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ON A KAEHLER MANIFOLD WHOSE TOTALLY REAL
BISECTIONAL CURVATURE IS BOUNDED FROM BELOW

Dedicated to Professor Tsunero Takahashi on his sixtieth birthday

Young Jin Suh*

Abstact: The purpose of this paper is to show that a complete
n(>3)-dimensional Kaehler manifold with positively lower bounded
totally real bisectional curvature and constant scalar curvature is
globally isometric; to a complex projctive space P,(C) with Fubini-

Study metric.

0. Introduction

R L. Bishop and S.L Goldberg [2] introduced the notion of totally real bisec-
tional curvature B(X,Y) on a Kaehler manifold M. Tt is determined by a totally
real plane[ X, Y] and its image [J X, JY] by the complex structure J, where[X, Y]
denotes the plane spanned by linearly independent vector fields X, and Y. More-
over the above two planes [ X, Y] and [J X, JY] are orthogonal to each other. And

it is known that two orthonormal vectors X and Y span a totally real plane if and
only if XY and JY are orthonormal

C.S. Houh [7] showed that (n>3)-dimensional Kaehler manifold with constant

totally real bisectional curvature is congruent to a complex space form of constant
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holomorphic sectional curvature H(X) = ¢, where H(X) is determined by the
holomorphic plane [ X, J X}

On the other hand, S.IL Goldberg and S. Kobayashi [5] introduced the notion
of holomorphic bisectional curvature H(X,Y), which is determined by two holo-
morphic planes [ X, JX] and [Y, JY], and asserted that a complex propctive space
P,(C) is the only compact Kaehler manifold with positive holomorphic bisectional
curvature- H( X,Y) and constant scalar curvature If we compare the notion of
B(X,Y) with H(X,Y) and H(X), it can be easily seen that the positiveness of
B(X,Y) is weaker tha.n the positiveness of H(X,Y), because H( X, Y) > 0 implies
that both of B(X, Y) and H( X) are positive but neither B(X,Y) > 0 nor H(X) > 0
implies H(X,Y) > 0.

In section 1 we introduce a local formula for Kaehler manifolds, which will be
used to prove our main result. And in section 2 let us ‘ﬁnd a relation between the
totally real'bisectional curvature and the sectional Cuﬁature of a Kaehler manifold
M. Also the further relation between the totally real bisectional curvature and the
holomorphic sectional curvature of M will be treated. Moreover in this séction we
calculate the totally real bisectional curvature of the complex quadric Q,, immersed
in a complex projective space P41(c) with the constant holomorphic sectional
curvature ¢. In section 3 we will prove that a complete Kaehler manifold M with
positively lower bounded totally real bisectional curvature B(X,Y)>b > 0 and
constant scalar curvature is congruent to a complex proective space Pn(C). Before
to obtain this result we should verify that a Kaehler manifold M with B(X, Y)>b >

0 is Einstein. Moreover we also show that the positive constant b in the above
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estimation is best possible, because we can find that there is a complete Kaehler
manifold with non-negative totally real bisectional curvature B(X, Y)>0 but not
Einstein

The present author would like to express his sincere gratitude to the referee for

his valuable comments.

1. Local formulas.

This section is concerned with local formula for Kaehler manifolds. Let M be

a complex n-dimensional connected Ka,ehlef manifold Then we can choose a local
unitary frame field {E4q} = {E,,..., E,} on a neighborhood of M. With respect
to this frame field, let {wa} be its local dual frame fields. Then the Kaehlerian

metric tensor g of M is given by g = 2% 4ws®w4. The canonical forms w4 and the

connection forms wap of M satisfy the following equations:

(1.1) dwg +XYwapAwg =0, wap+wpa=0,

dwap + YwacAwep = Qas,
(1.2)
QaB = ERzpcpweAwp,

where Q4p (resp. Rjzgcp) denotes the Riemannian curvature form (resp. the
components of the Riemannian curvature tensor R) on M.

The second equation of (1.1) means the skew-hermitian symmetry of Q,4p,

which is equivalent to the symmetric conditions

RABCD = RBADC"
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The Bianchi identities Q2 4pAwp = 0 obtained by the exterior derivative of (1.1)

and (1.2) give the further symmetric relations

(1.3) Ripcp = Racep = Rpeca = Rpcpa

Now, with respect to the frame chosen above, the Ricci-tensor S of M can be
expressed as follows;

S = B(Scpuwe®wp + Sepuc®uwp),
where Scp = ZpRppep = Spe = Sep. The scalar curvature r is also given by
r= 2EDSDD'

The Kaehlerian manifold M is said to be Finstein if the Ricci tensor S is given
by

r
Scp =Mécp, A= o

for a constant A, where ) is called the Ricci curvature of the Einstein manifold.

The component Rjipcpr and Rigepg of the covariant derivative of the Rie-

mannian curvature tensor R(resp. S, pc and S, pe of the Ricci tensor S) are

defined by
2e(RapcpewE + Rapecpe@e) = dRapecp — Z(Repcp@Ea

+RapcpweB + Ripepwec + Rapcp@ED),

Tc(Sapcwe + Sapetic) = dS 5 — E(Scpuca + S scaeB).
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The second Bianchi formula is given by

(1.9 Ripcpe = Rapepos

and hence we have
(1.5) SaBc = Scpa=ZDpRpacpp: Ta=2ZcSpee,

where dr = E¢(rcwe + foiwe). The components S 5cp and S pcp of the covari-

ant derivative of S 45 are expressed by

Ep(Sapcpwp+Sapcp@p) = dSapc — Ep(Spacwpa
(1.6) |

+ Sspc@wpB + SappwpC)-

By the exterior differentiation of the definition of S, 5o and by taking account of

(1.6) the Ricci formula for the Ricci tensor S is given as follows:

(1.7) Sascp — Saspc = ZE(RpcarSes.— RpcepSae)-

The sectional curvature of the holomorphic plane P spanned by u and Ju is
called the holomorphic sectional curvature, which is denoted by H(P) = H(u). A
Kaehler manifold M is said to be of constart holomorphic sectional curvature if its
holomorphic sectional curvature H( P) is constant for all P and for all points of M.
Then M is called a complex space form, which is denoted by M,(c), provided that
it is of constant holomorphic sectional curvature ¢, of complex dimension n. AThe
standard models of complex space forms are the following three kinds: the complex
Euclidean space C", the complex projctive space P,(C) or the complex hyperbolic

space Hn(C), accordingas c=0,¢> 0 or c< 0.
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Now, the Riemannian curvature tensor R3gcp of M,(c) is given by

(1.8) Ripep = %(&43500 + 84céBD)-

First of all, let us introduce a fundamental property for the generalized maximal
principal due to H.Omori [10] and S.T. Yau [12].

Theorem 1.1. Let M be ann-dimensional Riemannian manifold whose Ricci
curvature is bounded from below on M. Let F be a C?-function bounded from
below on M, then for any € > 0, t here exists a point p such that

|IVF(pl <e, AF(p>—€e and infF+e> F(p).

2. Totally real bisectional curvature. .

Let (M, g) be an n-dimensional Kaehlerian manifold with almost complex struc-
ture J. In this section, we consider a Kaehlerian manifold with totally real bisec-
tional curvature, which is determined by a totally real plane [u, v] and its image

[Ju, Jv] by the complex structure J. That is, the totally real bisectional curvature
is defined by

(21) B(u, v) = ¢(R(u, Ju)J v, v),
where [u, v] means the totally real plane section such that g(u, u) = ¢g(v,v) =1,
o(u,v) = 0 and ¢g(u,Jv) = 0. Then for a Kaehlerian manifold, using the first
Bianchi-identity to (21), we get

B(u, v) =  R(w, J9)Tv, u) + o B3, 0)0, )

= K(u, v) + K(u, Jv),

(22)
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where K(u, v) means the sectional curvature of the plane spanned by u and v.
Now if we put u' = '-‘3'23 and v' = 5"7_2-'2, then it is easily seen that ¢(u', u') =

gv',v") =1, and g(v', Jv') = 0. Thus B(v',v') = ¢( R(v', Ju')Jv', v') implies that
(2.3) 4B(u', v') — 2B(u, v) = H(u) + H(v) — 4K(u, Jv),

where H(u) = K(u,Ju), and H(v) = K(v,Jv) means the holomorphic sectional
curvatures of the plane [u, Ju] and [v, Jv] respectively.

If we put u” = '-‘—'-\*'7;-!, and v = Z5£*, then we get g(u", u") = o(v",v") =1

and g(u", v") = 0. Using the similar method as in (2.3), we get
(24 4B(u", v") — 2B(u, v) = H(u) + H(v) — 4K(u, v).
Summing up (2.3) and (2.4), we obtain

(2.5) 2B(u', v") + 2B(u", v") = H(u) + H(v).

Now we calculate the totally real bisectional curvatures of some manifolds.

Example 2.1 Let M,(c) be a complex space form of constant holomorphic

sectional curvature ¢ and [u, v] be a totally real plane section. Then

B(u, v) =¢(R(u, Ju)J v, v)
=fz{ o, v) (Ju, Tv) — o(u, Jv) (Ju, v) + o Ju, v)g(—u, Jv)
- f(Ju, Jv) g(—u,v) — 2¢(J u, Jv) (—u, v)}

TR
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Thus M,(c) is a space of complex space form of constant totally real bisectional

curvature i"':'

As a Kaehler manifold which is not of constant totally real bisectional curva-

ture, we introduce the following example

Example 2.2 Let @, be a complex quadric in P,4;(c) and [y, v] a totally real
plane section. Since Q, is represented as a Hermitian symmetric space of compact
type, its sectional curvature is non-negative(ct [8]). Thus by (2.2) we know that
the totally real bisectional curvature B(u, v) of @, is non-negative Now let us
estimate the upper bounds of B(u, v) of @,. For the action of G = SO(n + 2) on
Qn, the isotropy group H turns out to be SO(2)x SO(n), where SO(n) denotes the
group of special orthogonal nx n-matrices.

The canonical decomposition of the Lie algebra of the group G is

G=H+ M,
| 0 0 —%
where G =0O(n+2), H=0(2)+0(n), M={ 0 0 -*p }|& neR"}, and O(n)
§n O

denotes the Lie algebra of the special orthogonal group SO(n).

Identifying (&, 7)€ R® + R™ with the above matrix in M, we define an inner

product g on M x M by

aq(&m), (&, 7n") = 3—{< £E > +< 9,9 >},
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where < & &' > is the standard inner product in R". We also define a complex

structure J on M by
J( fa '7) = (“7], f)

The curvature tensor R at the origin is given by the following

0 -x O
R((&m), (§',n") = aa( A0 0), BeO(n),
o 0o B

where A =< £,n > — < &' >, B = HEAE + A}, and (EA €0 = H<

&> €= < &n> ¢'}. Thus for unit elements u = (§, 1), v = (£, 7n') in M, the

holomorphic bisectional curvature is given by

H(w,v) = o R(w, Ju)Tv,0) = (< ~Brf, €' > + < BE, 0" >} + £o(v, v)
(2.6)

c
<&E><nn'>-<4n><{n>}+ 5

OJ_‘CX)

And the holomorphic sectional curvature H(u) is given by

>Z
=2

N O

H(u) = o(R(w Jw)Twu) = 2(871°~ < &n>7) +

In fact, since the complex quadric Q,, is a Hermitian symmetric space of compact
type with rank 2, by K.Ogiue and R Takagi[9] the holomorphic sectional curvature
H(u) of Qy, is holomorphically pinched as $<H(u)<c |

Now we consider the totally real bisectional curvature of the complex quadric

Qn. Let [4,v] be a totally real plane section such that u = (¢, 7),v = (¢, 7'), and
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Jv = (—n',&'). Then u, v, Ju and Jv constitute orthonormal unit elements in M.

That is

A, v) = i—{< LE>+<nn' >} =0,

2 .
(wJv)= A< &-n">+<n ¢ >} =0
From these together with (2.6) the totally real bisectional curvature is given by

[

B(u,v)=—§{< £,£'>2+<£,n'>2}+2

From this, using the elementary method of Lagrange multiplier rule, it can be easily

seen that the totally real bisectional curvature B(u, v) is bounded as

3 1
—_—— < -
2c<B(‘u., v) 36

where the upper equality holds if and only if £ is orthogonal to ¢’ and %' in R™.
Accordingly, it follows that
1
0<B(u, v)< 5¢

for any totally real plane[u, v] of M, because we have already known that the totally

real bisectional curvature of the complex quadric @, is non- negative

3. Complete Kaehler manifolds with positive totally real bisectional

curvature.

Let M be an n-dimensional Kaehler manifold with the complex structure J. We

can choose a local field of orthonormal frames uy, ..., un, U1 = JUp, ..., Une = Jun,
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on a neighborhood on M. With respect to this frame field, let 64, ..., O, 61+, ..., One
be the field of dual frames.

Let us denote by 8 = (048, 04+, 948+, 04-B+), A, B = 1, ..., n the connection

form of M. Then we have
(3.1) 0sp = 04+B+, 048 = —04+8,048 = —0p4,and 6ap+ = Opa-.

Now we set e4 = {715'("4 —iuy), ez = ;};(uA +1ug4). Then {e4, e;} constitute

a local field of unitary frames. And let us denote by wq = 84 + 164+ and Wy =
04— 104+ its dual frame fields respectively. Then the components of Kaehler metric
g = 2Y pwa®w, and the r‘netric components of the Riemannian curvature tensor

are given by the following respectively

(3.2) gpc = 9BC + tgBC*)

(3.3) Raipcep = —{Kascp + Ka-sc*p + (—Kapc+p + Ka-Bcb)},

where R gcp = 9agRE gop- Thus for the case of A= B, C = D, B£C in (3.3),

the totally real bisectional curvature is given by
(3.9 Rppce = —Kp+pc-c = Kppec+c = B(us, uc).

For the case of A= B = C = D in (3.3), the holomorphic sectional curvature is

given by

(3.5) Rappp = « R(us, Jup)Jup, up) = H(up).
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Remark 3.1 From (1.8) and (3.4) we know that for any totally real plane
section [u, v] the totally real bisectional curvature B(u, v) of a complex space form

M, (c) is £ which is the same value as in Example 2.1.

On the other hand, S.L Goldberg and S. Kobayashi[5] showed that a Kaehler

manifold with positive holomorphic bisectional curvature and constant scalar cur-

vature is Einstein. It is well known that the Ricci 2-form is harmonic if and only

" if the scalar curvature is constant. In order to prove that the second Betti number

of a compact connected Kaehler manifold M with positive holomorphic bisectional
curvature H(X,Y) > 0 is one they have used the fact that H(X) > 0. Thus the
Ricci 2-form is propotional to the Kaehler 2-form, so that M becomes to an Ein-
stein manifold. But the condition B(X,Y) > 0 is weaker than the condition of
H(X,Y) > 0 we can not use H(X) > 0 to obtain the above result. From this point

of view by means of Theorem 1.1 we can obtain the following,

Theorem 3.1 Let M be a complete n-dimensional Kaehler manifold with
constant scalar curvature. Assume that the totally real bisectional curvature is

lower bounded for some positive constant b. Then M is Einstein

Proof Since (Sp¢) is a Hermitian matrix, it can be diagonalizable Thus
Spe = ABéBc, where Ap is a real valued function From this it follows that

r=2%pSpp = 2XpAp. Now we put S; = £ ¢SpcScp. Then it yields easily that

r? TAp)? 1
(3.6) So — e E/\zB - ( nB) 2-71-23,0(/\3 - z\c)z.
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Since we have assumed that the scalar curvature r of M is constant, from (1.5)
it follows XpSppc = pScgp = 0. Together with this fact using (1.5) and the
Ricci formula (1.7) we have that

ASpe = EpSpepp = EpSpesD

= XEg,D(RpepeSec — RpeecSpE):

from which, if we use the first Bianchi-identity (1.3) to the final term, we have

ASpe = 2e(SpeSec — EpoRpepcSpr) |

= ABSpc — LaraRaupe-

Thus we get

1 |
(3.7) AS; = 5{ V8% +Zp,cScp(ABSpe — ZaraRiape)

1
2

where | VS|2 = 255 ,5-545c. Since the second term of the right hand side is
reduced to

1 .
ZaB(AbRaapp ~ AarsRasns) = 5548(Aa— AB) Raass
we get the following inequality by (3.7)

(3.8) AS2>T(Aa— AB)*Raaps:

where the above equality holds if and only if the Ricci tensor S is parallel on M.



Now let us consider a non-negative function f = S;— :—:;— Then from (3.6),(3.8)

and the assumption it follows that

(3.9 Af22nbf,

where the above equality holds if and only if the Ricci tensor S is parallel on M.

In order to prove this theorem, we need the following lemma.

Lemma 3.2 U nderthe same assumpt ion as stated in T heorem 3.1 t he Ricc i
curvature is bounded from below.

Proof. From the assumption and (2.5) it follows that
H(u) + H(v)>4b.

Using (3.5) to the above equation for u = u4, v = up, A~B, then we can rewrite

thé above inequality as the following

Risaa+ Rpppp24.
If we put R4 = Rjz444, then
(3.10) Ra+ Rp=>4b (A£B).
Thus £ 4c (R4 + Rp)>2n(n— 1)b implies that
(3.11) ' L AR42>2nb,

where the equality holds if and only if R4 = 2b for any A.
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On the other hand, from the fact that

r=254541=2248Ra4p5 =2AXaRa+Za8Ra458)
>2Y sR4+ 2n(n—1)b

it follows
(3.12) T aR4< %— n(n—1)b,

where the equality holds if and only if R 4p5 = b for any A, B (A#£B). In this case
due to C.S.Houh [7] M is congruent to M,(2b). From (3.11) and (3.12) we know
that r>2n(n + 1)b. Thus from the assumption the scalar curvature r is positive

constant. Also (3.10) gives E}_,(R; + Rp)=>4(n— 1)b, so that
(3.13) (n—2)R, + ZBRBZ‘ll(n- 1)b.
From this and (3.12) it follows
(n—2)R;>4(n—1)b— TgRe>4(n—1)b— { %— n(n— 1)b}.
Thus if we use the similar method to the other index, we can assert the following
(n= 2)Rp>(n—1)(n+ 4)b— ;i

for any index B, so.-that Rp is bounded from below for n>3. Moreover the above
equality holds for some index B if and only if M is congruent to M,(2b). Accordingly

the Ricci-curvature is given by

A =S4i=2SBRispp = Ra+ZarBRjisps

2Ra+(n—1)b
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Thus the Ricci-curvature is also bounded from below. Now Lemma 3.2 is proved.

Now we will complete the proof of Theorem 3.1. For a constant a > 0, we
consider a smooth positive function F' = (f + d)"‘ ¥, Thus, from Lemma 3.2 we can

apply Theorem 1.1(H.Omori [10] and S.T. Yau [12]) to the function F = (f+ a)~ ¥

for the given f. Given any positive number € > 0, there exists a point psuch that
(3.15) |VEi(p<e AF(p>-—-¢ F(p<inf F+e
‘On the other hand, the Laplacian of the function F' can be calculated by

3

AF = Si{(f+a) P = SFSufifi— PO,

where fi and fi denote a%% and %e- respectively From this and (3.15), together

with the fact that
\ 1
|VF| =|grad F]z =25 Fi Fy = EFﬁzkacfk
it follows that

(3.16) (3¢ + 2F(p) > F(p)*AR P20

Thus for a convergent sequence {€,,} such that €, > 0 and e —0 as m—oo, thereis
a point sequence { pin} so that the sequence { F(pn)} satisfies (3.15) and converges
to Fy, by taking a subsequence, if nécmsa.ry, because the sequence {F(p,)} is
bounded. From the definition of the infimum and (3.15) we have Fy = infF and
hence f( pn)— fo = supf. It follows from (3.16) that we have

em{3em + 2F(pm)} > F(pn) AR pm)
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and the left hand side converges to 0 because the function F is bounded Thus we
get

F(pn)*AR pn)—0  (m—o0).

As is already éeen, the Ricci-curvature is bounded from below ie, so is any Ag.
Since r = 2XpAp is constant, Ag is bounded from above. Hence F = (f + a)” Fis
bounded from below by a positive constant. From (3.17) it follows that A f( p,)—0

as m—oo.” Since b> 0, by (3.9) we have that
A f( )2 55f(Pm) 20

Thus we have f(p,)—0=inf f. Since f(pn)—sup f, we have sup f = inf f=0.
Hence f = 0 on M. That is, M is Einstein. This completes the above proof of
Theorem 3.1.

Remark 3.2 The positive constant b > 0 in Theorem 3.1 is best possible.
Because there is a complete Kaehler manifold with non-negative totally real bisec-
tional curvature B(u, v)>0 but not Einstein as follows: Consider a product mani-

fold M = Py1(c1)x Paz(cz). Then from (3.8) we know that its totally real bisectional

curvature is given by

0 (A=aqa B = 3),
rsg = 222' (A=7',B=3)1

where indices A, B(A#£B),..;1,...,n,ny +1,...,n9, and @, b, ..;1,...,n4, 7, 8,..; g +

1, ceay N2.
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And its Ricci-tensor is given by the following
Sap =ZcRpacc = LaRpaaa + ZrRparr

0 (B=s, A=b),

'—‘Lzﬂcl&c (B=¢ A=),
2atleyb (B=3s, A=)

Thus for the case where (n; +1)c;A&(n2+1)c2, M = Pp(c1)x Ppa(cz) is not. Einstein.

Since a complete Kaehler manifold M with the assumption in Theorem 3.1 is
known to be Einstein and its scalar curvature r is positive constant, its Ricci-tensor
is positive definite Thus by using a theorem of Myers we can assert that M is
compact [8]. Now let us introduce a theorem of S.I. Goldberg and S. Kobayashi [5],

which is slight different from the original one. .

Theorem A. An n-dimensional compact connected Kaehler manifold with
an Einstein metric of totally real bisectional curvature is globally isometric to

Po(C) with Fub ini-Study met ric.

Though the original theorem in [5] are assumed with positive holomorphic
bisectional curvature, the above result in Theorem A also holds for the assumption
with positive totally real bisectional curvature Thus combining Theorem A and

Theorem 3.1 we can assert the following

Theorem 3.3 Let M be a complete n(>3)dimensional Kaehler manifold
with constant scalar curvature. Assume that the totally real bisectional curvature
is Jower bounded for some positive constant b. T hen M is globally isometric to

P,(C) with Fubini-Stud y metri.

— 30 —



1.

10.

11.

References

R Aiyama, H Nakagawa and Y.J. Sub, Semi-Kaehlerian submanifolds of an
indefinite complex space form, Kodai Math J.11(1988),325-343.

R L. Bishop and S.I Goldberg Some implications of the generalized Gauss-
Bonnet Theorem, Trans. A.M.S.,112(1964),508-535.

R.L. Bishop and S.I Goldberg, On the second cohomology group of a Kaehler
manifold of positive curvature, Proc. Amer. Math Soc. 16(1965),119 -122.
R.L. Bishop and S.L Goldberg, On the topology of positively curved Kaehler
manifolds I, Tohoku Math J.17(1965),310-318.

S.L Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Diff
Geometry 1(1967),33-43. |

A. Gray, Compact Kaehler manifolds with non-negative sectional curvature.
Invent. Math. 4(1977),33-43.

C.S. Houh, On totally real bisectional curvature, Proc. Amer. Math. Soc.
56(1976),261-263.

S. Kobayashi and K. Nomizu, Foundations of differential geometry II (1969)
Interscience Publ New York,1969.

K. Ogiue and R. Takagi, A geometric meaning of the rank of Hermitian sym-
metric space, Tsukuba, J. Math 5(1981),33-37.

H Omori, Isometric immersions of Riemannian manifolds J. Math Soc.
Japan, 19(1967),205-211.

J.A. Wolf Spaces of constant curvatures, MaGrew-Hill, New-York(1967)

— 31 —



12. S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm

Pure and Appl Math, 28(1975),201-228.

Department of Mathematics
Andong University

Andong, Kyungpook,
760-749, KOREA

‘Received September 10, 1993, Revised February 23, 1994

— 32 —



