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CERTAIN REAL HYPERSURFACES
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0. Introduction

We denote by M,(c) a complete and simply connected complex n-
dimensional Kahlerian manifold of constant holomorphic sectional cur-
vature 4¢, which is called a complez space form. Such an M,(c) is bi-
holomorphically isometric to a complex projective space P,C, a complex
Euclidean space C" or a complex hyperbolic space H,C, according as
c>0,c=0o0rc<0.

In this paper, we consider a real hypersurface M in M,(c). Typical
examples of M in P, C are the six model spaces of type A,, A2, B,C, D
and E (cf. Theorem A in §1), and the ones of M in H,C are the four
model spaces of type Ag, A1, A2 and B (cf. Theorem B in §1), which are
all given as orbits under certain Lie subgroups of the group consisting of
all isometries of P,C or H,C. Denote by (¢,£,n,g) the almost contact
metric structure of M induced from the almost complex structure of
My, (c), by A the shape operator and by S the Ricci tensor of M. Many
differential geometers have studied M from various points of view. For
example, Berndt [1] and Takagi [13] investigated the homogeneity of
M. Kimura [6] proved that if all principal curvatures of M in P,C are
constant and £ is principal vector of A, then M is congruent to one of
model spaces. Moreover, Yano and Kon [15] studied M in P,C satisfying
the condition A¢ + ¢A = k¢ for a constant k # 0 and Ki and Suh [3]
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investigated M in P,C satisfying the condition S¢ + ¢S = k¢ for a
constant k. Recently, Takagi and the author of the present paper [5]
studied M in M,(c), ¢ # 0 satisfying the condition that A%2¢ + ¢$A?,
AdA or A% + aApA + ¢A? is equal to k¢ for constants a and k.

In the present paper, we shall classify a real hypersurface M in M,(c)
satisfying the condition that S¢+ ¢S or S¢S is equal to k¢ for a constant
k.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces
of a complex space form. Let N be a unit normal vector field on a
neighborhood of a point p in M and J the almost complex structure of
M, (c). For a local vector field X on a neighborhood of p, the images of
X and N under the transformation J can be represented as

JX =¢X +9(X)N , JN =-¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle
TM of M, while n and £ denote a 1-form and a vector field on the
neighborhood of p , respectively. Moreover, it is seen that g(¢,X) =
n(X), where g denotes the induced Riemannian metric on M. By the
properties of the almost complex structure J, the set (¢, €,7, g) of tensors
satisfies

(1.1) B =—T+n®E , ¢6=0, n(¢X)=0 nE) =1,

where I denotes the identity transformation. Accordingly, this set (¢,
€, n, g) defines the almost contact metric structure on M. Furthermore,
the covariant derivatives of the structure tensors are given by

(1.2) (Vx@)Y =n(Y)AX — g(AX,Y ),

(1.3) Vxé =dAX,

where V is the Riemannian connection of g. Since the ambient space is
of constant holomorphic sectional curvature 4c, the equations of Gauss
and Codazzi are respectively given as follows :

(1.4) R(X,Y)Z =c{g(Y, 2)X — g(X, Z)Y + g9(¢Y, Z)¢pX
—9(¢X, Z)¢Y —29(¢X,Y)¢Z}
+9(AY, Z)AX — g(AX, Z)AY,
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(1.5) (VxAY —(VyA)X =c{n(X)eY — n(Y)¢X — 29(¢X,Y )L},

where R denotes the Riemannian curvature tensor of M. The Ricci
tensor S’ of M is the tensor of type (0,2) given by S'(X,Y) =tr{Z —
R(Z,X)Y}. But it may be also regarded as a tensor of type (1,1) and
denoted by S : TM — TM,; it satisfies S'(X,Y) = ¢(SX,Y). From the
Gauss equation and (1.1), the Ricci tensor S is given by

(1.6) S=c{(2n+1)I-37® €} + hA — A%,

where h is the trace of A. A real hypersurface M of My(c) is said to be
pseudo- Einstein if the Ricci tensor S satisfies

SX =aX + bn(X)¢
for some smooth functions a and b on M.

Now we quote the following in order to prove our results.

Theorem A ([13]). Let M be a homogeneous real hypersurface of P,C.
Then M is a tube of radius r over one of the following Kahler submani-
folds: '

LS
2 ?
(A2) a totally geodesic PrC (1 <k <n—2), where 0 <r <

(A1) a hyperplane P,_,C, where 0 <r <
™
2 b

: s
(B) a complez quadratic Qn—1, where 0 < r < 1

C) P,C x P_1)/2C, where 0 <r < T andn > 5) is odd,
(n=1)/ 1

(D) a complez Grassmann G2 5C, where 0 <r < Z— and n =9,
(E) @ Hermitian symmetric space SO(10)/U(5),

where 0 < r < z and n = 15.
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Theorem B ([1]). Let M be a real hypersurface of H,C. Then M has

constant principal curvatures and € is principal if and only if M is locally
congruent to one of the following:

(Ao) a horosphere in H, C,

(A1) a geodesic hypersphere HoC or a tube over a hyperplane H,_,C,
(A2) a tube over a totally geodesic HyC (1 <k <n —2), |

(B) @ tube over a totally real hyperbolic space H,R.

Theorem C ([10], [11]). Let M be a real hypersurface of Mp(c). Then
M satisfies Ap = @A if and only if M is locally congruent to one of type
A; and A, when ¢ > 0, and of type Ay, A, and Ay when c < 0.

Theorem D ([2], [7], [10]). Let M be a real hypersurface of My,(c)

whose Ricci tensor is pseudo-Einstein. Then M is locally congruent to
one of type Ay, A; and B when ¢ > 0, and of type Ay and A, when
c<O0.

Proposition A ([3], [9]). Let M be a real hypersurface of M,(c), c # 0.
If € is principal, then the corresponding principal curvature a is locally
constant.

Here we consider the case where the structure vector ¢ is principal,
namely, A{ = af. It follows from (1.5) that

(1.7) 2A¢90A = 2cd + a(Ad + ¢A)

and hence, if AX = AX for any vector field X orthogonal to £, then we
get

(1.8) (2X — a)AdX = (o) + 2¢)$X.

Accordingly, it turns out that in the case where a® + ¢ # 0, ¢X is also
principal vector with principal curvature y = (aX + 2¢)/(2X — a), that
1s, we obtain

(1.9) A$X = pgX,
2 —a#0, p=(ar+2c)/(2\ — a).
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2. Real hypersurfaces satisfying S¢ + ¢S = k¢

We denote by M,(c) a complex space form with the metric of con-
stant holomorphic sectional curvature 4c and M a real hypersurface in
M,(c),c # 0. In this section, we are concerned with M satisfying the
following condition:

(2.1) S+ ¢S =ki¢ (k1 = constant).
From (1.6) we obtain the condition (2.1) is equivalent to
(2.2) A2¢ + pA® — h(Ad + ¢A) = k¢, k=2c(2n+1) — k;.

Then we first prove the following.

Lemma 2.1. Let M be a real hypersurface in Myp(c), ¢ # 0. If it
satiesfies S¢ + ¢S = k¢ for a function k and A i3 principal such that
n(A3¢) £ trA, then £ is principal.

Proof. The condition (2.2) yields ¢A%£ — h¢p Af = 0. From our assump-
tion there is the function A = n(A3%¢) on M such that A2¢ = AA{. Then
we have (A — h)A£ € ker ¢, that is, (A — h) A€ = u€ for a function u on
M. Since X # h, we see that € is principal. O

Remark 1. In general, “€ is principal” implies “A£ is principal”.
But the converse is not true.

Remark 2. Let M be a real hypersurface in My(c), c # 0. f M
satisfies the condition A2™~1¢ + ¢A?2™"! = k¢ for 1 < m < n, then
we can easily verify the fact that £ is principal. In fact, let Ay,..., Aq
are the distinct principal curvatures. Then, since ¢ A?2™~ 1€ = 0, we get
€ € V), for some 7 (1 < < d) and hence we obtain € is principal.

However, if M satisfies the condition A?™¢ + ¢A?™ = k¢ for 1 <
m < n, then we have ¢A?™¢ = 0, which means £ € V), @ V_,, for some
t (1 <t <d).

Remark 3. Yano and Kon [15] in P,C and Suh [12] in H, C showed

that M satisfying the condition A¢ + ¢A = k¢ for a constant k # 0 is
locally congruent to one of type A; and B, and of type Ag, A1 and B,
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respectively. Recently, Takagi and the author of the present paper (5]
proved that M in M,(c), c # 0 satisfying the following two conditions:
(i) APA, A2¢ + ¢A? or A%¢ + aAPA + $A? is equal to k¢ for constants
a and k and (ii) £ is principal is locally congruent to one of type A;, Az
with r = /4 and B when ¢ > 0, and of type A, A; and B when ¢ <0.

Now we need the following.

Lemma 2.2([3]). Let M be a connected complete real hypersurface in
P,C and assume that £ is principal. If it satisfies (2.1), then M is locally
congruent to type A,, type B or some hypersurface of type A,.

According to Lemmas 2.1 and 2.2 the following is immediate.

Theorem 2.3. Let M be a real hypersurface in P,C. Assume that A
is principal such that n(A3€) # trA. Then it satisties S¢ + ¢S = k¢ for
a constant k if and only if M is locally congruent to type A,, type B or
some hypersurface of type A,.

For a real hypersurface of H,C we have the following.

Theorem 2.4. Let M be a real hypersurface in H,C. Assume that A€
is principal such that n(A3€) # trA. Then it satisties S¢ + ¢S = k¢ for
a constant k if and only if M is locally congruent to one of the following:

(Ao) @ horosphere in H,C,
(A1) a geodesic hypersphere HoC or a tube over a hyperplane H,_,C,
(B) a tube over a totally real hyperbolic space H,R.

Proof. We may set ¢ = —1. Owing to (1.9) and Lemma 2.1, our condition
(2.2) reduces

(2.3) A2 4 p2)—h(A+p) =k, k=—-22n+1)— ki,

where AX = AX and A¢X = uéX for any vector field X orthogonal
to ¢£. From Proposition A and Lemma 2.1 we can consider the following

two cases: (I) o> —4 # 0 and (II) o* —4 = 0.
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Case (I): Since 2A—a # 0, we see from (1.9) that ¢X is also a principal

(unit) vector orthogonal to £ with the corresponding principal curvature
t = (aX —2)/(2\ — a). Then (2.3) gives us

(2.4) 42t — 4(a + h)A3 + 2(a? + ha — 2k)\?
+4(h —a+ ka)\ +4 — 2ha — ka® = 0.

This, together with our assumption and Proposition A, tells us that M
has at most five distinct constant principal curvatures. Thus according to
Theorem B, M is a homogeneous one. Then taking account of Berndt’s
classification theorem [1], we obtain that M is congruent to one of type
Ag, A1, Ay and B. Thus we must check whether or not these four model
spaces satisfy the condition (2.2) one by one. Since a? # 4, it is enough
to check (2.2) for the type A,, A; and B.

First of all, let M be the type B. Then from the table in [1], we get
o = 2tanh(2r), A = tanh(r) and p = coth(r), which implies

4
/\+“=E and Apy =1.

Combining this with (2.3), we find k = (4/a)? — h(4/a) — 2. If we
substitute this into (2.4), then we have

40®)* — (4a® + 40®R))N® 4 2(a* + o h + 4a® + 8ah — 32)\?
—4(3a® + 3a®h — 16a)) + 20 + 20°h — 12a% = 0.

Then this equation can be decomposed into
(@A? —4) + a)(2a)? — 2(a® + ah — )X + o® + a’h — 6a) = 0.

Since the roots tanh(r) and coth(r) of the type B satisfy the quadratic
equation al? — 4\ + o = 0, we see that the type B satisfies (2.2).

Next, let M be one of type A; and A;. Then owing to Theorem C,
our condition (2.2) is eqivalent to

v
.

(2.5) A%¢p — hAg = §¢, k=—-2(2n+1) — k.

-
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If M 1s the type A,, then M has three distinct constant principal cur-
vatures o = 2coth(2r), A = tanh(r) and g = coth(r), where 0 < A < 1.
Thus we have

coth®(r) — tanh?(r) — h(coth(r) — tanh(r)) =0,

which implies tanh(r) + coth(r) = h because of tanh(r) # coth(r), that
is, @ = h. Substituting this into (2.5) we get ¥ = —2 and hence we
have k; = —4n. Then (2.1) implies S¢ + ¢S = —4n¢é. Combining
this with (1.6) and Theorem C, it follows S¢ = ¢S = —2n¢. Then
S = —-2nl + bn ® £ for some function b on M. Thus we obtain the type
A, satisfying (2.1) is pseudo-Einstein. But it is contrary to Theorem
D. Therefore the type A, can not occur. If M is the type A;, then
M has two distinct constant principal curvatures a = 2coth(2r) and
A = tanh(r) if 0 < A < 1 or A = coth(r) if A > 1. Thus (2.5) yields
k = —2(142(n—1)tanh?(r)) or ¥ = —2(1+2(n—1) coth?(r)). Therefore
for such constant k the type A; satisfies (2.5).

Case (II): First, we consider the subcase where « = 2. Then (1.8)
gives forth to

(A—1)A¢X = (A —1)¢X.

Let us take an open set My = {z € M|A(z) # 1}. Then A¢X = ¢X
on My, which implies 4 = 1 on M,. Combining this with (2.3), we get
A2 — hA+ (1 — h — k) = 0 on Mp, which means )\ is constant on Mp.
On the other hand, we have A = 1 on M — M,. Thus, the continuity
of principal curvatures yields the fact that if the set M — Mj is not
empty, then A =1 on M. Hence M is the type Ayp. For the case where
My coincides with the whole M, we find 2\ — a # 0 and this case was
discussed in the Case (I).

Conversely, let M be the type Ag. Then M has two distinct constant
principal curvatures & = 2 and A = 1. Substituting these into (2.5), we
get k¥ = 2(1 — h) = 2(1 — 2n). Thus for such constant k, the type Ao
satisfies (2.5), namely, (2.2).

Next, let @« = —2. Then, by the same method as the above we have
M is the type Ap. O

According to lemma 2.1 and Theorem 2.4 the following is immediate.
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Theorem 2.5. Let M be a real hypersurface in H,C. Assume that € is
principal. Then it satisties S¢ + ¢S = k¢ for a constant k if and only if
M is locally congruent to one of the following:

(Ao) a horosphere in H,,C,
(A1) a geodesic hypersphere HyC or a tube over a hyperplane H,_;C,
(B) @ tube over a totally real hyperbolic space H,R.

3. Real hypersurfaces satisfying S¢S = k¢

Let M be a real hypersurface in a complex space form M,(c),c # 0.
In this section, we will consider M satisfying the following condition:

(3.1) S¢S = k14 (k; = constant).
From (1.6) it follows that the condition (3.1) is equivalent to

(3.2) c(2n+ 1)h(Ad + ¢A) — c(2n + 1)(A%¢ + ¢A?)
+h?APA—h(A%PA + APA®) + A%PA% = k¢,
k=ky —c2(2n+1)2.

Then we first have the following.

Theorem 3.1. Let M be a real hypersurface in P,C, n > 3. Then it
satisties SPS = k¢ for a constant k and £ is principal if and only if M
18 locally congruent to one of the following:

(A1) a tube of radius r over a hyperplane P,_,C, where 0 < r < g—,

(B) a tube of radius r over a complez quadratic Q,_,,

where 0 < r < Z—

Proof. Assume that ¢ is principal. Let X be a principal (unit) vector
orthogonal to ¢ with the corresponding principal curvature A. Then
we see from (1.9) that ¢X is also a principal curvature (unit) vector
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orthogonal to ¢ with the corresponding principal curvature u = (aX +
2)/(2)\ — a), where we have set ¢ = 1. Thus our condition (3.2) means

(3.3)
A2u? — (2n + 1A% + u?) — BAu(A + p) + h(2n + 1)(A + )
+ R Ap =k, k=k —(2n+1)>.

Then we get

3.4
&4 (a? — 2ah — 8n — 4)A* + 2(4a + ah? + 4an + 4hn)X®
— (&*(2 + h? + 4n) + 4ah(1 +n) + 4(k — h? — 1))A?
+ 2(a(2k — h? — 4n — 2) + 4hn)A
— o’k —2ah(2n+1)—8n—-4=0.

Owing to Proposition A , (3.4) tells us that M has at most five distinct
constant principal curvatures. Thus, accorrding to a theorem due to
Kimura [6] M is homogeneous one. By virtue of the classification theo-
rem in [13], M is one of type A1, A2, B,C,D and E. Hence, in order to
prove our theorem we must check the condition (3.2) one by one for the

above six model spaces.
First, let M be one of type C, D and E. Then from the table in [13],

it follows that 4
/\+p=-—;- and Ay = —1,

where A = cot(r — w/4), p = —tan(r — 7/4) (resp. A = cotr, p =
—tanr) and a = 2 cot 2r. Thus taking account of this and (3.3) we find
k= —(2n + 1)h(4/a) — (2n + 1)(2a* + 16)/a® — h? — h(4/a) + 1. The

substitution of this into (3.4) gives rise to
(3.5)
(ot — 203 h — 8a’n — 4a®)A* 4 2(a®(h? +4n + 4)X°
+ 4a?hn)A3 — (a*(h? + 4n + 2) + 4a®h(n + 1)
— 8a?(h? +2n + 1) — 32ah(n + 1) — 128n — 64))°
— (2a%(3h% + 12n + 4) + 80*h(3n + 4) + 64a(2n + 1))A
+ o*(h? + 4n + 1) + 2a°h(2n + 3) + 120*(2n + 1) = 0.
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Then (3.5) can be decomposed into

(3.6)
(aX? +4X — a)((a® — 2a2h — 40 — Ban) A2
+ (2a%(h* 4+ 4n + 2) + 8ah(n + 1) + 32n + 16)A
—a®(4n + h? + 1) — 2a%h(2n + 3) — 120(2n + 1)) = 0.

Since cot(r — 7/4) and — tan(r —n /4) satisfy the quadratic equation
aA? +4) — a = 0, another roots cot 7 and — tanr of the types C, D and
E must satisfy '

((® —20%h — 4o — 8an)A? + (2a%(h? 4 4n + 2) + 8ah(n + 1) + 32n
+ 16)A — a®(4n + k% + 1) — 2a%h(2n + 3) — 12a(2n + 1) = 0.
However, since cot r and — tanr are the roots of the quadratic equation
A% — aX — 1 =0, comparing these two quadratic equations, we have
a® —2ha’ - 4(2n+1)a—-1=0,
2(h? + 4n + 2)a? + (8h(n + 1) + 1)a + 16(2n + 1) = 0,
(4n + h? +1)a® + 2h(2n + 3)a? +12(2n + 1)a — 1 = 0.

Taking account of & and h of these types C, D and E, we have a contra-
diction. Hence the type C, D and E can not occur.

Next, let M be the type B. From the table in [13], we see that
A+p=—4/a and A = —1, where A = cot(r —n/4), u = — tan(r — v /4)
and o = 2cot2r. Then taking account of (3.6) we see that the type B
satisfies the condition (3.2).

Last, let M be one of type A; and A;. Then owing to Theorem C ,
(3.2) equals to

(3.7) M —2hA34(h? —2(2n + 1))A2 +2(2n + 1)RA =k,
k=k —(2n+1)%

If M is the type Az, then M has three distinct principal curvatures
a =2cot2r, A = —tanr and p = cot r. Thus we have

2h(2n + 1)(cot r + tan r) 4+ (k% — 2(2n + 1))(cot? r

— tan®r) — 2h(cot® r + tan®r) + cot* r — tan* r = 0,
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which yields

(h — cot r + tanr)(cot r + tan r)(cot2 r
+ tan?r — h(cotr —tanr) —4n —2) =0.

Then we get a = h or a® —ah—4n = 0 because of cot r+tanr # 0. First,
let a = h. Substituting this into (3.7) we get k = —2(2n + 1) and hence
we have k; = 4n?2 — 1. Then (3.1) implies S¢S = (4n? —1)¢. Combining
this with (1.6) and Theorem C, it follows S¢ = ¢S = +v4n? — 1¢. Then
S = +v4n? — 11+ bn@¢ for some function b on M, that is, M is pseudo-
Einstein. But, owing to well-known theorem (cf. (2], [7], [15]) of pseudo-
Einstein real hypersurfaces in P,C, we see that this is not the case. Next,
let a? — ha — 4n = 0. Then we get a(a — h) = 4n. Since M is type Aa,
we have h = a +2(p— 1) cot r — 2(¢ — 1) tanr. Substituting this into the
above equation, we obtain (p—1) cot? r+(g—1) tan’r = —2(n+1)+p+gq.
This implies p+ ¢ > 2(n + 1) and hence it is contrary to the fact that
4 < p+ q < n+ 1. Therefore this is not the case, too. Therefore, the
type A, does not occur.

If M is the type A;, then M has two distinct principal curvatures
a = 2cot 2r and A = cotr. Thus from (3.7) it follows that for constant k
such that k = cot4 r —2h cot3 r+(h? —2(2n+1)) cot? r +2(2n+1)h cot r,
the type A, satisfies (3.2). O

For a real hypersurface of H,C we have the following.

Theorem 3.2. Let M be a real hypersurface in H,C, n > 2. Then it
satisties S¢S = k¢ for a constant k and £ is principal if and only sf M
is locally congruent to one of the following:

(Ao) a horosphere in H,C,
(A,) a geodesic hypersphere HoC or a tube over a hyperplane H,_,C,
(B) a tube over a totally real hyperbolic space H,R.

Proof. Assume that ¢ is principal. Let X be a principal (unit) vector
orthogonal to £ with the corresponding principal curvature A. From
Proposition A and (1.9) we can consider the following two cases: (D)

a? —4#0and (II) o? -4 =0. |
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Case (I): Since 2\ —a # 0, we see from (1.9) that ¢.X is also a principal
(unit) vector orthogonal to £ with the corresponding principal curvature

A = (aX — 2)/(2) — «), where we have set ¢ = —1. Thus our condition
(3.2) means
(3.8)

A2p? + (2n + 1)(A% + 42) — RAp(A +p) — h(2n + 1)(A + 1)
+Ru=k, k=k —(2n+1)>2
Then we get

(3.9)

(a? —2ah + 8n + 4)A\* + 2(ah® — 4a —4on — 4hn)\®

+ (a%(2 — h? + 4n) + 4ah(l + n) — 4(k + A% — 1))A?

+ 2(a(2k + h? — 4n — 2) + 4hn)A

— o’k —2ah(2n+1)+8n+4 =0.
Owing to Proposition A , (3.9) tells us that M has at most five distinct
constant principal curvatures. Thus, accorrding to a theorem due to
Berndt [1] M is homogeneous one, that is, M is congruent to one of type
Ao, Ay, A3 and B. Thus by the same argument as the above theorem we
must check the condition (3.2) one by one for these four model spaces.
Since a? # 4, it is.enough to check (3.2) for the type A;, A2 and B.

First of all, let M be the type B. Then from the table in [1], we get
o = 2tanh(2r), A = tanh(r) and p = coth(r), which implies

)\+/,¢=% and A\g = 1.

Combining this with (3.8), we obtain k = —(2n+1)h(4/a)+(2n+1)(16—
2a?)/o? + h? — h(4/a) + 1. The substitution of this into (3.9) gives rise
to

(3.10) |
(a* —2a%h + 8a’n + 4a?)A* + 2(a®(h* —4n — 4)
— 4a?hn)X% + (a*(4n — B2 4+ 2) + 40 h(n + 1)
+ 8a?(2n + 1 — h?) + 32ah(n + 1) — 64(2n + 1))A?
+ (203(3h% — 12n — 4) — 8a*h(3n +4) + 64a(2n + 1))A
+a*(dn +1— h?) +2a°h(2n +3) — 12a%(2n + 1) = 0.
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Then (3.10) can be decomposed into

(aA? — 4)\ + a)((a® — 202 h + 4a(2n + 1)))?
+ (2a?(h? — 4n — 2) — 8ah(n + 1) + 32n + 16)A
+ o®(n + 1 — h?) + 20*h(2n + 3) — 12a(2n + 1)) = 0.

Since the roots tanh(r) and coth(r) of the type B satisfy the quadratic
equation al? — 4\ + a = 0, we see that the type B satisfies (3.2).

Next, let M be one of type A; and A;. Then owing to Theorem C
(3.8) is equivalent to

(3.11)
At — 2R3 4(R? +2(2n +1))A%? — 2(2n + 1)RA =k,

k= kl -—(2n+1)2.

If M is the type A,, then M has three distinct constant principal cur-
vatures a = 2coth(2r), A = tanh(r) and u = coth(r), where 0 < A < 1.
Thus by means of (3.11) we have

tanh*(r) — coth®(r) — 2h(tanh®(r) — coth®(r)) + (A% + 2(2n + 1))
(tanh?(r) — coth?(r)) — 2(2n + 1)h(tanh(r) — coth(r)) =0,

which yields

(h — coth(r) — tanh(r))(tanh(r) — coth(r))(coth?(r)
+ tanh?(r) — h(coth(r) + tanh(r)) + 4n +2) = 0.

Then we get a = h or a?>— ha+4n = 0 because of coth(r)—tanh(r) # 0.
First, let & = h. Substituting this into (3.11) we get k£ = 2(2n + 1) and
hence we have k; = (2n + 1)(2n + 3). Then (3.1) implies S¢S = (2n +
1)(2n + 3)¢. Combining this with (1.6) and Theorem C, it follows S¢ =
¢S = £1/(2n +1)(2n +3)¢. Then S = £/(2n +1)(2n +3)[ + bn®
for some function b on M, that is, M is pseudo-Einstein. However,
owing to Theorem D, we see that this is not the case. Next, let a’ —
ha + 4n = 0. Then we get a(a — h) = —4n. Since we may say a # h,
we have a = 4n/(h — a). On the other hand, type A; satisfies the
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quadratic equation aA? — 4\ + o = 0. Combining these two equations
we get tanh’(r) = {p — (n + 1)}/{(n + 1) — ¢} or coth®(r) = {g — (n +
1)}/{(n 4+ 1) — p}. This is contrary to the fact that 4 < p+¢ <n+ 1.
Therefore this is not the case, too. Consequently, the type A, can not
occur. If M is the type Ay, then M has two distinct constant principal
curvatures o = 2 coth(2r) and A = tanh(r) if 0 < A < 1 or A = coth(r)
if A > 1. Then from (3.11), it follows that for constant k such that k =
tanh*(r) — 2h tanh®(r) + (A% + 2(2n +1)) tanh?(r) — 2(2n 4 1) h tanh(r) or
k = coth*(r)—2h coth®(r)+ (A2 +2(2n+1)) coth?(r)—2(2n+1)A coth(r),
the type A; satisfies (3.8).

Case (II): First, we consider the subcase where & = 2. Then (1.8)
gives forth to

(A=1)A¢X = (A —1)¢X.

Let us take an open set My = {z € M|\(z) # 1}. Then A¢X =
#X on Mj, which implies 4 = 1. Combining this with (3.8), we get
(2(n+1)—h)A2 + (A2 —2h(n+ 1)A+(2n+1)(1 — h) — k =0 on M,,
which means ) is constant on M. On the other hand, we have A =1
on M — M,. Thus, the continuity of principal curvatures yields the fact
that if the set M — M, is not empty, then A =1 on M. Hence M is the
type Ag. For the case where M, coincides with the whole M, we find
2\ — a # 0 and this case was discussed in the Case (I).

Conversely, let M be the type Ag. Then M has two distinct constant
principal curvatures o = 2 and A = 1. Substituting these into (3.11),
we obtain k£ = h%2 — 4(n + 1)h + 4n + 3 = 3 — 4n — 4n%. Thus for such
constant k the type Ay satisfies (3.11), namely, (3.2).

Next, let @« = —2. Then, by the same method as the above we have
M is the type 4. O
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