CERTAIN REAL HYPERSURFACES OF A COMPLEX SPACE FORM II

HYANG SOOK KIM YONG SOO PHO

0. Introduction

We denote by $M_n(c)$ a complete and simply connected complex n-dimensional Kählerian manifold of constant holomorphic sectional curvature 4c, which is called a *complex space form*. Such an $M_n(c)$ is biholomorphically isometric to a complex projective space $P_n\mathbb{C}$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n\mathbb{C}$, according as c > 0, c = 0 or c < 0.

In this paper, we consider a real hypersurface M in $M_n(c)$. Typical examples of M in $P_n\mathbb{C}$ are the six model spaces of type A_1, A_2, B, C, D and E (cf. Theorem A in §1), and the ones of M in $H_n\mathbb{C}$ are the four model spaces of type A_0, A_1, A_2 and B (cf. Theorem B in §1), which are all given as orbits under certain Lie subgroups of the group consisting of all isometries of $P_n\mathbb{C}$ or $H_n\mathbb{C}$. Denote by (ϕ, ξ, η, g) the almost contact metric structure of M induced from the almost complex structure of $M_n(c)$, by A the shape operator and by S the Ricci tensor of M. Many differential geometers have studied M from various points of view. For example, Berndt [1] and Takagi [13] investigated the homogeneity of M. Kimura [6] proved that if all principal curvatures of M in $P_n\mathbb{C}$ are constant and ξ is principal vector of A, then M is congruent to one of model spaces. Moreover, Yano and Kon [15] studied M in $P_n\mathbb{C}$ satisfying the condition $A\phi + \phi A = k\phi$ for a constant $k \neq 0$ and Ki and Suh [3]

Key words and phrases. complex space form, shape operator, principal structure vector, Ricci tensor.

This paper was partially supported by YAKSOO Research Foundation

investigated M in $P_n\mathbb{C}$ satisfying the condition $S\phi + \phi S = k\phi$ for a constant k. Recently, Takagi and the author of the present paper [5] studied M in $M_n(c)$, $c \neq 0$ satisfying the condition that $A^2\phi + \phi A^2$, $A\phi A$ or $A^2\phi + aA\phi A + \phi A^2$ is equal to $k\phi$ for constants a and k.

In the present paper, we shall classify a real hypersurface M in $M_n(c)$ satisfying the condition that $S\phi + \phi S$ or $S\phi S$ is equal to $k\phi$ for a constant k.

1. Preliminaries

We begin with recalling the basic properties of real hypersurfaces of a complex space form. Let N be a unit normal vector field on a neighborhood of a point p in M and J the almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood of p, the images of X and N under the transformation J can be represented as

$$JX = \phi X + \eta(X)N$$
, $JN = -\xi$,

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on the neighborhood of p, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on M. By the properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

(1.1)
$$\phi^2 = -I + \eta \otimes \xi$$
, $\phi \xi = 0$, $\eta(\phi X) = 0$ $\eta(\xi) = 1$,

where I denotes the identity transformation. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore, the covariant derivatives of the structure tensors are given by

$$(1.2) \qquad (\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi,$$

$$(1.3) \nabla_X \xi = \phi A X,$$

where ∇ is the Riemannian connection of g. Since the ambient space is of constant holomorphic sectional curvature 4c, the equations of Gauss and Codazzi are respectively given as follows:

(1.4)
$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY,$$

$$(1.5) \quad (\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\},\$$

where R denotes the Riemannian curvature tensor of M. The Ricci tensor S' of M is the tensor of type (0,2) given by $S'(X,Y) = tr\{Z \to R(Z,X)Y\}$. But it may be also regarded as a tensor of type (1,1) and denoted by $S:TM \to TM$; it satisfies S'(X,Y) = g(SX,Y). From the Gauss equation and (1.1), the Ricci tensor S is given by

(1.6)
$$S = c\{(2n+1)I - 3\eta \otimes \xi\} + hA - A^2,$$

where h is the trace of A. A real hypersurface M of $M_n(c)$ is said to be pseudo-Einstein if the Ricci tensor S satisfies

$$SX = aX + b\eta(X)\xi$$

for some smooth functions a and b on M.

Now we quote the following in order to prove our results.

Theorem A ([13]). Let M be a homogeneous real hypersurface of $P_n\mathbb{C}$. Then M is a tube of radius r over one of the following Kähler submanifolds:

- (A₁) a hyperplane $P_{n-1}\mathbb{C}$, where $0 < r < \frac{\pi}{2}$,
- (A₂) a totally geodesic $P_k\mathbb{C}$ $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$,
- (B) a complex quadratic Q_{n-1} , where $0 < r < \frac{\pi}{4}$,
- (C) $P_1\mathbb{C} \times P_{(n-1)/2}\mathbb{C}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 5$ is odd,
- (D) a complex Grassmann $G_{2,5}\mathbb{C}$, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) a Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15.

Theorem B ([1]). Let M be a real hypersurface of $H_n\mathbb{C}$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:

- (A_0) a horosphere in $H_n\mathbb{C}$,
- (A₁) a geodesic hypersphere $H_0\mathbb{C}$ or a tube over a hyperplane $H_{n-1}\mathbb{C}$,
- (A₂) a tube over a totally geodesic $H_k\mathbb{C}$ $(1 \le k \le n-2)$,
- (B) a tube over a totally real hyperbolic space $H_n\mathbb{R}$.

Theorem C ([10], [11]). Let M be a real hypersurface of $M_n(c)$. Then M satisfies $A\phi = \phi A$ if and only if M is locally congruent to one of type A_1 and A_2 when c > 0, and of type A_0 , A_1 and A_2 when c < 0.

Theorem D ([2], [7], [10]). Let M be a real hypersurface of $M_n(c)$ whose Ricci tensor is pseudo-Einstein. Then M is locally congruent to one of type A_1, A_2 and B when c > 0, and of type A_0 and A_1 when c < 0.

Proposition A ([3], [9]). Let M be a real hypersurface of $M_n(c)$, $c \neq 0$. If ξ is principal, then the corresponding principal curvature α is locally constant.

Here we consider the case where the structure vector ξ is principal, namely, $A\xi = \alpha \xi$. It follows from (1.5) that

$$(1.7) 2A\phi A = 2c\phi + \alpha(A\phi + \phi A)$$

and hence, if $AX = \lambda X$ for any vector field X orthogonal to ξ , then we get

(1.8)
$$(2\lambda - \alpha)A\phi X = (\alpha\lambda + 2c)\phi X.$$

Accordingly, it turns out that in the case where $\alpha^2 + c \neq 0$, ϕX is also principal vector with principal curvature $\mu = (\alpha \lambda + 2c)/(2\lambda - \alpha)$, that is, we obtain

(1.9)
$$A\phi X = \mu \phi X,$$
$$2\lambda - \alpha \neq 0, \quad \mu = (\alpha \lambda + 2c)/(2\lambda - \alpha).$$

2. Real hypersurfaces satisfying $S\phi + \phi S = k\phi$

We denote by $M_n(c)$ a complex space form with the metric of constant holomorphic sectional curvature 4c and M a real hypersurface in $M_n(c), c \neq 0$. In this section, we are concerned with M satisfying the following condition:

(2.1)
$$S\phi + \phi S = k_1 \phi \quad (k_1 = constant).$$

From (1.6) we obtain the condition (2.1) is equivalent to

(2.2)
$$A^{2}\phi + \phi A^{2} - h(A\phi + \phi A) = k\phi, \quad k = 2c(2n+1) - k_{1}.$$

Then we first prove the following.

Lemma 2.1. Let M be a real hypersurface in $M_n(c)$, $c \neq 0$. If it satisfies $S\phi + \phi S = k\phi$ for a function k and $A\xi$ is principal such that $\eta(A^3\xi) \neq tr A$, then ξ is principal.

Proof. The condition (2.2) yields $\phi A^2 \xi - h \phi A \xi = 0$. From our assumption there is the function $\lambda = \eta(A^3 \xi)$ on M such that $A^2 \xi = \lambda A \xi$. Then we have $(\lambda - h)A\xi \in \ker \phi$, that is, $(\lambda - h)A\xi = \mu \xi$ for a function μ on M. Since $\lambda \neq h$, we see that ξ is principal. \square

Remark 1. In general, " ξ is principal" implies " $A\xi$ is principal". But the converse is not true.

Remark 2. Let M be a real hypersurface in $M_n(c)$, $c \neq 0$. If M satisfies the condition $A^{2m-1}\phi + \phi A^{2m-1} = k\phi$ for $1 \leq m \leq n$, then we can easily verify the fact that ξ is principal. In fact, let $\lambda_1, \ldots, \lambda_d$ are the distinct principal curvatures. Then, since $\phi A^{2m-1}\xi = 0$, we get $\xi \in V_{\lambda_i}$ for some i $(1 \leq i \leq d)$ and hence we obtain ξ is principal.

However, if M satisfies the condition $A^{2m}\phi + \phi A^{2m} = k\phi$ for $1 \le m \le n$, then we have $\phi A^{2m}\xi = 0$, which means $\xi \in V_{\lambda_i} \oplus V_{-\lambda_i}$ for some $i \ (1 \le i \le d)$.

Remark 3. Yano and Kon [15] in $P_n\mathbb{C}$ and Suh [12] in $H_n\mathbb{C}$ showed that M satisfying the condition $A\phi + \phi A = k\phi$ for a constant $k \neq 0$ is locally congruent to one of type A_1 and B, and of type A_0 , A_1 and B,

respectively. Recently, Takagi and the author of the present paper [5] proved that M in $M_n(c)$, $c \neq 0$ satisfying the following two conditions: (i) $A\phi A$, $A^2\phi + \phi A^2$ or $A^2\phi + aA\phi A + \phi A^2$ is equal to $k\phi$ for constants a and k and (ii) ξ is principal is locally congruent to one of type A_1, A_2 with $r = \pi/4$ and B when c > 0, and of type A_0, A_1 and B when c < 0.

Now we need the following.

Lemma 2.2([3]). Let M be a connected complete real hypersurface in $P_n\mathbb{C}$ and assume that ξ is principal. If it satisfies (2.1), then M is locally congruent to type A_1 , type B or some hypersurface of type A_2 .

According to Lemmas 2.1 and 2.2 the following is immediate.

Theorem 2.3. Let M be a real hypersurface in $P_n\mathbb{C}$. Assume that $A\xi$ is principal such that $\eta(A^3\xi) \neq trA$. Then it satisfies $S\phi + \phi S = k\phi$ for a constant k if and only if M is locally congruent to type A_1 , type B or some hypersurface of type A_2 .

For a real hypersurface of $H_n\mathbb{C}$ we have the following.

Theorem 2.4. Let M be a real hypersurface in $H_n\mathbb{C}$. Assume that $A\xi$ is principal such that $\eta(A^3\xi) \neq trA$. Then it satisfies $S\phi + \phi S = k\phi$ for a constant k if and only if M is locally congruent to one of the following:

- (A_0) a horosphere in $H_n\mathbb{C}$,
- (A₁) a geodesic hypersphere $H_0\mathbb{C}$ or a tube over a hyperplane $H_{n-1}\mathbb{C}$,
- (B) a tube over a totally real hyperbolic space $H_n\mathbb{R}$.

Proof. We may set c = -1. Owing to (1.9) and Lemma 2.1, our condition (2.2) reduces

$$(2.3) (\lambda^2 + \mu^2) - h(\lambda + \mu) = k, \quad k = -2(2n+1) - k_1,$$

where $AX = \lambda X$ and $A\phi X = \mu\phi X$ for any vector field X orthogonal to ξ . From Proposition A and Lemma 2.1 we can consider the following two cases: (I) $\alpha^2 - 4 \neq 0$ and (II) $\alpha^2 - 4 = 0$.

Case (I): Since $2\lambda - \alpha \neq 0$, we see from (1.9) that ϕX is also a principal (unit) vector orthogonal to ξ with the corresponding principal curvature $\mu = (\alpha \lambda - 2)/(2\lambda - \alpha)$. Then (2.3) gives us

$$(2.4) 4\lambda^4 - 4(\alpha + h)\lambda^3 + 2(\alpha^2 + h\alpha - 2k)\lambda^2$$
$$+ 4(h - \alpha + k\alpha)\lambda + 4 - 2h\alpha - k\alpha^2 = 0.$$

This, together with our assumption and Proposition A, tells us that M has at most five distinct constant principal curvatures. Thus according to Theorem B, M is a homogeneous one. Then taking account of Berndt's classification theorem [1], we obtain that M is congruent to one of type A_0, A_1, A_2 and B. Thus we must check whether or not these four model spaces satisfy the condition (2.2) one by one. Since $\alpha^2 \neq 4$, it is enough to check (2.2) for the type A_1, A_2 and B.

First of all, let M be the type B. Then from the table in [1], we get $\alpha = 2 \tanh(2r)$, $\lambda = \tanh(r)$ and $\mu = \coth(r)$, which implies

$$\lambda + \mu = \frac{4}{\alpha}$$
 and $\lambda \mu = 1$.

Combining this with (2.3), we find $k = (4/\alpha)^2 - h(4/\alpha) - 2$. If we substitute this into (2.4), then we have

$$4\alpha^{2}\lambda^{4} - (4\alpha^{3} + 4\alpha^{2}h)\lambda^{3} + 2(\alpha^{4} + \alpha^{3}h + 4\alpha^{2} + 8\alpha h - 32)\lambda^{2} - 4(3\alpha^{3} + 3\alpha^{2}h - 16\alpha)\lambda + 2\alpha^{4} + 2\alpha^{3}h - 12\alpha^{2} = 0.$$

Then this equation can be decomposed into

$$(\alpha\lambda^2 - 4\lambda + \alpha)(2\alpha\lambda^2 - 2(\alpha^2 + \alpha h - 4)\lambda + \alpha^3 + \alpha^2 h - 6\alpha) = 0.$$

Since the roots $\tanh(r)$ and $\coth(r)$ of the type B satisfy the quadratic equation $\alpha \lambda^2 - 4\lambda + \alpha = 0$, we see that the type B satisfies (2.2).

Next, let M be one of type A_1 and A_2 . Then owing to Theorem C, our condition (2.2) is equivalent to

(2.5)
$$A^{2}\phi - hA\phi = \frac{k}{2}\phi, \quad k = -2(2n+1) - k_{1}.$$

If M is the type A_2 , then M has three distinct constant principal curvatures $\alpha = 2 \coth(2r)$, $\lambda = \tanh(r)$ and $\mu = \coth(r)$, where $0 < \lambda < 1$. Thus we have

$$\coth^2(r) - \tanh^2(r) - h(\coth(r) - \tanh(r)) = 0,$$

which implies $\tanh(r) + \coth(r) = h$ because of $\tanh(r) \neq \coth(r)$, that is, $\alpha = h$. Substituting this into (2.5) we get k = -2 and hence we have $k_1 = -4n$. Then (2.1) implies $S\phi + \phi S = -4n\phi$. Combining this with (1.6) and Theorem C, it follows $S\phi = \phi S = -2n\phi$. Then $S = -2nI + b\eta \otimes \xi$ for some function b on M. Thus we obtain the type A_2 satisfying (2.1) is pseudo-Einstein. But it is contrary to Theorem D. Therefore the type A_2 can not occur. If M is the type A_1 , then M has two distinct constant principal curvatures $\alpha = 2 \coth(2r)$ and $\lambda = \tanh(r)$ if $0 < \lambda < 1$ or $\lambda = \coth(r)$ if $\lambda > 1$. Thus (2.5) yields $k = -2(1+2(n-1)\tanh^2(r))$ or $k = -2(1+2(n-1)\coth^2(r))$. Therefore for such constant k the type A_1 satisfies (2.5).

Case (II): First, we consider the subcase where $\alpha=2$. Then (1.8) gives forth to

$$(\lambda - 1)A\phi X = (\lambda - 1)\phi X.$$

Let us take an open set $M_0 = \{x \in M | \lambda(x) \neq 1\}$. Then $A\phi X = \phi X$ on M_0 , which implies $\mu = 1$ on M_0 . Combining this with (2.3), we get $\lambda^2 - h\lambda + (1 - h - k) = 0$ on M_0 , which means λ is constant on M_0 . On the other hand, we have $\lambda = 1$ on $M - M_0$. Thus, the continuity of principal curvatures yields the fact that if the set $M - M_0$ is not empty, then $\lambda = 1$ on M. Hence M is the type A_0 . For the case where M_0 coincides with the whole M, we find $2\lambda - \alpha \neq 0$ and this case was discussed in the Case (I).

Conversely, let M be the type A_0 . Then M has two distinct constant principal curvatures $\alpha = 2$ and $\lambda = 1$. Substituting these into (2.5), we get k = 2(1 - h) = 2(1 - 2n). Thus for such constant k, the type A_0 satisfies (2.5), namely, (2.2).

Next, let $\alpha = -2$. Then, by the same method as the above we have M is the type A_0 . \square

According to lemma 2.1 and Theorem 2.4 the following is immediate.

Theorem 2.5. Let M be a real hypersurface in $H_n\mathbb{C}$. Assume that ξ is principal. Then it satisfies $S\phi + \phi S = k\phi$ for a constant k if and only if M is locally congruent to one of the following:

- (A_0) a horosphere in $H_n\mathbb{C}$,
- (A₁) a geodesic hypersphere $H_0\mathbb{C}$ or a tube over a hyperplane $H_{n-1}\mathbb{C}$,
- (B) a tube over a totally real hyperbolic space $H_n\mathbb{R}$.

3. Real hypersurfaces satisfying $S\phi S=k\phi$

Let M be a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$. In this section, we will consider M satisfying the following condition:

(3.1)
$$S\phi S = k_1 \phi \quad (k_1 = constant).$$

From (1.6) it follows that the condition (3.1) is equivalent to

(3.2)
$$c(2n+1)h(A\phi + \phi A) - c(2n+1)(A^2\phi + \phi A^2) + h^2 A\phi A - h(A^2\phi A + A\phi A^2) + A^2\phi A^2 = k\phi,$$
$$k = k_1 - c^2(2n+1)^2.$$

Then we first have the following.

Theorem 3.1. Let M be a real hypersurface in $P_n\mathbb{C}$, $n \geq 3$. Then it satisfies $S\phi S = k\phi$ for a constant k and ξ is principal if and only if M is locally congruent to one of the following:

- (A₁) a tube of radius r over a hyperplane $P_{n-1}\mathbb{C}$, where $0 < r < \frac{\pi}{2}$,
- (B) a tube of radius r over a complex quadratic Q_{n-1} , where $0 < r < \frac{\pi}{4}$.

Proof. Assume that ξ is principal. Let X be a principal (unit) vector orthogonal to ξ with the corresponding principal curvature λ . Then we see from (1.9) that ϕX is also a principal curvature (unit) vector

orthogonal to ξ with the corresponding principal curvature $\mu = (\alpha \lambda + 2)/(2\lambda - \alpha)$, where we have set c = 1. Thus our condition (3.2) means

(3.3)

$$\lambda^{2} \mu^{2} - (2n+1)(\lambda^{2} + \mu^{2}) - h\lambda\mu(\lambda + \mu) + h(2n+1)(\lambda + \mu) + h^{2}\lambda\mu = k, \quad k = k_{1} - (2n+1)^{2}.$$

Then we get

$$(3.4)$$

$$(\alpha^{2} - 2\alpha h - 8n - 4)\lambda^{4} + 2(4\alpha + \alpha h^{2} + 4\alpha n + 4hn)\lambda^{3}$$

$$- (\alpha^{2}(2 + h^{2} + 4n) + 4\alpha h(1 + n) + 4(k - h^{2} - 1))\lambda^{2}$$

$$+ 2(\alpha(2k - h^{2} - 4n - 2) + 4hn)\lambda$$

$$- \alpha^{2}k - 2\alpha h(2n + 1) - 8n - 4 = 0.$$

Owing to Proposition A, (3.4) tells us that M has at most five distinct constant principal curvatures. Thus, according to a theorem due to Kimura [6] M is homogeneous one. By virtue of the classification theorem in [13], M is one of type A_1, A_2, B, C, D and E. Hence, in order to prove our theorem we must check the condition (3.2) one by one for the above six model spaces.

First, let M be one of type C, D and E. Then from the table in [13], it follows that

$$\lambda + \mu = -\frac{4}{\alpha}$$
 and $\lambda \mu = -1$,

where $\lambda = \cot(r - \pi/4)$, $\mu = -\tan(r - \pi/4)$ (resp. $\lambda = \cot r$, $\mu = -\tan r$) and $\alpha = 2\cot 2r$. Thus taking account of this and (3.3) we find $k = -(2n+1)h(4/\alpha) - (2n+1)(2\alpha^2 + 16)/\alpha^2 - h^2 - h(4/\alpha) + 1$. The substitution of this into (3.4) gives rise to

$$(3.5)$$

$$(\alpha^{4} - 2\alpha^{3}h - 8\alpha^{2}n - 4\alpha^{2})\lambda^{4} + 2(\alpha^{3}(h^{2} + 4n + 4)\lambda^{3} + 4\alpha^{2}hn)\lambda^{3} - (\alpha^{4}(h^{2} + 4n + 2) + 4\alpha^{3}h(n + 1) - 8\alpha^{2}(h^{2} + 2n + 1) - 32\alpha h(n + 1) - 128n - 64)\lambda^{2} - (2\alpha^{3}(3h^{2} + 12n + 4) + 8\alpha^{2}h(3n + 4) + 64\alpha(2n + 1))\lambda + \alpha^{4}(h^{2} + 4n + 1) + 2\alpha^{3}h(2n + 3) + 12\alpha^{2}(2n + 1) = 0.$$

Then (3.5) can be decomposed into

$$(3.6)$$

$$(\alpha \lambda^{2} + 4\lambda - \alpha)((\alpha^{3} - 2\alpha^{2}h - 4\alpha - 8\alpha n)\lambda^{2} + (2\alpha^{2}(h^{2} + 4n + 2) + 8\alpha h(n+1) + 32n + 16)\lambda - \alpha^{3}(4n + h^{2} + 1) - 2\alpha^{2}h(2n+3) - 12\alpha(2n+1)) = 0.$$

Since $\cot(r - \pi/4)$ and $-\tan(r - \pi/4)$ satisfy the quadratic equation $\alpha \lambda^2 + 4\lambda - \alpha = 0$, another roots $\cot r$ and $-\tan r$ of the types C, D and E must satisfy

$$((\alpha^3 - 2\alpha^2h - 4\alpha - 8\alpha n)\lambda^2 + (2\alpha^2(h^2 + 4n + 2) + 8\alpha h(n+1) + 32n + 16)\lambda - \alpha^3(4n + h^2 + 1) - 2\alpha^2h(2n+3) - 12\alpha(2n+1) = 0.$$

However, since $\cot r$ and $-\tan r$ are the roots of the quadratic equation $\lambda^2 - \alpha\lambda - 1 = 0$, comparing these two quadratic equations, we have

$$\alpha^{3} - 2h\alpha^{2} - 4(2n+1)\alpha - 1 = 0,$$

$$2(h^{2} + 4n + 2)\alpha^{2} + (8h(n+1) + 1)\alpha + 16(2n+1) = 0,$$

$$(4n + h^{2} + 1)\alpha^{3} + 2h(2n+3)\alpha^{2} + 12(2n+1)\alpha - 1 = 0.$$

Taking account of α and h of these types C, D and E, we have a contradiction. Hence the type C, D and E can not occur.

Next, let M be the type B. From the table in [13], we see that $\lambda + \mu = -4/\alpha$ and $\lambda \mu = -1$, where $\lambda = \cot(r - \pi/4)$, $\mu = -\tan(r - \pi/4)$ and $\alpha = 2 \cot 2r$. Then taking account of (3.6) we see that the type B satisfies the condition (3.2).

Last, let M be one of type A_1 and A_2 . Then owing to Theorem C, (3.2) equals to

(3.7)
$$\lambda^4 - 2h\lambda^3 + (h^2 - 2(2n+1))\lambda^2 + 2(2n+1)h\lambda = k,$$
$$k = k_1 - (2n+1)^2.$$

If M is the type A_2 , then M has three distinct principal curvatures $\alpha = 2 \cot 2r$, $\lambda = -\tan r$ and $\mu = \cot r$. Thus we have

$$2h(2n+1)(\cot r + \tan r) + (h^2 - 2(2n+1))(\cot^2 r - \tan^2 r) - 2h(\cot^3 r + \tan^3 r) + \cot^4 r - \tan^4 r = 0,$$

which yields

$$(h - \cot r + \tan r)(\cot r + \tan r)(\cot^2 r + \tan^2 r - h(\cot r - \tan r) - 4n - 2) = 0.$$

Then we get $\alpha = h$ or $\alpha^2 - \alpha h - 4n = 0$ because of $\cot r + \tan r \neq 0$. First, let $\alpha = h$. Substituting this into (3.7) we get k = -2(2n+1) and hence we have $k_1 = 4n^2 - 1$. Then (3.1) implies $S\phi S = (4n^2 - 1)\phi$. Combining this with (1.6) and Theorem C, it follows $S\phi = \phi S = \pm \sqrt{4n^2 - 1}\phi$. Then $S = \pm \sqrt{4n^2 - 1}I + b\eta \otimes \xi$ for some function b on M, that is, M is pseudo-Einstein. But, owing to well-known theorem (cf. [2], [7], [15]) of pseudo-Einstein real hypersurfaces in $P_n\mathbb{C}$, we see that this is not the case. Next, let $\alpha^2 - h\alpha - 4n = 0$. Then we get $\alpha(\alpha - h) = 4n$. Since M is type A_2 , we have $h = \alpha + 2(p-1)\cot r - 2(q-1)\tan r$. Substituting this into the above equation, we obtain $(p-1)\cot^2 r + (q-1)\tan^2 r = -2(n+1) + p + q$. This implies $p + q \geq 2(n+1)$ and hence it is contrary to the fact that $4 \leq p + q \leq n + 1$. Therefore this is not the case, too. Therefore, the type A_2 does not occur.

If M is the type A_1 , then M has two distinct principal curvatures $\alpha = 2 \cot 2r$ and $\lambda = \cot r$. Thus from (3.7) it follows that for constant k such that $k = \cot^4 r - 2h \cot^3 r + (h^2 - 2(2n+1)) \cot^2 r + 2(2n+1)h \cot r$, the type A_1 satisfies (3.2). \square

For a real hypersurface of $H_n\mathbb{C}$ we have the following.

Theorem 3.2. Let M be a real hypersurface in $H_n\mathbb{C}$, $n \geq 2$. Then it satisfies $S\phi S = k\phi$ for a constant k and ξ is principal if and only if M is locally congruent to one of the following:

- (A_0) a horosphere in $H_n\mathbb{C}$,
- (A₁) a geodesic hypersphere $H_0\mathbb{C}$ or a tube over a hyperplane $H_{n-1}\mathbb{C}$,
- (B) a tube over a totally real hyperbolic space $H_n\mathbb{R}$.

Proof. Assume that ξ is principal. Let X be a principal (unit) vector orthogonal to ξ with the corresponding principal curvature λ . From Proposition A and (1.9) we can consider the following two cases: (I) $\alpha^2 - 4 \neq 0$ and (II) $\alpha^2 - 4 = 0$.

Case (I): Since $2\lambda - \alpha \neq 0$, we see from (1.9) that ϕX is also a principal (unit) vector orthogonal to ξ with the corresponding principal curvature $\lambda = (\alpha \lambda - 2)/(2\lambda - \alpha)$, where we have set c = -1. Thus our condition (3.2) means

(3.8)

$$\lambda^{2}\mu^{2} + (2n+1)(\lambda^{2} + \mu^{2}) - h\lambda\mu(\lambda + \mu) - h(2n+1)(\lambda + \mu) + h^{2}\lambda\mu = k, \quad k = k_{1} - (2n+1)^{2}.$$

Then we get

$$(3.9)$$

$$(\alpha^{2} - 2\alpha h + 8n + 4)\lambda^{4} + 2(\alpha h^{2} - 4\alpha - 4\alpha n - 4hn)\lambda^{3} + (\alpha^{2}(2 - h^{2} + 4n) + 4\alpha h(1 + n) - 4(k + h^{2} - 1))\lambda^{2} + 2(\alpha(2k + h^{2} - 4n - 2) + 4hn)\lambda - \alpha^{2}k - 2\alpha h(2n + 1) + 8n + 4 = 0.$$

Owing to Proposition A, (3.9) tells us that M has at most five distinct constant principal curvatures. Thus, according to a theorem due to Berndt [1] M is homogeneous one, that is, M is congruent to one of type A_0, A_1, A_2 and B. Thus by the same argument as the above theorem we must check the condition (3.2) one by one for these four model spaces. Since $\alpha^2 \neq 4$, it is enough to check (3.2) for the type A_1, A_2 and B.

First of all, let M be the type B. Then from the table in [1], we get $\alpha = 2 \tanh(2r)$, $\lambda = \tanh(r)$ and $\mu = \coth(r)$, which implies

$$\lambda + \mu = \frac{4}{\alpha}$$
 and $\lambda \mu = 1$.

Combining this with (3.8), we obtain $k = -(2n+1)h(4/\alpha) + (2n+1)(16-2\alpha^2)/\alpha^2 + h^2 - h(4/\alpha) + 1$. The substitution of this into (3.9) gives rise to

$$(3.10)$$

$$(\alpha^{4} - 2\alpha^{3}h + 8\alpha^{2}n + 4\alpha^{2})\lambda^{4} + 2(\alpha^{3}(h^{2} - 4n - 4) - 4\alpha^{2}hn)\lambda^{3} + (\alpha^{4}(4n - h^{2} + 2) + 4\alpha^{3}h(n + 1) + 8\alpha^{2}(2n + 1 - h^{2}) + 32\alpha h(n + 1) - 64(2n + 1))\lambda^{2} + (2\alpha^{3}(3h^{2} - 12n - 4) - 8\alpha^{2}h(3n + 4) + 64\alpha(2n + 1))\lambda + \alpha^{4}(4n + 1 - h^{2}) + 2\alpha^{3}h(2n + 3) - 12\alpha^{2}(2n + 1) = 0.$$

Then (3.10) can be decomposed into

$$(\alpha \lambda^{2} - 4\lambda + \alpha)((\alpha^{3} - 2\alpha^{2}h + 4\alpha(2n+1))\lambda^{2} + (2\alpha^{2}(h^{2} - 4n - 2) - 8\alpha h(n+1) + 32n + 16)\lambda + \alpha^{3}(n+1-h^{2}) + 2\alpha^{2}h(2n+3) - 12\alpha(2n+1)) = 0.$$

Since the roots $\tanh(r)$ and $\coth(r)$ of the type B satisfy the quadratic equation $\alpha \lambda^2 - 4\lambda + \alpha = 0$, we see that the type B satisfies (3.2).

Next, let M be one of type A_1 and A_2 . Then owing to Theorem C (3.8) is equivalent to

(3.11)
$$\lambda^4 - 2h\lambda^3 + (h^2 + 2(2n+1))\lambda^2 - 2(2n+1)h\lambda = k,$$
$$k = k_1 - (2n+1)^2.$$

If M is the type A_2 , then M has three distinct constant principal curvatures $\alpha = 2 \coth(2r)$, $\lambda = \tanh(r)$ and $\mu = \coth(r)$, where $0 < \lambda < 1$. Thus by means of (3.11) we have

$$\tanh^{4}(r) - \coth^{4}(r) - 2h(\tanh^{3}(r) - \coth^{3}(r)) + (h^{2} + 2(2n+1))$$
$$(\tanh^{2}(r) - \coth^{2}(r)) - 2(2n+1)h(\tanh(r) - \coth(r)) = 0,$$

which yields

$$(h - \coth(r) - \tanh(r))(\tanh(r) - \coth(r))(\coth^2(r) + \tanh^2(r) - h(\coth(r) + \tanh(r)) + 4n + 2) = 0.$$

Then we get $\alpha = h$ or $\alpha^2 - h\alpha + 4n = 0$ because of $\coth(r) - \tanh(r) \neq 0$. First, let $\alpha = h$. Substituting this into (3.11) we get k = 2(2n+1) and hence we have $k_1 = (2n+1)(2n+3)$. Then (3.1) implies $S\phi S = (2n+1)(2n+3)\phi$. Combining this with (1.6) and Theorem C, it follows $S\phi = \phi S = \pm \sqrt{(2n+1)(2n+3)}\phi$. Then $S = \pm \sqrt{(2n+1)(2n+3)}I + b\eta \otimes \xi$ for some function b on M, that is, M is pseudo-Einstein. However, owing to Theorem D, we see that this is not the case. Next, let $\alpha^2 - h\alpha + 4n = 0$. Then we get $\alpha(\alpha - h) = -4n$. Since we may say $\alpha \neq h$, we have $\alpha = 4n/(h-\alpha)$. On the other hand, type A_2 satisfies the

quadratic equation $\alpha \lambda^2 - 4\lambda + \alpha = 0$. Combining these two equations we get $\tanh^2(r) = \{p - (n+1)\}/\{(n+1) - q\}$ or $\coth^2(r) = \{q - (n+1)\}/\{(n+1) - p\}$. This is contrary to the fact that $4 \le p + q \le n + 1$. Therefore this is not the case, too. Consequently, the type A_2 can not occur. If M is the type A_1 , then M has two distinct constant principal curvatures $\alpha = 2 \coth(2r)$ and $\lambda = \tanh(r)$ if $0 < \lambda < 1$ or $\lambda = \coth(r)$ if $\lambda > 1$. Then from (3.11), it follows that for constant k such that $k = \tanh^4(r) - 2h \tanh^3(r) + (h^2 + 2(2n+1)) \tanh^2(r) - 2(2n+1)h \tanh(r)$ or $k = \coth^4(r) - 2h \coth^3(r) + (h^2 + 2(2n+1)) \coth^2(r) - 2(2n+1)h \coth(r)$, the type A_1 satisfies (3.8).

Case (II): First, we consider the subcase where $\alpha = 2$. Then (1.8) gives forth to

$$(\lambda - 1)A\phi X = (\lambda - 1)\phi X.$$

Let us take an open set $M_0 = \{x \in M | \lambda(x) \neq 1\}$. Then $A\phi X = \phi X$ on M_0 , which implies $\mu = 1$. Combining this with (3.8), we get $(2(n+1)-h)\lambda^2 + (h^2-2h(n+1))\lambda + (2n+1)(1-h)-k=0$ on M_0 , which means λ is constant on M_0 . On the other hand, we have $\lambda = 1$ on $M - M_0$. Thus, the continuity of principal curvatures yields the fact that if the set $M - M_0$ is not empty, then $\lambda = 1$ on M. Hence M is the type A_0 . For the case where M_0 coincides with the whole M, we find $2\lambda - \alpha \neq 0$ and this case was discussed in the Case (I).

Conversely, let M be the type A_0 . Then M has two distinct constant principal curvatures $\alpha = 2$ and $\lambda = 1$. Substituting these into (3.11), we obtain $k = h^2 - 4(n+1)h + 4n + 3 = 3 - 4n - 4n^2$. Thus for such constant k the type A_0 satisfies (3.11), namely, (3.2).

Next, let $\alpha = -2$. Then, by the same method as the above we have M is the type A_0 . \square

REFERENCES

- 1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. reine angew. Math. 395 (1989), 132-141.
- 2. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projetive space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- 3. U-H. Ki and Y. J. Suh, On real hypersurfaces of complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
- 4. U-H. Ki, H. S. Kim and H. Nakagawa, A characterization of a real hypersurface of type B, Tsukuba J. Math. 14 (1990), 9-26.

- 5. H. S. Kim and R. Takagi, Certain real hypersurfaces in a complex space form, Kyungpook Math. J. 35 (1996), 591-606.
- 6. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
- 7. M. Kon, Pseudo-Einstein real hypersurfaces in complex space form, J. Diff. Geom. 14 (1979), 339-354.
- 8. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math. 15 (1991), 547-561.
- 9. Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- 10. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
- 11. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- 12. Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), 27-37.
- 13. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- 14. _____, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
- 15. K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifold, Birkhäuser, Boston, Basel, Strutgart, 1983.

DEPARTMENT OF MATHEMATICS, INJE UNIVERSITY, KIMHAE 621-749, KOREA E-mail address: mathkim@ijnc.inje.ac.kr

DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, PUSAN 608-737, KOREA

Received February 21, 1997