theorem of Myers we can assert that $M$ is

compact [8]. Now let us introduce a theorem $ofS.L$ Goldberg and S. Kobayashi [5],

which is slight different from the original one

Theorem A. An n-duoensiOna1 compact connected Kaehler manifoH wit $h$

$an$ Einstein metric of totally rea1 bisec$t\dot{r}na1cu$ rvature is $\Phi baAy$ isomet ric to

$P_{n}(C)$ wit $hRJb$ ini-Stud $y$ met $r\dot{r}$.

Though the original theorem in [5] are assumed with positive holomorphic

bisectional curvaturq the above result in Theorem A also holds for the assumption

with positive totally real bisectional curvature Thus combining Theorem A and

Theorem 3.1 we can assert the folowing

Theorem 3.3 Let $M$ be a compkte $n(\geq 3$ -dinre $ns\dot{\infty}$nal Kaehler manifold

wit $h$ constand scalar $cu$ rvatu re. Assume that the totally rea1 $b$ iaec $t\dot{w}\varpi 1$ curvatu le

is lower bounded $br$ some posit ive $cond$art $b$. $T$ hen $M$ is $\ovalbox{\tt\small REJECT} ally$ isomet $\dot{m}$ to

$P_{\mathfrak{n}}(C)$ wit $h$ Ri $b$ ini-St$udy$ metric.
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