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ABSTRACT. In this paper,we define the locally nilpotent space as the extensive
concept of the nilpotent space and the condition $(T^{*})$ and $(T^{**})$ . We study the
conditions that locally nilpotent space has a fixed point free deformation with
relation to the condition $(T^{**})$ .

1. Introduction

There are many results on the nilpotent space with respect to the homotopy

equivalence,localization,completion and Euler characteristic [3,7,8,9,].

In this paper, we define the locally nilpotent spaces as the extensive con-

cept of the nilpotent space. There is an effort applying the fixed point free

deformation property to the space satisfying condition $(T^{**})$ .

We make some results of the locally nilpotent spaces with relation to the

condition $(T^{*})$ and $(T^{**})$ . Furthermore, we study the homotopy equivalent

conditions of the locally nilpotent spaces and spaces satisfying condition $(T^{**})$ .
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The problems of the fixed point free deformation of the spaces satisfying con-

dition $(T^{**})$ by use of the Euler charateristic number will be studied. We work

in the category of the connected CW-complexes with base point and denoted

as the $T$ .

2. Some properties of the conditions $(T^{*})$ and $(T^{**})$

In this section, we define the locally nilpotent space and condition $(T^{**})$ and

study their properties respectively. We recall that locally nilpotent group is the

group whose all finitely generated subgroups are nilpotent groups [10].

We know that a space $X(\in T)$ is said to be a nilpotent space if

(1) $\pi_{1}(X)$ is a nilpotent group,

(2) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2[1]$ .

And we denote the category of nilpotent spaces and continuous maps as $T_{N}$ .

Now we extend the concept of the nilpotent spaces like following;

Deflnition 2.1. A space $X(\in T)$ is said to be a locally nilpotent space if

(1) $\pi_{1}(X)$ is a locally nilpotent group,

(2) the action $\pi_{1}(X)\times\pi_{\mathfrak{n}}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $\geq 2$ .

And we denote the category of locally nilpotent spaces and continuous maps

as $T_{LN}$ .

We know that the category $T_{N}$ is a full subcategory of $T_{LN}$ .

Generally, for a group $G$ and a fixed $g\in G$ , we denote by $[g, G]$ the sub-

group of $G$ generated by all commutators $[g, a],wherea\in G$ Since $[g, a]^{b}=$

$[g, b]^{-1}$ [$g$ , ab] for each $a,$ $b\in G$ (where $a^{b}=b^{-1}$ ab), we know that [g,G] is a

normal subgroup of G.
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Definition 2.2. We say that a space $X(\in T)$ satisfies condition $(T^{*})$ if for

all $g,$ $t\in\pi_{1}(X)$

either $g[g, \pi_{1}(X)]=t[t, \pi_{1}(X)]$

or $ g[g, \pi_{1}(X)]\cap t[t, \pi_{1}(X)]=\phi$ .

Lemma 2.3 [4]. Let $G$ be an arbitrary group. If $b\in a[a, G](a, b\in G)$ then

$b[b, G]\subset a[a, G]$ .

The following lemma is followed by the topological reformation of the locally

nilpotent group [4].

Lemma 2.4. For $X\in T_{LN}$ , then $X$ satisfies th $e$ con $di$tion $(T^{*})$ .

Proof. Since $\pi_{1}(X)$ is a locally nilpotent group, suppose $ c\in a[a, \pi_{1}(X)]\cap$

$b[b, \pi_{1}(X)]$ for some $a,$ $b,$ $c\in\pi_{1}(X)$ . We only show that $a[a, \pi_{1}(X)]=b[b, \pi_{1}(X)]$ .

By Lemma 2.3,

$c[c, \pi_{1}(X)]\subset a[a, \pi_{1}(X)]\cap b[b, \pi_{1}(X)]\cdots\cdots\cdots\cdots\cdots(*)$

Clearly, $c=h^{-1}a$ for some $h=\prod_{i=1}^{m}[a, g_{i}]^{\epsilon_{i}}\in[a, \pi_{1}(X)](gi\in\pi_{1}(X), \epsilon i=\pm 1)$ .

Let $G_{1}=<a,$ $g_{1},$ $\cdots$ , $g_{m}>$ . Since $a=hc,$ $h\equiv\prod_{i=1}^{m}[h, g_{i}]^{\epsilon_{i}}$ modulo $[c, G_{1}]$ ,

that is, $h=\prod_{i=1}^{n\iota}[h, g_{i}]^{\epsilon;}$ in $\frac{G_{1}}{[c,G_{1}]}$ However, since the groups $G_{1}$ is nilpotent it

follows that $h=1$ in $\frac{G_{1}}{[c,G_{1}]}$ and $h\in[c, G_{1}]$ . Therefore, $a=hc\in c[c, \pi_{1}(X)]$ and

by Lemma 2.3, $a[a, \pi_{1}(X)]\subset c[c, \pi_{1}(X)]$ . It follows from (*)that $a[a, \pi_{1}(X)]=$

$c[c, \pi_{1}(X)]$ .

Similary, $b[b, \pi_{1}(X)]=c[c, \pi_{1}(X)]$ and consequently, $a[a, \pi_{1}(X)]=b[b, \pi_{1}(X)]$ .

Lemma 2.5. For $X(\in T)$ , the following conditiolns are $eq$ uivalent.

(1) $X$ satisfies the condition $(T^{*})$ .
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(2) For each $a,$ $b\in\pi_{1}(X),$ $a[a, \pi_{1}(X)]\subset b[b, \pi_{1}(X)]$

$\Rightarrow a[a, \pi_{1}(X)]=b[b, \pi_{1}(X)]$ .

(3) For each $a\in\pi_{1}(X),$ $h\in[a, \pi_{1}(X)]\Rightarrow[ah, \pi_{1}(X)]=[a, \pi_{1}(X)]$ .

Proof. By use of the Lemma 2.3 and Dokuchaev’s result of $[4,Lemma3.1]$ , our

proof is completed.

Theorem 2.6. For $X\in T_{LN}$ , if $b\in[a, \pi_{1}(X)]$ then $a[a, \pi_{1}(X)]=b[b, \pi_{1}(X)]$ ,

for $a,b\in\pi_{1}(X)$ .

Proof. By Lemma 2.3, we know $b[b, \pi_{1}(X)]\subset a[a, \pi_{1}(X)]$ and by Lemma 2.4,

$X$ satisfies the condition $(T^{*})$ . Thus our proof is completed by Lemma 2.5.

Now we define effective concept with respect to the locally nilpotent space.

Deflnition 2.7. For $X\in T$ , we say that $X$ satisfies the condition $(T^{**})$

if for all $g(\neq 1)\in\pi_{1}(X)$ , then $g\not\in[g, \pi_{1}(X)]$ .
Since the $[g, \pi_{1}(X)]$ is a normal subgroup of $\pi_{1}(X)$ , condition $(T^{**})$ is a

homotopy invariant property.Furthermore the condition $(T^{**})$ is more powerful

than the condition $(T^{*})$ in the point of view of homotopy invariant property in

general.

In fibration $F\rightarrow E\rightarrow B,any$ path $\alpha$ : $I\rightarrow B$ and singular q-complex $g$ :

$\triangle^{q}\rightarrow p^{-1}(\alpha(0))$ determine a map $G:\triangle^{q}\times I\rightarrow E$ over $\alpha opr_{2}$ : $\triangle^{q}\times I\rightarrow I\rightarrow B$

and extending $G_{0}=g$ : $\triangle^{q}\times\{0\}\rightarrow E$ . If $\alpha$ is a loop ,then $G_{1}$ : $\triangle^{q}\times\{1\}\rightarrow E$

is a q-simplex in $p^{-1}(\alpha(1)=p^{-1}(\alpha(0))$ . Now do elements of $\pi_{1}(B)$ operate on

$H_{*}(F)$ .

Definition 2.8. A fibration $F\rightarrow E\rightarrow B$ is said to be quasi-nilpotent if the

action of $\pi_{1}(B)$ on $H_{*}(F)$ is nilpotent, $*\geq 0$ .
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Theorem 2.9. For $X\in T_{LN},$ $X$ satisfies the condition $(T^{**})$ .

Proof. Assume that $g\in[g, \pi_{1}(X)]$ for some $g(\neq 1)\in\pi_{1}(X)$ . Then $ g^{-1}\in$

$[g, \pi_{1}(X)]$ and $1\in g[g, \pi_{1}(X)]$ . Thus $ g[g, \pi_{1}(X)]\cap 1[1, \pi_{1}(X)]\neq\phi$ . Since $X$

satisfies the condition $(T^{*})$ by Lemma 2.4, $g[g, \pi_{1}(X)]=1$ . Since $ g(\neq 1)\in$

$g[g, \pi_{1}(X)]$ , we have a contradiction.

3. An applications to the flxed point free deformation of the space

satisfying condition $(T^{**})$

In this section we make results with relation to the fixed point free deforma-

tion of the locally nilpotent spaces and spaces satisfying condition $(T^{**})$ by use

of the Euler characteristic number. Furthermore,we study about the condition

that the spaces satisfying the condition $(T^{**})$ are homotopy equivalent.

We know the following; if $\pi_{1}(X)$ is a nilpotent group then there exist finite

upper central series of $\pi_{1}(X)$ by the virtue of center of $\pi_{1}(X)[7]$ .

Lemma 3.1. For $X$ satisfying condition $(T^{**})$ with

(1) $\pi_{1}(X)$ finite,

(2) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2$ ,

then $X\in T_{N}$ .

Proof. We only prove that $\pi_{1}(X)$ is a nilpotent group under the above hypoth-

esis. So assume that $\pi_{1}(X)$ is not nilpotent,then we don’t have finite upper

central series of $\pi_{1}(X)$ . If $Z_{n}(\pi_{1}(X))$ denote the $n-th$ center of $\pi_{1}(X)$ , we can

find an integer $\gamma l$ such that $Z_{n+1}(\pi_{1}(X))=Z_{\iota}(\pi_{1}(X))\subsetneq\pi_{1}(X)$ . It follows that

if $x\not\in Z_{n}(\pi_{1}(X))$ , then $[x, \pi_{1}(X)]\not\leqq Z_{r\iota}(\pi_{1}(X))$ . Choose any $x_{1}\not\in Z_{r\iota}(\pi_{1}(X))$ ,

we know $[x_{1}, \pi_{1}(X)]\not\subset Z_{\tau\iota}(\pi_{1}(X))$ by above. If $x_{1}\in[x_{1}, \pi_{1}(X)]$ then we have
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shown that the condition $(T^{**})$ does not hold, as required, so assume $ x_{1}\not\in$

$[x_{1}, \pi_{1}(X)]$ . Then choose $x_{2}\in[x_{1}, \pi_{1}(X)],$ $x_{2}\not\in Z_{n}(\pi_{1}(X))$ . Since $[x_{1}, \pi_{1}(X)]$

is a normal subgroup of $\pi_{1}(X),$ $[x_{2}, \pi_{1}(X)]\subseteq[x_{1}, \pi_{1}(X)]$ . If $x_{2}\in[x_{2}, \pi_{1}(X)]$ ,

we are done.

Otherwise, we have $[x_{2}, \pi_{1}(X)]\subseteq[x_{1}, \pi_{1}(X)]$ but also we noted $[x_{2}, \pi_{1}(X)]\not\subset$

$Z_{n}(\pi_{1}(X))$ . So pick $x_{3}\in[x_{2}, \pi_{1}(X)],$ $x_{3}\not\in Z_{n}(\pi_{1}(X))$ and continue. Since

$\pi_{1}(X)$ is finite, this process must stop. After all we have $\alpha$ for which $ x_{\alpha}(\neq 1)\in$

$[x_{\alpha}, \pi_{1}(X)]$ . This is a contradiction to the fact that $X$ satisfies the condition

$(T^{**})$ . Thus we know that $\pi_{1}(X)$ is nilpotent group. Thus our proof is completed.

We recal that map $f$ : $X\rightarrow X$ is caled a fixed point free deformation if $f$

has no fixed point and is homotopic to $1_{X}[2]$ .

Lemma 3.2 [3]. ff $X$ is a polyhedron and $\chi(X)=0$ , then $X$ adimits a fixed

point free deformation.

Lemma 3.3 [5]. For finite $X$ if $\pi_{1}(X)$ contains a torsion free normal abelian

$su$bgroup $A\neq 1$ which acts nilpotently on $H_{*}(\tilde{X})$ then $\chi(X)=0$ .

Theorem 3.4. For finite $X$ satisfying condition $(T^{**})$ , if

(1) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2$

(2) $\pi_{1}(X)$ is ffiite

then $X$ adimits a fixed point free deformation.

Proof. When $\pi_{1}(X)$ is finite, since $X$ satisfies the condition $(T^{**})$ and by

Lemma 3.1, $\pi_{1}(X)$ is nilpotent group. Since $X\in T_{N}$ , $\chi(\tilde{X})=\chi(X)$ and

another general property $\chi(\tilde{X})=|\pi_{1}(X)|\chi(X)[9]$ where $|$ $|$ means the or-

der of $\pi_{1}(X)$ and $\tilde{X}$ means the univeral covering space of $X$ . If $\pi_{1}(X)\neq 1$ ,
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$\chi(X)=0$ . Thus $X$ admits a fixed point free deformation by Lemma 3.2.

We recall that a group $G$ satisfies the maximal condition if it has no infinite

strictly increasing chain of subgroups [10].

Theorem 3.5. For finite $X(\in T_{LN})$ if

either $\pi_{1}(X)$ is infinite with the maximal condition on normal $su$bgroups of

$\pi_{1}(X)$

or $\pi_{1}(X)(\neq 1)$ is finite

then $X$ admits a fixed poin $t$ free deformation.

Proof. (case 1) When $\pi_{1}(X)$ is finite,we know that $X$ satisfies the condition

$(T^{**})$ by the Theorem 2.9. By the similar method of the Theorem 3.3 we get

$\chi(X)=0$ .

(case 2) When $\pi_{1}(X)$ is infinite and $\pi_{1}(X)$ has maximal condition on normal

subgroups then $\pi_{1}(X)$ is a finitely generated nilpotent group. Thus $\pi_{1}(X)$ has

the center as the infinite normal abelian subgroup which acts nilpotently on

$H_{*}(\tilde{X})$ then by Lemma 3.3 we have $\chi(X)=0$ .

At any cases, $X$ admits a fixed point free deformation by Lemma 3.2.

Theorem 3.6. For finite $X$ satisfying condition $(T^{**})$ , suppose that

(1) the map $f$ : $\tilde{X}\rightarrow X$ is a universal covering map with the condition

that $\pi_{1}(X)(\neq 1)$ is finite

(2) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2$

then $\tilde{X}$ also a $dmit_{c}\backslash $ a fixed point free deformation.

Proof. Since $\chi(\tilde{X})=|\pi_{1}(X)|\chi(X)$ where $|$ $|$ means the order of $\pi_{1}(X)$ and $\tilde{X}$

means the univeral covering space of $X,andX\in T_{N}$ by Lemma 3.1, $\chi(X)=0$
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and $\chi(\tilde{X})=0$ . Thus our proof is completed.

In fibration $F_{f}\rightarrow E\rightarrow fB$ , if reduced homology group $\tilde{H}_{*}(F_{f})=0$ , $*\geq 0$

we call that $f$ is an acyclic map, where $F_{f}$ is a homotopy fiber of $f$ .

Theorem 3.7. For finite $X$ satisfying condition $(T^{**})$ , if

(1) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2$

(2) $f$ : $X\rightarrow Y$ is an acyclic $map$ with $\pi_{1}(X)$ finite

then $Y$ also admits a fixed $p$oin $t$ free deformation.

Proof. By Lemma 3.1 , $\pi_{1}(X)$ is a nilpotent group. Thus $X\in T_{N}$ . From

the fact that $f$ : $X\rightarrow Y$ is an acyclic map and the classical homotopy exact

sequence of fibration : $F_{f}\rightarrow X\rightarrow fY$ , we know that $\pi_{1}(f)$ is an epimorphism.

$\pi_{1}(F_{f})$ is a perfect group and the homomorphic image of a perfect group is

also a perfect group. Thus $\pi_{1}(X)\cong\frac{\pi_{1}(Y)}{P\pi_{1}(X)}$ where $P\pi_{1}(X)$ means a perfect

normal subgroup of $\pi_{1}(X)$ . Since $X\in T_{N}$ , we have $\chi(X)=0$ under the above

hypothesis and $P\pi_{1}(X)$ is trivial. Thus $\pi_{1}(f)$ is an isomorphism. By use of

the Hurewicz Theorem inductively, $\pi_{i}(F_{f})=0$ . Thus $f$ is a weak homotopy

equivalence. By the Whitehead Theorem [6], $f$ is a homotopy equivalence.

Therefore, our proof is completed.

Theorem 3.8. For fini$teX$ satisfying the condition $(T^{**}),if$

(1) $f$ : $X\rightarrow Y$ is quasi-nilpotent homology equivalence with $\pi_{1}(X)$ fini $te$

(2) the action $\pi_{1}(X)\times\pi_{n}(X)\rightarrow\pi_{n}(X)$ is nilpotent for all $n\geq 2$ ,

then $Y$ admits a fixed point free deformation.

Proof. By Lemma 3.1, $X$ is a nilpotent space and so the homotopy fiber $F_{f}$ of $f$

is also nilpotent space. Rom the fact that $f$ is quasi-nilpotent,we know that $Y$
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is a nilpotent space, and $f$ is a homotopy equivalence.We get $\chi(Y)=0$ . Thus

our proof is completed by Lemma 3.2.
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