HARMONIC MAPS OF COMPLETE RIEMANNIAN MANIFOLDS

SEOUNG DAL JUNG

1. Introduction

The theory of harmonic mappings of a Riemannian manifold into another has been initiated by J. Eells and J. H. Sampson([2]) and studied by many authors. In particular, R. M. Schoen and S. T. Yau([3]) proved the following theorem:

Theorem A. Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature and let N be a compact Riemannian manifold of nonpositive sectional curvature. Then every harmonic map of finite energy from M to N is constant.

In this paper, we extend Theorem A under weaker assumptions by using Kato's inequality([1]) and characterize a harmonic map on complete Riemannian manifolds.

The author would like to thank the referee for his helpful and kind suggestions.

2. Preliminaries

Let $\pi: E \to M$ be a Riemannian vector bundle over an m-dimensional manifold M, i.e., E is a vector bundle over M equipped with a C^{∞} -assignment of an inner product <, > to each fiber E_x of E over $x \in M$. Assume that a metric connection D is given on E, i.e., $D: A^p(E) \to A^{p+1}(E)$ is an \mathbb{R} -linear map such that if $f \in A^0$, D(fs) = fDs + sdf and

$$(2.1) d < s, t > = < Ds, t > + < s, Dt >$$

¹⁹⁹¹ Mathematics Subject Classification. 58E20.

Key words and phrases. Harmonic maps, Kato's inequality, Tension field.

This work was partially supported by Development Fund of Cheju National University, 1997

for any $s, t \in A^p(E)$, where $A^p(E)$ is the set of all E-valued p-forms on M. Equivalently, for any $X \in TM$,

$$(2.2) X < s, t > = < D_X s, t > + < s, D_X t > .$$

The Laplacian for $A^*(E)$ is by defition the operator

$$\Delta = DD^* + D^*D,$$

where D^* is the formal adjoint of D. Let $\{V_1, \dots, V_m\}$ and $\{\omega^1, \dots, \omega^m\}$ be a locally defined frame field and its dual coframe field respectively. Then on $A^*(E)$, we have

(2.4)
$$D = \sum_{i=1}^{m} \omega^{i} \wedge D_{V_{i}}, \quad D^{*} = -\sum_{j=1}^{m} i(V_{j}) D_{V_{j}},$$

where i(X) denotes the interior product operator with respect to X. Then on $A^*(E)$, we have the Weitzenböck formula

(2.5)
$$\Delta = -\sum_{i} D_{V_{i}V_{i}}^{2} + \sum_{k,\ell} \omega^{k} \wedge i(V_{\ell}) R_{V_{k}V_{\ell}},$$

where $D_{XY}^2 = D_X D_Y - D_{\nabla_X^M Y}$ and $R_{XY} = -[D_X, D_Y] + D_{[X,Y]}$ is the curvature tensor on $A^*(E)$. From this equation, we have

$$(2.6) -\Delta^M |\Phi|^2 = 2 \sum_i |D_{V_i} \Phi|^2 + 2 < \Phi, \sum_i D_{V_i V_i}^2 \Phi >,$$

where \langle , \rangle refers to the pointwise inner product, $|\Phi|^2 = \langle \Phi, \Phi \rangle$, and $\Delta^M \equiv d\delta + \delta d$ is the ordinary Hodge Laplacian. From (2.5) and (2.6), for any harmonic section $\Phi \in A^*(E)$, we have

$$(2.7) -\Delta^{M} |\Phi|^{2} = 2 \sum_{i} |D_{V_{i}}\Phi|^{2} + 2 < \Phi, \sum_{k,\ell} \omega^{k} \wedge i(V_{\ell}) R_{V_{k}V_{\ell}}\Phi > .$$

In particular, let $\Phi = \sum_a e_a \phi^a \in A^1(E)$, where $\{e_1, \dots, e_r\}$ is a local frame field of E and $\{\phi^a\}$ are 1-forms on M. Then we obtain

$$< \sum_{k,\ell} \omega^k \wedge i(V_\ell) R_{V_k V_\ell} \Phi, \Phi > = \sum_{a,b,k,\ell} < R_{V_k V_\ell}^E e_a, e_b > < \omega^k \wedge i(V_\ell) \phi^a, \phi^b >$$

$$+ \sum_{a,k,\ell} < \omega^k \wedge i(V_\ell) R_{V_k V_\ell}^M \phi^a, \phi^a >,$$

where R^E and R^M are the curvature tensors on $\Gamma(E)$ and M, respectively. The second summand is equal to $\sum_a Ric^M(\phi_a,\phi_a)$, where Ric^M denotes the Ricci curvature tensor of M and ϕ_a stands for the vector field dual to ϕ^a . For the first summand, if we set $\phi^a = \sum \alpha_i^a \omega^i$, then $<\omega^i \wedge i(V_j)\phi^a, \phi^b>=\alpha_j^a \alpha_i^b$, so that

$$\begin{split} \sum_{a,b,k,\ell} < R^E_{V_k V_\ell} e_a, e_b > < \omega^k \wedge i(V_\ell) \phi^a, \phi^b > &= \sum_{a,b,k,\ell} < R^E_{V_k V_\ell} e_a \alpha^a_\ell, e_b \alpha^b_k > \\ &= \sum_{k,\ell} < R^E_{V_k V_\ell} \Phi(V_\ell), \Phi(V_k) > . \end{split}$$

Hence for a harmonic E-valued 1-form Φ , we have

(2.8)
$$-\Delta^{M} |\Phi|^{2} = 2 \sum_{i} |D_{V_{i}} \Phi|^{2} + 2 \sum_{a} Ric^{M}(\phi_{a}, \phi_{a})$$
$$-2 \sum_{i,j} \langle R_{V_{i}V_{j}}^{E} \Phi(V_{i}), \Phi(V_{j}) \rangle.$$

3. Harmonic maps

Let M and N be Riemannian manifolds with Riemannian metrics g and h respectively, and let their Levi-Civita connections be ∇^M and ∇^N respectively. Let $f:M\to N$ be a C^∞ -map, and let $E\equiv f^*TN$ be the induced bundle over M. Then E has a naturally induced metric connection which we denote by $D\equiv f^*\nabla^N$. Also, the differential df of f gives naturally a cross section of the vector bundle $\operatorname{Hom}(TM,E)$ over M. Since $\operatorname{Hom}(TM,E)$ is canonically identified with $E\otimes T^*M(T^*M=$ the cotangent bundle of M), we see that df may be regarded as an E-valued 1-form, i.e., $df\in \Gamma(E\otimes T^*M)=A^1(E)$. Then $E\otimes T^*M$ has a naturally induced metric connection which we denote also by D. It is well known that D(df)=0([2]). Hence we say that the map f is harmonic if $D^*(df)=0$. Also, f is said to be totally geodesic if for any $X\in TM$, $D_Xdf=0$. It follows that totally geodesic maps are harmonic but the converse is not true in general. Let R^E be the curvature tensor of D. Then R^E is related to the curvature tensor R^N of ∇^N in the following way: let $X,Y\in T_xM$ and $s\in \Gamma(E)$, then

$$(3.1) R_{XY}^E s = R_{df_x(X)df_x(Y)}^N s.$$

When a function ρ , local or global, is given on N, we shall identify it throughout this paper with the function $\rho \circ f$ induced on M.

Let $\{\bar{V}_a\}$ and $\{V_i\}$ be local frame fields on N and M respectively, and let $\{\bar{\omega}^a\}$ and $\{\omega^i\}$ be the their dual coframe fields respectively. Let $\phi^a \equiv f^*\bar{\omega}^a$. Then we can write df as $df = \sum_a \bar{V}_a \otimes \phi^a$. Hence if we set $\Phi = df$ in (2.8), then from (3.1) we obtain

(3.2)
$$-\Delta^{M} |df|^{2} = 2 \sum_{i} |D_{V_{i}} df|^{2} + 2 \sum_{a} Ric^{M} (\phi_{a}, \phi_{a})$$
$$-2 \sum_{i,j} \langle R_{df(V_{i})df(V_{j})}^{N} df(V_{i}), df(V_{j}) \rangle,$$

where ϕ_a is the vector field dual to ϕ^a .

4. Main Theorems

Let $\rho(x)$ denote the least eigenvalue of $\mathcal{R}_x \equiv \sum_{k,\ell} \omega^k \wedge i(V_\ell) R_{V_k V_\ell}$ in E_x , where $\{V_j\}$ is a local frame field and $\{\omega^j\}$ is the dual coframe field of $\{V_j\}$. To prove our theorem, we prepare the following Kato's inequality:

Lemma 4.1([1]). If $s \in \Gamma(E)$ satisfies $\Delta s = 0$, then

$$\Delta^M|s| \le -\rho|s|.$$

Let λ_0 is the infimum of the spectrum of the Laplacian Δ^M on L^2 -functions on M. The proof of the following Theorem 4.2 is based on a method of P. Bérard ([1]).

Theorem 4.2. Let M be a complete noncompact Riemannian manifold. If $\rho \geq -\lambda_0$ at all $x \in M$ and $\rho > -\lambda_0$ at some point x_0 , then every harmonic map $f: M \to N$ of finite energy,i.e., $df \in L^2(M)$, is constant.

proof. Since $\Delta df = 0$, by Lemma 4.1, we have

$$\Delta^M |df| \le -\rho |df|.$$

By the assumption, we obtain

$$(4.1) \Delta^{M}|df| \leq -\rho|df| \leq \lambda_{0}|df|.$$

Since M is complete, one can construct function ω_{ℓ} such that $\omega_{\ell} \in C_0^{\infty}(M)$ and $\omega_{\ell} \equiv 1$ on $B(x_0, \ell)$, supp $\omega_{\ell} \subset B(x_0, 2\ell)$ and $|d\omega_{\ell}| \leq C/\ell$ for some

constant C, where $\ell \in \mathbb{R}_+$, $x_0 \in M$ and $B(x_0, \ell)$ is the Riemannian open ball with radius ℓ and center x_0 . Put $\varphi \equiv |df|$. Then from (4.1), we have

$$(4.2) \qquad \int_{M} < d\omega_{\ell}^{2} \varphi, d\varphi > \leq - \int_{M} \omega_{\ell}^{2} \rho \varphi^{2} \leq \lambda_{0} \int_{M} \omega_{\ell}^{2} \varphi^{2}.$$

Since $d\omega_{\ell}^2 \varphi = 2\omega_{\ell} d\omega_{\ell} \varphi + \omega_{\ell}^2 d\varphi$, the left hand side of (4.2) can be written as

$$(4.3)\quad \int_{M}2< d\omega_{\ell}\varphi, \omega_{\ell}d\varphi>+\int_{M}\omega_{\ell}^{2}|d\varphi|^{2}=\int_{M}|d(\omega_{\ell}\varphi)|^{2}-\int_{M}\varphi^{2}|d\omega_{\ell}|^{2}.$$

From (4.2) and (4.3), we then obtain the inequality (4.4)

$$\int_M |d(\omega_\ell arphi)|^2 \leq \int_M arphi^2 |d\omega_\ell|^2 - \int_M
ho \omega_\ell^2 arphi^2 \leq \int_M arphi^2 |d\omega_\ell|^2 + \lambda_0 \int_M (\omega_\ell arphi)^2.$$

Since λ_0 is the infimum of the spectrum of the Laplacian Δ^M acting on functions, we have

(4.5)
$$\int_{M} |d(\omega_{\ell}\varphi)|^{2} \geq \lambda_{0} \int_{M} (\omega_{\ell}\varphi)^{2}.$$

From (4.4) and (4.5), we have

$$\lambda_0 \int_M (\omega_\ell \varphi)^2 \leq \int_M \varphi^2 |d\omega_\ell|^2 - \int_M \rho \omega_\ell^2 \varphi^2 \leq \int_M \varphi^2 |d\omega_\ell|^2 + \lambda_0 \int_M (\omega_\ell \varphi)^2.$$

Now, letting $\ell \to \infty$, we have

$$\lambda_0 \int_M \varphi^2 \le -\int_M \rho \varphi^2 \le \lambda_0 \int_M \varphi^2.$$

This implies that $\varphi = |df| = 0$ under our assumptions. Hence f is constant. \square

Corollary 4.3. Let M be a complete Riemannian manifold and let N be a Riemannian manifold of nonpositive sectional curvature. If $Ric^M \geq -\lambda_0$ at all $x \in M$ and $Ric^M > -\lambda_0$ at some point x_0 , then every harmonic map $f: M \to N$ of finite energy, i.e., $df \in L^2(M)$, is constant.

Proof. First, we recall the first Kato's inequality([1]): for any $s \in \Gamma(E)$, $|d|s|| \leq |Ds|$. It follows from the first Kato's inequality that if $\Delta s = 0$, then

 $|s|\Delta^M|s| \le - < \mathcal{R}(s), s > (\text{cf.}[1], \text{ p.263}).$ Since $\Delta df = 0$ for a harmonic map $f: M \to N$, we get from the first Kato's inequality and (3.2)

$$|df|\Delta^{M}|df| \leq - \langle \mathcal{R}(df), df \rangle \\ = -\sum_{a} Ric^{M} (f^{*}\bar{w}^{a}, f^{*}\bar{w}^{a}) + \sum_{i,j} \langle R_{df(V_{i})df(V_{j})}^{N} df(V_{i}), df(V_{j}) \rangle.$$

Note that if N has nonpositive sectional curvature, then we get

$$\sum_{i,j} \langle R_{df(V_i)df(V_j)}^N df(V_i), df(V_j) \rangle \leq 0.$$

Hence, if N has nonpositive sectional curvature, then we have

$$|df|\Delta^{M}|df| \leq -\sum_{a}Ric^{M}(f^{*}\bar{w}^{a},f^{*}\bar{w}^{a}).$$

If we assume $Ric^M \geq -\lambda_0$, then we have

$$|df|\Delta^M|df| \leq \lambda_0|df|^2$$
.

Hence we have $\Delta^M |df| \leq \lambda_0 |df|$. Then the rest of the proof goes as in the proof of Theorem 4.2. \square

Now we are going to prove a characterization of harmonic maps on complete Riemannian manifolds. Take coordinate neiborhoods $\{U;x^j\}$ of M and $\{V,y^a\}$ of N in such a way that $f(U)\subset V$, where $(x^j)=(x^1,\cdots,x^m)$ and $(y^a)=(y^1,\cdots,y^n)$ are local coordinates of M and N respectively. The indices i,j,k run over the range $\{i,\cdots,m\}$ and the indices a,b,c the range $\{1,\cdots,m\}$. The summation convension will be used with respect to these two systems of indices. Suppose that $f:M\to N$ is respresented by equation $y^a=y^a(x^1,\cdots,x^m)$ with respect to $\{U;x^j\}$ and $\{V;y^a\}$. We put $A^a_i=\partial_iy^a(x^1,\cdots,x^m)$, where $\partial_i=\partial/\partial x^i$. Then the differential df of the mapping f is represented by the matrix (A^a_i) with respect to the local coordinates (x^j) and (y^a) of M and N. Let $X=X^j\partial_j$ and $Y=Y^j\partial_j$ are vector fields on M. If we put in U

$$A^a_{ji} =
abla_j A^a_i,$$

$$abla_j A^a_i = \partial_j A^a_i + \Gamma^a_{bc} A^b_j A^a_i - \Gamma^k_{ji} A^a_k,$$

where Γ^a_{bc} and Γ^k_{ji} are Christoffel symbols with respect to ∇^N and ∇^M respectively, then $(A^a_{ji}X^jY^i)\partial_a$ is the local expression of a vector field B defined along f(M) and $A^a_{ji}=A^a_{ij}$. We now put

$$A^a = g^{ij} A^a_{ij},$$

where $(g^{ij}) = (g_{ij})^{-1}$. Then the vector field T with component A^a defined along f(M) is called the *tension field* of $f: M \to N$. It is well known that $f: M \to N$ is harmonic if and only if T = O([2]). If we put $\eta = (A_i^c A^b g_{bc}) dx^i$, then η is a 1-form in M. Hence $*(\omega_\ell^2 \eta)$ is an (m-1)-form with compact support in $B(2\ell)$, where * is the Hodge star operator. Then by Stokes' theorem, we have

$$\int_M d(*(\omega_\ell^2\eta)) = 0.$$

Since $d(*(\omega_{\ell}^2 \eta)) = - * \delta(\omega_{\ell}^2 \eta)$, we have

$$\int_{M} *\delta(\omega_{\ell}^{2}\eta) = \int_{B(2\ell)} *\delta(\omega_{\ell}^{2}\eta) = 0.$$

Moreover, we have

$$\delta(\omega_{\ell}^2\eta) = \omega_{\ell}^2\delta\eta - *(2\omega_{\ell}d\omega_{\ell}\wedge *\eta)$$

on M. Also, for a 1-form η , $\delta \eta = -\nabla^i \eta_i$. Hence we have

$$\begin{split} \delta(\omega_{\ell}^{2}\eta) &= \omega_{\ell}^{2} \{ -\nabla^{i}(A_{i}^{c}A^{b}g_{bc}) \} - *(2\omega_{\ell}d\omega_{\ell} \wedge *\eta) \\ &= -\omega_{\ell}^{2} \{ (\nabla^{i}A_{i}^{c})A^{b}g_{bc} + A_{i}^{c}\nabla^{i}A^{b}g_{bc} \} - *(2\omega_{\ell}d\omega_{\ell} \wedge *\eta) \\ &= -\omega_{\ell}^{2} \{ A^{c}A_{b}g_{bc} \} - \omega_{\ell}^{2}A_{i}^{c}\nabla^{i}A^{b}g_{bc} - *(2\omega_{\ell}d\omega_{\ell} \wedge *\eta) \\ &= -|\omega_{\ell}T|^{2} - <\omega_{\ell}df, \omega_{\ell}\nabla T > - *(2\omega_{\ell}d\omega_{\ell} \wedge *\eta). \end{split}$$

Since $*(d\omega_{\ell} \wedge *\eta) = (d\omega_{\ell})_i \eta^i = < d\omega_{\ell}, \eta >$, we have $\delta(\omega_{\ell}^2 \eta) = -|\omega_{\ell} T|^2 - < \omega_{\ell} df, \omega_{\ell} \nabla T > -2 < d\omega_{\ell}, \omega_{\ell} \eta > .$

By integration, we have

$$0 = \|\omega_{\ell} T\|_{B(2\ell)}^2 + \ll \omega_{\ell} df, \omega_{\ell} \nabla T \gg_{B(2\ell)} + 2 \ll d\omega_{\ell}, \omega_{\ell} \eta \gg_{B(2\ell)}.$$

By Schwartz's inequality and $|d\omega_{\ell}| \leq C/\ell$, we get

$$0 \geq \|\omega_{\ell} T\|_{B(2\ell)}^2 - \|\omega_{\ell} df\| \|\omega_{\ell} \nabla T\|_{B(2\ell)} - \frac{C}{\ell} \|\omega_{\ell} \eta\|_{B(2\ell)}.$$

For any finite energy map f, i.e., $|df| \in L^2(M)$, letting $\ell \to \infty$, we have

$$0 \ge ||T||^2 - ||df|| ||\nabla T||.$$

From this inequality, we have the following:

Theorem 4.4. Let M be a complete Riemannian manifold. If a mapping $f: M \to N$ has a finite energy and $\nabla T = 0$, then f is harmonic.

REFERENCES

- [1] P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), 261-266.
- [2] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
- [3] R. M. Schoen and S. T. Yau, Harmonic maps and the topoloty of stable hypersurfaces and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 51 (1976), 333-341.
- [4] H. H. Wu, The Bochner technique in differential geometry, Mathematical reports 3 (1988), 289-538.

DEPARTMENT OF MATHEMATICS, CHEJU NATIONAL UNIVERSITY, CHEJU 690-756, KOREA

Received February 21, 1997

Revised May 13, 1997