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HARMONIC MAPS OF COMPLETE
RIEMANNIAN MANIFOLDS

SEOUNG DAL JUNG

1. Introduction

The theory of harmonic mappings of a Riemannian manifold into another
has been initiated by J. Eells and J. H. Sampson([2]) and studied by many
authors. In particular, R. M. Schoen and S. T. Yau([3]) proved the following
theorem:

Theorem A. Let M be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature and let N be a compact Riemannian manifold of
nonpositive sectional curvature. Then every harmonic map of finite energy
from M to N is constant.

In this paper, we extend Theorem A under weaker assumptions by using
Kato’s inequality([1]) and characterize a harmonic map on complete Rie-
mannian manifolds.

The author would like to thank the referee for his helpful and kind sug-
gestions.

2. Preliminaries

Let 7 : E — M be a Riemannian vector bundle over an m-dimensional
manifold M, i.e., E is a vector bundle over M equipped with a C*°-assignment
of an inner product <, > to each fiber E, of F over x € M. Assume that a
metric connection D is given on F, i.e., D : AP(E) — APT1(E) is an R-linear
map such that if f € A°, D(fs) = fDs + sdf and

(2.1) d<s,t>=<Ds,t >+ <s,Dt>
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for any s, t € AP(FE), where AP(E) is the set of all F-valued p-forms on M.
Equivalently, for any X € T'M,

(2.2) X <s,t >=< Dxs,t >+ <s,Dxt>.
The Laplacian for A*(FE) is by defition the operator
(2.3) A =DD*+ D*D,

where D* is the formal adjoint of D. Let {V4,---,V;,} and {w!,--+ ,w™} be
a locally defined frame field and its dual coframe field respectively. Then on
A*(FE), we have

m

(2.4) D=Y w'ADy, D"=-Y i(V;)Dy,,

=1 7=1

where i(X) denotes the interior product operator with respect to X. Then
on A*(FE), we have the Weitzenbock formula

(2.5) A==3 Dy + D o Ni(Ve) Ry,
2 k,C
where Dg(y = DxDy — Dvl)\(ly and Rxy = —[Dx,Dy] + D[x'y] is the

curvature tensor on A*(F). From this equation, we have

(2.6) ~AM|32 =2 "Dy, @2 +2<®,) D}y, >,

where< , > refers to the pointwise inner product, |®]2 =< ®,® >, and
AM = (5§ + §d is the ordinary Hodge Laplacian. From (2.5) and (2.6), for
any harmonic section ® € A*(FE), we have

(2.7) ~AM|B2 =2 " |Dv,®P? +2< @, W Ni(Ve)Rv,v, @ >.
i k.
In particular, let & = > _eq.¢® € AY(E), where {e1,--- ,e,} is a local frame

field of F and {¢%} are 1-forms on M. Then we obtain

< Zwk Ai(Ve)Ry,v, P, P >= Z < R{’;kv‘ea,eb >< w* Ai(Ve)o?, ¢° >
ke a,b,k,¢

+ ) <w* Ai(Vo)RYy, 6% 6 >,
ak,l :
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where RE and RM are the curvature tensors on I'(E) and M, respectively.
The second summand is equal to Y, Ric™ (¢q, #a), where RicM denotes the
Ricci curvature tensor of M and ¢, stands for the vector field dual to ¢*. For
the first summand, if we set ¢* = 3~ afw?, then < W' Ai(V;)¢%, ¢* >= ajqaf,
so that

E : b
Z < RVszea’ € >< w* A z(‘/e)¢a,¢b > = Z < R‘E/;,cvleaaﬁ,ebak >
a,bk,€ a,b,k,£

= Z < ngvzcb(vf)a q)(Vk) > .
k.2

Hence for a harmonic F-valued 1-form &, we have

__AM](I)|2 =2 Z IDV: <I’|2 +2 Z RicM(¢a, ®a)

(2.8) ’
—2) <Ry, 2(V), (V) >.
V)

3. Harmonic maps

Let M and N be Riemannian manifolds with Riemannian metrics g and
h respectively, and let their Levi-Civita connections be V™ and V¥V re-
spectively. Let f : M — N be a C®-map, and let & = f*TN be the
induced bundle over M. Then F has a naturally induced metric connec-
tion which we denote by D = f*V¥. Also, the differential df of f gives
naturally a cross section of the vector bundle Hom(T M, E') over M. Since
Hom(T'M, E) is canonically identified with F ® T* M (T* M= the cotangent
bundle of M), we see that df may be regarded as an E-valued 1-form, i.e.,
df eT(E®T*M) = AY(FE). Then E ® T*M has a naturally induced metric
connection which we denote also by D. It is well known that D(df)=0([2]).
Hence we say that the map f is harmonic if D*(df) = 0. Also, f is said to
be totally geodesic if for any X € TM, Dxdf = 0. It follows that totally
geodesic maps are harmonic but the converse is not true in general. Let RF
be the curvature tensor of D. Then RF is related to the curvature tensor
RY of V¥ in the following way: let X, Y € T, M and s € I'(E), then

(3.1) R¥vs = R, (x)ar.(v)5-

When a function p, local or global, is given on N, we shall identify it through-
out this paper with the function p o f induced on M.
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Let {V,} and {V;} be local frame fields on N and M respectively, and let
{@°} and {w’} be the their dual coframe fields respectively. Let ¢* = f*&°.
Then we can write df as df = 3__ V, ® ¢°. Hence if we set & = df in (2.8),
then from (3.1) we obtain

_AMldflz =2 E |Dv‘df|2 +2 E RiCM(¢a’ d’a)
(3.2) i ’
1,

where ¢, is the vector field dual to ¢°.

4. Main Theorems

Let p(z) denote the least eigenvalue of R, =}, , w* Ai(Ve)Ry,v, in E,,

where {V;} is a local frame field and {w’} is the dual coframe field of {V;}.
To prove our theorem, we prepare the following Kato’s inequality:

Lemma 4.1([1]). If s € I'(F) satisfies As = 0, then
AM|s| < —pls.

Let )¢ is the infimum of the spectrum of the Laplacian AM on [2-functions
on M. The proof of the following Theorem 4.2 is based on a method of P.
Bérard ([1]).

Theorem 4.2. Let M be a complete noncompact Riemannian manifold. If

p>—MXo at allz € M and p > —\o at some point o, then every harmonic
map f : M — N of finite energy,i.e., df € L2(M), is constant.

proof. Since Adf = 0, by Lemmma 4.1, we have

AMdf| < —pldf|.

By the assumption, we obtain

(4.1) AM|df| < —pldf| < Xoldf|.

Since M is complete, one can construct function w, such that w, € C§° (M)
and we = 1 on B(zo,?), suppwe C B(xo,2¢) and |dwe| < C/¢ for some
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constant C, where £ € R, 7o € M and B(zo, ¢) is the Riemannian open
ball with radius £ and center zy. Put ¢ = |df|. Then from (4.1), we have

(4.2) / < dwip,dp >< ——/ wppp® < )\o/ wy .
M M M

Since dw2p = 2wedwep + w?dep, the left hand side of (4.2) can be written as

(4.3) /M 2 < dwep, wedp > + /M R lde|? = /M |d(wep)|? — /M | duel?.

From (4.2) and (4.3), we then obtain the inequality
(4.4)

ldwep)? < | QPldwel® — | pwie® < | @Pldwel® + Ao [ (wep)?.
M M M M M

Since A is the infimum of the spectrum of the Laplacian AM acting on
functions, we have

(4.5) /M Id(we)2 > Ao /M (we)?.

From (4.4) and (4.5), we have

Ao / (wep)? < / o |duws|? — / pde? < / o?dwel? + Ao f (wep)?.
M M M M : M

Now, letting £ — 0o, we have

Ao/ <p2S—/ pwzs/\o/ o>
M M M

This implies that ¢ = |df| = 0 under our assumptions. Hence f is con-
stant. [J

Corollary 4.8. Let M be a complete Riemannian manifold and let N be
a Riemannian manifold of nonpositive sectional curvature. If RicM > —Xo
at allx € M and Ric™ > —)\y at some point xq, then every harmonic map
f:M — N of finite energy, i.e., df € L?(M), is constant.

Proof. First, we recall the first Kato’s inequality([1}): for any s € I'(F),
|d|s|| < |Ds|. It follows from the first Kato’s inequality that if As = 0, then
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Is|AM|s| < — < R(s),s >(cf.[1], p.263). Since Adf = 0 for a harmonic map
f:M — N, we get from the first Kato’s inequality and (3.2)

|df|AM |df| < — < R(df), df >
= — Z Rz'cM(f""tD“,f*tD“) + Z < Rg(vi)df(vj)df(vi), df (Vy) > .
a "J

Note that if N has nonpositive sectional curvature, then we get

Z < Rl wvoarv,y® Vi), df (V;) >< 0.

t,7

Hence, if N has nonpositive sectional curvature, then we have
\df|AMdf| < = Ric™ (f*@°, f*@°).
a

If we assume RicM > —)\¢, then we have

ldf |AM |df| < XoldfI?.

Hence we have AM|df| < Ao|df|. Then the rest of the proof goes as in the
proof of Theorem 4.2. [

Now we are going to prove a characterization of harmonic maps on com-
plete Riemannian manifolds. Take coordinate neiborhoods {U;x’} of M and
{V,y°} of N in such a way that f(U) C V, where (z7) = (z!,--- ,2™) and
(¥*) = (y,---,y") are local coordinates of M and N respectively. The
indices i, j, k run over the range {i,--- ,m} and the indices a, b, c the
range {1,--- ,m}. The summation convension will be used with respect to
these two systems of indices. Suppose that f : M — N is respresented by
equation y® = y%(z!,--+ ,2™) with respect to {U;xz’} and {V;y%}. We put
A? = 9;y%(x!,--- ,2™), where 8; = 8/8z*. Then the differential df of the
mapping f is represented by the matrix (A?) with respect to the local coor-
dinates (z7) and (y°) of M and N. Let X = X79; and Y = Y79; are vector
fields on M. If we put in U

43, = 9,42,
a a a Ab 4ga a
V_-,A, = BJA, + FbcAin - F_I;iAk’
where I'j . and I‘f, are Christoffel symbols with respect to VV and VM respec-

tively, then (Ag,;Xj Y *)9, is the local expression of a vector field B defined
along f(M) and A%, = AZ;. We now put

A° :_,giqu

239
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where (¢*7) = (g;;)~!. Then the vector field T" with component A® defined
along f(M) is called the tension fieldof f : M — N. It is well known that
J : M — N is harmonic if and only if T = 0([2]). If we put n = (ASA®gy.)dz?,
then 7 is a 1-form in M. Hence *(w?7) is an (m-1)-form with compact support
in B(2¢), where * is the Hodge star operator. Then by Stokes’ theorem, we
have

f d(x(w?n)) = O.
M

Since d(*(w?n)) = — *x §(w2n), we have

/ «5(wln) = / +5(win) = 0.
M B(2¢)

Moreover, we have
§(w2n) = w2dn — *(2wedwy A *1)
on M. Also, for a 1-form 7, én = —V'7n;. Hence we have
S(win) = w2{—-V(AS A%y )} — *(2wedwy A *7)
= _W%{(ViAf)Abgbc + AfViAbgbc} — *(2wedwy A *n)
= —w%{AcAbgbc} — w%AfViAbgbc — *(2wedwe N *1))
= —|weT > — < wedf,weVT > — * (2wedwe A *7).
Since x(dwe A 1) = (dwe)in* =< dwe,n >, we have
S(w2n) = —|weT|?— < wedf,weVT > —2 < dwe,wen > .
By integration, we have
0= ngTH2B(2£)+ K wedf,weVT >p2e) +2 K dwe,wen >pB(2e) -

By Schwartz’s inequality and |dw,| < C/¢, we get

C
0> [|weT |20y — llwedf | lwe VTl B(2ey — 7||we77||3(2e)-

For any finite energy map f, i.e., |df| € L2(M), letting £ — 0o, we have
0> (|7 - laf VT

From this inequality, we have the following:

Theorem 4.4. Let M be a complete Riemannian manifold. If a mapping
f:M — N has a finite energy and VT = 0, then f is harmonic.
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