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Set of $3\times 3$ Orthostochastic Matrices

Hiroshi NAKAZATO

Abstract. $A$ $3\times 3$ matrix $(a;,;)$ is $s$ai $d$ to be orthostochas $tic$ if there exists a $3\times 3$

uni $t$ary matrix $(ui,j)$ such that $a;,;=|u;,;|^{2}$ for every $1\leq i,j\leq 3$ . Denote by $O_{3}$ th $e$

set of ail $3\times 3$ orthostochastic matrices. In this paper, the author characterizes the set
$O_{3}$ and applies it to the determination of $certain\cdot genera1ized$ numerical ranges of $3\times 3$

complex diagonal matrices.

1. Introduction and Results.

Let $A_{\mathfrak{n}}$ be the afBne space of all real $n\times n$ matrices whose all row and column sums
are equal to 1. A matrix $(ai,j)\in A_{n}$ is said to be doubly stochasic if its entries are
nonnegative. Denote by $D_{n}$ the compact convex set of al $n\times n$ doubly stochastic
matrices. An element $(a;,j)\in D_{n}$ is said to be orthostochasic if there exists an $n\times n$

unitary matrix $(u;,J)$ such that $at,l=|u;,;|^{2}$ for every $1\leq i,j\leq n$ . Denote by $O_{n}$ the
compact set of all $n\times n$ orthostochastic matrices. It is clear that $D_{2}=O_{2}=\{gog$ :
$g\in SO(2)\}$ where $0$ denotes the Hadamard (Schur, entrywise) product. In this paper
we treat the set $O_{3}$ . Define two $3\times 3$ matrices $C_{0},$ $U_{0}$ by

$C_{0}=\left(\begin{array}{lll}l/3 & 1/3 & 1/3\\l/3 & l/3 & 1/3\\l/3 & l/3 & l/3\end{array}\right)$ , (1.1)

$U_{0}=\sqrt{1/3}\left(\begin{array}{lll}l & 1 & 1\\l & \omega & \omega^{2}\\1 & \omega^{2} & \omega^{4}\end{array}\right)$ (1.2)

where $\omega=\exp(i2\pi/3)$ . Then $U0$ is a unitary matrix and $U_{0}o\overline{U_{0}}=C_{0}$ . Thus $C_{0}$ is
an element of $O_{3}$ . The structure of the set $O_{3}$ is deeply related with properties of the
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$c$-numerical range of a $3\times 3$ complex diagonal matrix. Define a linear functional $\Psi$ on

the set $M_{3}(C)$ by

$\Psi(\left(\begin{array}{lll}x_{ll} & x_{12} & x_{13}\\x_{2l} & x_{22} & x_{23}\\x_{3l} & x_{32} & x_{33}\end{array}\right))=X11+X12+X13+x21+x22+X23+X31+x32+X33$ .

For $3\times 3$ complex matrices $C,A$ , define $W(C, A)$ by the relation

$W(C,A)=$ {$tr(AUBU^{*});U$ is a3by 3unitary matrix}. (1.3)

The set $W(C, A)$ is said to be the C-numencal range of $A$ . We easily see that $W(C,A)=$
$W(A,C)$ .

In the case $C=diag\{c_{1},c_{2},c_{3}\}$ with $c=(c_{1}, c_{2}, c_{3})\in C^{3}$ , the range $W(C,A)$ is

denoted by $W_{c}(A)$ . We easily obtain the relation

$W_{c}(A)=\{c_{1}(A\xi_{1},\xi_{1})+c_{2}(A\xi_{2},\xi_{2})+c_{3}(A\xi_{3},\xi_{3})$ : $\{\xi_{1},\xi_{2},\xi_{3}\}$ is an orthonormal

basis of $C^{3}$ }. (1.4)

$W_{c}(A)$ is said to be the $c- nume\dot{n}cal$ range of $A$ . In the case $A=diag\{a_{1}, a_{2}, a_{3}\}$ with
$(a_{1},a_{2},a_{3})\in C^{3}$ , we easily obtain the equation

$W_{c}(diag\{a_{1},a_{2},a_{3}\})=\{\Psi(\left(\begin{array}{lll}c_{l}a_{l} & c_{l}a_{2} & c_{l}a_{3}\\c_{2}a_{l} & c_{2}a_{2} & c_{2}a_{3}\\c_{3}a_{1} & c_{3}a_{2} & c_{3}a_{3}\end{array}\right)oX) : X\in O_{3}\}$ . (1.5)

In [1] , Y. H. Au-Yeung and Y. T. Poon gave a necessary and sufficient condition for
$(a;,j)\in D_{3}$ to be orthostochastic. They also proved that 1) $\lambda C_{0}+(1-\lambda)(a_{i,j})\in O_{3}$

for every $0\leq\lambda\leq 1,$ $(ai,j)\in O_{3}$ and 2) $(\lambda/3)(c_{1}+c_{2}+c_{3})(a_{1}+a_{2}+a_{3})+(1-\lambda)z\in$

$W_{c}(diag\{a_{1},a_{2},a_{3}\})$ for every $0\leq\lambda\leq 1,$ $z\in W_{c}(diag\{a_{1},a_{2},a_{3}\})$ .
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One aim of this paper is to give a concrete parametrizations of $O_{3}$ and its boundary
$\partial O_{3}$ . Since each matrix $(ai,j)\in A_{3}$ satisfies the conditions $a_{13}=1-a_{11}-a_{12},$ $a_{23}=$

$1-a_{21}-a_{22},$ $a_{31}=1-a_{11}-a_{21},$ $a_{32}=1-a_{12}-a_{22},a_{33}=a_{11}+a_{12}+a_{21}+a_{22}-1$ ,
we parametrize the entries $a_{11},$ $a_{12},$ $a_{21},$ $a_{22}$ of $(a;,;)\in O_{3}$ . We recall that a concrete
parametrization of the rotation group $SO(3)$ is given by Eulerian angles, in other words,
by using the Cartan decomposition $G=K$ $A$ $K$ of the group $G=SO(3)$ where $K$ and
$A$ are isomorphic to $SO(2)(cf.[3]p.7)$ . We prove the following theorem.

Theorem 1.1. The compact se$tO_{3}$ of all $3\times 3$ orthostochastic matrices coincides $w|i$th
the set

$\{\lambda C_{0}+(1-\lambda)gog : 0\leq\lambda\leq 1,g\in SO(3)\}$ , (1.6)

an $d$ hence the set $O_{3}$ is parametrized as the following:

$O_{3}=\{($
$a_{21}a_{11}$ $a_{12}a_{22}$

$)\in A_{3}$ : $a_{11}=(\lambda/3)+(1-\lambda)x,a_{12}=(\lambda/3)+(1-\lambda)(1-x)t$ ,

$a21=(\lambda/3)+(1-\lambda)(1-x)s$ , a22 $=(\lambda/3)+(1-\lambda)\{xts+(1-t)(1-s)+$

$2\epsilon\sqrt{xt(1-t)s(1-s)}\},$ $0\leq\lambda,$ $x,$ $t,$ $s\leq 1,$ $\epsilon\in\{+1, -1\}\}$ . (1.7)

Another aim of this paper is to give a characterization of the range $W(C, A)$ for
complex diagonal 3 $x3$ matrices $C,$ $A$ which is more quantitative than that of [1]. For
this aim, we prove the following theorem.

Theorem 1.2. $Su$ppose that $C$ and $A$ are 3 by 3 complex diagonal matrices. Then the
equation

$W(C, A)=$ {$tr(Cg$ A $g^{\ell});g\in SO(3)$ } (1.8)

holds, where $g^{\ell}$ denotes the transpose of the matrix $g$ .
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We shall determine the range $W(C, A)$ for $3\times 3$ complex diagonal matrices $A,$ $C$ .

If the eigenvalues $a_{1},$ $a_{1},$ $a_{3}$ of $A$ lie on a straight line on the complex plane, then by

results of [1] and [5], the range $W(C, A)$ is convex and coincides with the convex hull of

the 6 points

$\{a_{1}c_{\sigma(1)}+a_{2}c_{\sigma(2)}+a_{3}c_{\sigma(3)} : \sigma\in S_{3}\}$ . (1.9)

Therefore we may assume that $ai\neq a$; for $1\leq i<j\leq 3$ and the three points $a_{1},$ $a_{2},$ $a_{3}$

lie on a circle with radius $r\in(O, \infty)$ on the complex plane. Since $W(C,A)=W(A, C)$ ,

we may assume that the eigenvalues $c_{1},$ $c_{2},$ $c_{3}$ of $C$ also lie on a circle. By using

rotations, translations and dilations, we may assume that $A=diag\{a_{1},a_{2},a_{3}\}$ and

$C=diag\{c_{1},c_{2},c_{3}\}$ are elements of the group $SU(3)$ satisfying $ai\neq ajq\neq Cj$ for

$1\leq i<j\leq 3$ . To state the figure of the range $W(C,A)$ , we introduce an algebraic

curve. Define a simple closed curve $\Gamma$ on the plane $C$ by the equation

$\Gamma=\{2\exp(it)+\exp(-2it):0\leq t\leq 2\pi\}$

$=\{z=x+iy:(x,y)\in R^{2}, (x^{2}+y^{2})^{2}+24xy^{2}-8x^{3}+18(x^{2}+y^{2})-27=0\}$ . (1.10)

The curve $\Gamma$ is called a deltoid. We denote by $D$ the closed domain surrounded by $\Gamma$ :

$D=\{2r\exp(it)+r\exp(-2it):0\leq t\leq 2\pi,0\leq r\leq 1\}$ .

Then we have the equation

$D=\{\exp(is)+\exp(it)+\exp(iu):(s,t,u)\in R^{3}, s+t+u\equiv 0mod.2\pi\}$ . (1.11)

For the point $z=\exp(is)+\exp(it)+\exp(iu)$ with $(s,t,u)\in R^{3},$ $ s+t+u\equiv 0mod.2\pi$

to belong the boundary $\Gamma$ , it is necessary and sufficient that the condition

$(\exp(it)-\exp(is))(\exp(it)-\exp(iu))(\exp(is)-\exp(iu))=0$ (1.12)

holds. We have the following theorem.
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Theorem 1.3. Suppose that $A=diag\{a_{1}, a_{2}, a_{3}\},$ $C=diag\{c_{1}, c_{2}, c_{3}\}$ are elements of

the group $SU(3)$ with $a;\neq aj,$ $c;\neq c$; for $1\leq i<j\leq 3$ . Set

$V+=\{a_{1}c_{1}+a_{2}c_{2}+a_{3}c_{3}, a_{1}c_{2}+a_{2}c_{3}+a_{3}c_{1},a_{1}c_{3}+a_{2}c_{1}+a_{3}c_{2}\}$ ,

$V_{-}=\{a1^{C}1+a2^{C}3+acac+a2^{C}2+ac,$ $a+a2^{C}1+a3^{C}3\}$ .

Then the boun $d$ary $\partial W(A, C)$ of the range $W(A, C)$ in the plane $C$ satisfies the inclusion

$\partial W(A, C)\subset\Gamma\cup\{tz_{1}+(1-t)z_{2} : 0\leq t\leq 1, z_{1}\in V+, z_{2}\in V_{-}\}$ . (1.13)

Remark. We assume that the assumptions of Theorem 1.3 hold. Then, for every
$z_{1}\in V_{+},$ $z_{2}\in V_{-}$ the straight line $L(z_{1}, z_{2})$ passing through $zz$ , i.e.,

$L(z_{1}, z_{2})=\{tz_{1}+(1-t)z_{2} : t\in R\}$

is a $t$angent line of the deltoid $\Gamma$ at some non-singular point of $\Gamma$ or at one of3 $c$usps of
F.

2. Parametrization of the set of 3 $x3$ orthostochastic matrices.

$ $ this section we shall prove Theorems 1.1 and 1.2. First we observe the
condition $(^{*})$ of Au-Yeung and Poon in [1, p.70]. We use the following equation for real

numbers $a,$ $b,$ $c$ :

$a^{4}+b^{4}+c^{4}-2a^{2}b^{2}-2b^{2}c^{2}-2c^{2}a^{2}=(a+b+c)(a-b-c)(b-c-a)(c-a-b)$ . $(2.1)$

The following simultaneous inequalitities for non-negative real numbers $a,$ $b,$ $c$ ,

$a\leq b+c,$ $(2.2)b\leq c+a,$ $(2.3)c\leq a+b(2.4)$

are equivalent to the inequality

$a^{4}+b^{4}+c^{4}-2a^{2}b^{2}-2b^{2}c^{2}-2c^{2}a^{2}\leq 0$ . (2.5)
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We define a polynomial function $F$ on $A_{3}$ by

$F(\left(\begin{array}{lll}a_{ll} & a_{l2} & a_{l3}\\a_{2l} & a_{22} & a_{23}\\a_{3l} & a_{32} & a_{33}\end{array}\right))$

$=a_{11}^{2}a_{12}^{2}+a^{2}a^{2}+a^{2}a^{2}-2a_{11}a_{12}a_{21}a22-2a_{11}a12a31a32-2a21a22a31a$ . (2.6)

Then the function $F$ is expressed as the following:

$F=F(a11,a12,a21,a22)$

$=a_{11}^{2}a_{22}^{2}+a_{12}^{2}a_{21}^{2}-2a_{11}a_{12}a_{21}a_{22}-2a_{11}a_{22}(a_{11}+a_{22})-2a_{12}a_{21}(a_{12}+a_{21})$

$-2(a_{11}a_{12}a_{21}+a_{11}a_{12}a_{22}+a_{11}a_{21}a_{22}+a_{12}a_{21}a_{22})+a_{11}^{2}+a_{12}^{2}+a_{21}^{2}+a_{22}^{2}$

+2 $(a_{11}a_{12}+a_{11}a_{21}+a_{12}a_{22}+a_{21}a_{22}+2a_{11}a_{22}+2a_{12}a_{21})$

$-2(a_{11}+a_{12}+a_{21}+a_{22})+1$ . (2.7)

Lemma 2.1. ( cf.[l], Theorem 3) If $(a_{r,s})\in O_{3}$ and $0\leq\alpha<1$ , then the matrix
$a\cdot(a_{r,s})+(1-\alpha)\cdot C_{0}$ satisfies the strict inequality

$\sqrt{(\alpha a_{\ell,j}+(1-\alpha)/3)(\alpha a_{\ell,k}+(1-\alpha)/3)}$

$<\sum_{1\leq 1\leq 3,i\neq\ell}\sqrt{(aa:,j+(1-a)/3)(aa:,k+(1-a)/3)}$ (2.8)

for every $1\leq\ell\leq 3,1\leq j\neq k\leq 3$ .
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Proof For simplicity we assume that $j=1,$ $k=2$ . By the condition $0\leq a<$. $1$ , the
inequality in [1, p.73, lines 3,4] is replaced by strict one:

$\sum_{1\leq p\leq 3,p\neq\ell}(aa_{p,1}+(1-a)/3)$
(a $a_{p,2}+(1-a)/3$ )

$+2$ $(a\sqrt{(aa_{p,1}+(1-a)/3)}$ $(a\sqrt{(aa_{p,2}+(1-a)/3)}$

. $(a\sqrt{(aa_{q,1}+(1-a)/3)}\sqrt{(aa_{q,2}+(1-a)/3)}$

$>\sum_{1\leq p\leq 3,p\neq\ell}[[a^{2}a_{p,1}a_{p,2}+\{(a(1-a))/3\}(a_{p,1}+a_{p,2})+\{(1-a)/3\}^{2}]$

Here $1\leq p<q\leq 3,p\neq\ell,$ $ q\neq\ell$ . The proof of Lemma 2.4 is complete.

For every $(b_{11}, b_{12}, b_{21}, b_{22})\in R^{4}\backslash \{(0,0,0,0)\}$ , we set

$B(b_{11}, b_{12}, b_{21}, b_{22})=\left(\begin{array}{lll}b_{1l} & b_{12} & -(b_{l1}+b_{12})\\b_{21} & b_{22} & -(b_{2l}+b_{22})\\-(b_{1l}+b_{21}) & -(b_{12}+b_{22}) & b_{1l}+b_{12}+b_{2l}+b_{22}\end{array}\right)$ .

Then, by [1] Theorem 1 and [1] Theorem 3, there exits $ 0<\lambda=\lambda(b_{11}, b_{12}, b_{21}, b_{22})<\infty$

such that

$\{t\in R:t\geq 0, C0+tB(b11b12, b21, b_{22})\in O_{3}\}=\{t\in R:0\leq t\leq\lambda\}$ . (2.9)

Thus we obtain the following proposition by combining Lemma 2.1 and Theorems 1 and
3 of [1].
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Proposition 2.2. Suppose that $F$ is the polynomi$al$ function on the space $A_{3}$ given

by (2.6). Then the sets $O_{3}$ and $\partial O_{3}$ are characterized as the following:

$O_{3}=$ $\{(a_{21}a_{11} a_{12}a_{22} )\in D_{3} : F(a_{11},a_{12},a_{21},a_{22})\leq 0\}$ (2.10)

and

$\partial O_{3}=$ $\{(a_{11}a_{21} a_{12}a_{22} )\in D_{3} : F(a_{11},a_{12},a21a_{22})=0\}$ . (2.11)

Next we shall prove that $\partial O_{3}=\{gog : g\in SO(3)\}$ .

Proposition 2.3. Every point of $\{gog;g\in SO(3)\}$ belongs to the boundaiy $ofO_{3}$ in

the space $A_{3}$ .

Proof The set $\{gog : g\in SO(3)\}$ is represented as the following (cf.[3], p.7):

$\{gog;g\in SO(3)\}=\{(a_{11}a_{21}$
$a_{12}a_{22}$

$)\in A_{3}$ : $a_{11}=u_{1}^{2},$ $a_{12}=(1-u_{1}^{2})(1-u_{2}^{2})$ ,

$a_{21}=(1-u_{1}^{2})(1-u_{3}^{2}),$ $a_{22}=u_{1}^{2}(1-u_{2}^{2})(1-u_{3}^{2})+u_{2}^{2}u_{3}^{2}-2u_{1}u_{2}u_{3}v_{2}v_{3}$

for some $u_{1},u_{2},u_{3},v_{1},v_{2},v_{3}\in R$ satisfying $u_{1}^{2}+v_{1}^{2}=u_{2}^{2}+v_{2}^{2}=u_{3}^{2}+v_{3}^{2}=1$ }. (2.12)

In the expression of $F$ , we substitute $ai,j(1\leq i,j\leq 2)$ by their expressions appearing
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in (2.11):

$(1/4)F(a;,;(u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}))$

$=(u_{1}^{2}u_{2}^{2}u_{3}^{2}-2u_{1}^{4}u_{2}^{2}u_{3}^{2}+u_{1}^{6}u_{2}^{2}u_{3}^{2})v_{2}^{2}v_{3}^{2}-(u_{1}^{2}u_{2}^{2}u_{3}^{2}-2u_{1}^{4}u_{2}^{2}u_{3}^{2}+u_{1}^{6}u_{2}^{2}u_{3}^{2})$

$+(u_{1}^{2}u_{2}^{2}u_{3}^{2}-2u_{1}^{4}u_{2}^{2}u_{3}^{2}+u_{1}^{6}u_{2}^{2}u_{3}^{2})u_{2}^{2}+(u_{1}^{2}u_{2}^{2}u_{3}^{2}-2u_{1}^{4}u_{2}^{2}u_{3}^{2}+u_{1}^{6}u_{2}^{2}u_{3}^{2})u_{3}^{2}$

$-(u_{1}^{2}u_{2}^{2}u_{3}^{2}-2u_{1}^{4}u_{2}^{2}u_{3}^{2}+u_{1}^{6}u_{2}^{2}u_{3}^{2})u_{2}^{2}u_{3}^{2}$ .

Since $v_{j}^{2}=1-u_{j}^{2}(j=2,3)$ , we obtain the conclusion

$F(ai,j(u_{1}, u2, u_{3}, v_{1}, v_{2}, vs))=0$ . $(2.13)$

By Proposition 2.2 and the equation (2.12), we obtain the assertion of Proposition

2.3. The proof of Proposition 2.3 is complete.

If $(a_{p,q})\in D_{3}$ satisfies $a_{11}=1$ , then there exists $\theta\in[0, \pi/2]$ for which

$(a_{p,q})=\left(\begin{array}{lll}1 & 0 & 0\\0 & cos^{2}\theta & sin^{2}\theta\\ 0 & sin^{2}\theta & cos^{2}\theta\end{array}\right)$ .

Therefore, it is sufficient for the completion of the proof of Theorem 1.1 to show the
following.

Proposition 2.4. If

$P=($
$a_{21}a_{11}$ $a_{22}a_{12}$

$)\in\partial O_{3}$

satisfies $0\leq a_{11}<1$ , then $0\leq a_{12}\leq 1-a_{11},0\leq a_{21}\leq 1-a_{11}$ an $da_{22}$ satisfies
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$(1-a_{11})^{2}\cdot a_{22}=a_{11}a_{12}a_{21}+(1-a_{11}-a_{12})(1-a_{11}-a_{21})+2\epsilon\sqrt{a_{11}a_{12}a_{21}}$

$\sqrt{(1-a_{11}-a_{12})(1-a_{11}-a_{21})}$ (2.14)

for some $\epsilon\in\{+1, -1\}$ .

Proof Since $P\in D_{3}$ , we have $0\leq a_{12}\leq 1-a_{11},0\leq a_{21}\leq 1-a_{11}$ . By Proposition

2.2, we have the equation

$(1-a_{11})^{2}\cdot a_{22}^{2}-2\{a_{11}a_{12}a_{21}+(1-a11-a_{12})(1-a_{11}-a_{21})a22$

$+\{a_{12}^{2}a_{21}^{2}-2a_{12}^{2}a_{21}-2a_{12}a_{21}^{2}-2a_{11}a_{12}a_{21}$

$+a_{11}^{2}+2a_{11}a_{12}+a_{12}^{2}+a_{21}^{2}+2a_{11}a_{21}+4a_{12}a_{21}-2a_{11}-2a_{12}-2a_{21}+1\}=0$ .

We consider this as a quadratic equation of $a_{22}$ . Since

$\{a_{11}a_{12}a_{21}+(1-a_{11}-a_{12})(1-a_{11}-a_{21})\}^{2}-(1-a_{11})^{2}\{a_{12}^{2}a_{21}^{2}-2a_{12}^{2}a_{21}$

$-2a_{12}a_{21}^{2}-4a_{11}a_{12}a_{21}+a_{11}^{2}+2a_{11}a_{12}$

$+a_{12}^{2}+a_{21}^{2}+2a_{11}a_{21}+4a_{12}a_{21}-2a_{11}-2a_{12}-2a_{21}+1\}$

$=4a_{11}a_{12}a_{21}(1-a_{11}-a_{12})(1-a_{11}-a_{21})$ ,

we have the equation (2.14). The proof of Proposition 2.4 is complete.
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Thus we proved Theorem 1.1. By the relation (1.5), the range $W(C, A)$ for $3\times 3$

diagonal matrices $C,$ $A$ is the image of the set $O_{3}$ under the real linear mapping of $A_{3}$

into C. Thus Theorem 1.2 is immediately deduced from the relation $\partial O3=\{gog$ : $ g\in$

$SO(3)\}$ .

3. Compact symmetric Riemannian space of Type AI

In this section we shall prove Theorem 1.3. We take a square root $B=$
$diag\{b_{1}, b_{2}, b_{3}\}\in SU(3)$ of the matrix $A$ , i.e., $b_{1}^{2}=a$; $(1 \leq i\leq 3)$ and $b_{1}b_{2}b_{3}=1$ .
Since $a;\neq aJ(1\leq i<j\leq 3)$ , the relation

$(b;+b_{j})(b_{i}-b_{j})\neq 0$ (3.1)

holds for $1\leq i<j\leq 3$ . We obtain a fundamental equation

$tr(AgCg^{t})=tr(BgCg^{t}B)$

for every $g\in SO(3)$ . We consider the real analytic map $\Phi$ of the 3-dimensional Lie
group $SO(3)$ into the plane $C\simeq R^{2}$ :

$g\mapsto tr(BgCg^{\ell}B)$ .

We remark that for every $g\in SO(3)$ the element $BgCg^{t}B$ belongs to the 5-
dimensinal compact symmetric Riemannian space

$M=$ {$X;X$ is a 3 by 3 unitary matrix, det(X) $=1,X^{\ell}=X$ },

(cf. [2] p.451). Define a real analytic map $\phi$ of $SO(3)$ into $M$ by the equation

$\phi(g)=BgCg^{\ell}B$ .

Define a map $\tau$ of $M_{3}(C)$ into $C$ by the equation $\tau(X)=tr(X)$ . Then we have the
relation $\Phi=\tau 0\phi$ .

We research the rank of the Jacobian matrix of the map $\Phi$ at every $g\in SO(3)$ . For
almost every $g\in SO(3)$ , the rank is equal to 2. We say that $g$ is a critical point if the
rank at $g$ is less than 2. If $\Phi(g)$ is a boundary point of $W(A, C)$ , then the point $g$ is
necessarily critical. We obtain the folowing theorem.
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Theorem3.1. Suppose that $C=diag\{c_{1},c_{2},c_{3}\}$ an$dB=diag\{b_{1}, b_{2}, b_{3}\}$ are elements

of $SU(3)$ satisfying the relations $(b_{i}+b_{i})(bi-bj)\neq 0,$ $c;\neq Cj$ for $1\leq i<j\leq 3$ . Set

$X=X(g)=BgCg^{\ell}B,$ $X=\{x_{ij}=x_{ij}(g) : 1 \leq i,j\leq 3\}$ for every $g\in SO(3)$ .

Then an element $g\in SO(3)$ is a critical point of the map $\Phi$ , if and only if the three

complex numbers $x_{12},x_{13,23}x$ lie on a straight line $p$assing through the origin $0$ on

the complex plan $e$ C. Moreover for the points $xxx$ to enjoy this condition, $it$

is $necessa\iota y$ an $d$ sufficient that one of the following conditions holds: 1) The matrix

$g=\{g_{pq} : 1 \leq p,q\leq 3\}h$as an entry $g_{ij}$ for which $gij=1$ or $g|j=-1$ ; 2) Some

eigenvalue of the unitary matrix $X$ has multiplicity $\geq 2$ .

Proof We shall prove the first half of Theorem 3.1. We consider { $Y_{g}$ : $Y$ is a $ 3\times$

$3$ skew symmetric real matrix} as the tangent space of $SO(3)$ at $g$ . Here $Y_{g}$ is a differen-

tial operator defined by $Y_{g}(f)=\lim_{s\rightarrow 0}1/s[f(\exp(sY)g)-f(g)]$ for every differentiable

function $f$ on $SO(3)$ . Since the symmetric space $M$ is a closed submanifold of the linear

space $M_{3}(C)\simeq R^{18}$ , we consider the tangent space of $M$ at $X\in M$ as a real linear

subspace of $M_{3}(C)$ . Then we have the following relation:

{$d\phi(g)(Y_{g});Y$ is a $3\times 3$ skew symmetric real matrix}

$=$ { $\lim_{s\rightarrow 0}1/s(B\exp(sY)gCg^{t}\exp(-sY)B-BgCg^{\ell}B):Y$ is...}

$=\{ZX(g)+X(g)Z^{\ell}$ : $Z=(zt;)$ is a skew-Hermitian $3\times 3$ matrix with

$z_{11}=z_{22}=z_{33}=0,$ $z_{12}=b_{1}\overline{b_{2^{X}}},$ $z_{13}=b_{1}\overline{b_{3}}y,$ $z_{23}=b_{2}\overline{b_{3}}u$

for some real numbers $x,y,u$ }.

Here we used the relation $BY=ZB,$ $-YB=BZ^{\ell}$ . The $3\times 3$ skew-Hermitian matrix

$Z=(zij)$ is calculated as the following:

$Z=BYB^{-1}$

$=\left(\begin{array}{lll}b_{l} & 0 & 0\\0 & b_{2} & 0\\0 & 0 & b_{3}\end{array}\right)\left(\begin{array}{lll}0 & x & y\\-x & 0 & u\\-y & -u & 0\end{array}\right)(\overline{b_{1}00}$ $\frac{0}{b_{2}0}$ $\frac{0}{b_{3}}0)$
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$=\left(\begin{array}{lll}0 & b_{1}b_{2^{X}} & b_{1}\overline{b_{3}}y\\-b_{2}\overline{b_{l}}x & 0 & b_{2}\overline{b_{3}}u\\-b_{3}\overline{b_{1}}y & -b_{3}\overline{b_{2}}u & 0\end{array}\right)$ .

For $X=X(g)=(xij)$ , we have the equation

$tr(ZX+XZ^{\ell})=2i(\Im(z_{12})x_{12}+\Im(z_{13})x_{13}+\Im(z_{23}x_{23})$

$=2i(\Im(b_{1}\overline{b_{2}})xx_{12}+\Im(b_{1}\overline{b_{3}})yx_{12}+\Im(b_{2}\overline{b_{3}})ux_{23})$

where $(x, y, u)$ runs over $R^{3}$ as $Y$ runs over the Lie algebra of $SO(3)$ . Since the eigen-
values of $B$ satisfy (3.1), we have

$\Im(b_{1}\overline{b_{2}})\neq 0,$ $\Im(b_{1}\overline{b_{3}})\neq 0,$ $\Im(b\overline{b})\neq 0$ .

Therefore for $g\in SO(3)$ to be criti $c$al it is necessary and sufficient that the rank of the
real linear map $(x, y, u)\leftrightarrow xx_{12}(g)+yx_{13}(g)+ux_{23}(g)$ of $R^{3}$ into $C$ is less than 2. Thus
the first half of Theorem 1.3 follows from this.

We shall prove the latter half of Theorem 1.3. We suppose that the element $X=$

$X(g)=(xij)$ of $M$ satisfies the condition

$x_{12}=qk_{12},$ $x_{13}=qk_{13},x_{23}=qk_{23}$

for some complex number $q$ with $|q|=1$ and real numbers $k_{12},$ $k_{13},$ $k_{23}$ . We consider the
two cases (I) $Atleasttwoofk_{1,2},$ $k_{1,3},$ $k_{2,3}$ are nonzero and (II) $Twoofk_{1,2},$ $k_{1,3},$ $k_{2,3}$ are
zero. First we prove that in the case (I), one eigenvalue of $X=X(g)$ has multiplicity
$\geq 2$ . We set $V=q^{-1}X$ and $\beta_{ii}=q^{-1}b;;(1\leq i\leq 3)$ . Then $V$ is a $3\times 3$ symmetric
unitary matrix. For instance we assume that $k_{12}\neq 0,$ $k_{23}\neq 0$ . The case $k_{12}\neq 0,$ $k_{13}\neq 0$

and the case $k_{13}\neq 0,$ $k_{23}\neq 0$ can be treated similarily. Since $V$ is unitary, we have the
equations

$\beta_{11}k_{12}+k_{12}\overline{\beta_{22}}+k_{13}k_{23}=0$ , (3.2)

$\beta_{22}k_{23}+k_{23}\overline{\beta_{33}}+k_{12}k_{13}=0$ . (3.3)

–95 –



By (3.2) and (3.3), we have the relations

$k_{12}\Im(\beta_{11}+\overline{\beta_{22}})=\Im(-k_{13}k_{23})=0$ , (3.4)

$k_{23}\Im(\beta_{22}+\overline{\beta_{33}})=\Im(-k_{12}k_{13})=0$ . (3.5)

Since $k_{12}\neq 0,$ $k_{23}\neq 0$ , the equations (3.4) and (3.5) impliy

$\Im(\beta_{11})=\Im(\beta_{22})=\Im(\beta_{33})$ . (3.6)

Thus there exists a real number $k$ with-l $\leq k\leq 1$ for which the unitary matrix $V$ is

expressed as

$V=\Re(V)+ikI_{3}$ .

Where $\Re(V)$ is a 3 $x3$ real symmetric matrix and commutes with the matrix $kI_{3}$ .
Therefore eigenvalues of $V$ are $(1-k^{2})^{1/2}+ik$ or $-(1-k^{2})^{1/2}+ik$ . Thus one

eigenvalue of $V$ and hence of $X$ has multiplicity $\geq 2$ .

Second we prove that in the case (II), some entry of the matrix $g\in SO(3)$ is equal

to 1 or $-1$ . We assume that $k_{12}=k_{13}=0$ . The case $k_{12}=k_{23}=0$ and the case

$k_{13}=k_{23}=0$ can be treated similarily. By the assumption the matrix $X=X(g)$ is

expressed as follows:

$X=BgCg^{\ell}B$

$=\left(\begin{array}{lll}x_{ll} & 0 & 0\\0 & x_{22} & x_{23}\\0 & x_{23} & x_{33}\end{array}\right)$ .

Thus the symmetric matrix $gCg^{\ell}$ is represented as

$gCg^{\ell}=\left(\begin{array}{lll}s_{ll} & 0 & 0\\0 & s_{22} & s_{23}\\0 & s_{23} & s_{33}\end{array}\right)$ ,

for some complex numbers $s_{11},$ $s_{22},$ $s_{33},$ $s_{23}$ . Then $s_{11}$ is an eigenvalue of the unitary
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matrix $C$ . We set

$S=\left(\begin{array}{ll}s_{22} & s_{23}\\s_{23} & s_{33}\end{array}\right)$ .

Then the matrix $S$ is symmetric and unitary. Thus $S^{*}=\overline{S}$ and $SS^{*}=S^{*}S=I_{2}$ and
hence $\Re(S)=(S+\overline{S})/2$ and $\Im(S)=(S-\overline{S})/(2i)$ are commuting $2\times 2$ real symmetric
matrices. Hence there exists a $2\times 2$ real symmetric matrix $S_{1}$ for which $\Re(S),$ $\Im(S)$ are
expressed in the form

$\Re(S)=f(S_{1}),$ $\Im(S)=h(S_{1})$ ,

where $f$ and $h$ are polynomials with real coefficients in one variable. We choose a real
number $\theta$ for which $c=\cos\theta,$ $ s=\sin\theta$ satisfy

$\left(\begin{array}{ll}c & s\\-s & c\end{array}\right)S_{1}\left(\begin{array}{ll}c & -s\\s & c\end{array}\right)$

$=\left(\begin{array}{ll}t_{l} & 0\\0 & t_{2}\end{array}\right)$

for some real numbers $t_{1},$ $t_{2}$ . Then we have

$\left(\begin{array}{ll}c & s\\-s & c\end{array}\right)\left(\begin{array}{ll}s_{22} & s_{23}\\s_{23} & s_{33}\end{array}\right)\left(\begin{array}{ll}c & -s\\s & c\end{array}\right)$

$=\left(\begin{array}{ll}\xi_{l} & 0\\0 & \xi_{2}\end{array}\right)$

for some complex numbers $\xi_{1},$ $\xi_{2}$ with $|\xi_{1}|=|\xi_{2}|=1$ . Thus there exists a permutation
$\sigma\in S_{3}$ for which

$\left(\begin{array}{lll}l & 0 & 0\\0 & c & s\\0 & -s & c\end{array}\right)(gCg^{t})\left(\begin{array}{lll}1 & 0 & 0\\0 & c & -s\\0 & s & c\end{array}\right)$

$=\left(\begin{array}{lll}c_{\sigma(1)} & 0 & 0\\0 & c_{\sigma(2)} & 0\\0 & 0 & c_{\sigma(3)}\end{array}\right)$ .

Since $c_{1}\neq c_{2},c_{1}\neq c_{3},$ $c_{2}\neq c_{3}$ , we obtain the relation
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( $001$ $-s0c$ $0sc$ ) $g\in W$, (3.7)

where $W$ is a finite subgroup of $SO(3)$ defined by the following :

$H=$ {$diag(h_{1},$ $h_{2},$ $h_{3});h_{1},$ $h_{2},$ $h_{3}$ are real numbers},

$W=$ { $k\in SO(3):khk^{\ell}\in H$ for every $h\in H$ }.

Then for every $k\in W,$ $kok$ is a permutation. Hence by the relation (3.7), an entry of

the first row of the matrix $g$ is equal to 1 or-l.

We shall show the converse. Suppose that $X=X(g)\in M$ has a multiple eigenvalue.

Then the eigenvalues of $X(g)$ satisfy the condition (1.12) and hence the point $tr(X(g))$

is a boundary point of the closed domain $D$ . Since $M\subseteq SU(3),$ $\{tr(U):U\in M\}\subseteq D$ .
Thus $g$ is a critical point of the map $\Phi$ . Next we suppose that an entry of the matrix

$g=(g|j)\in SO(3)$ is equal to 1 or-l. For instance we assume that $g_{11}=-1$ . Other

cases can be treated similarily. By using $c=\cos\theta,$ $ s=\sin\theta$ for some suitable $\theta\in R,$ $g$

is expressed as

$g=\left(\begin{array}{lll}-1 & 0 & 0\\0 & -c & s\\0 & -s & -c\end{array}\right)$ .

Thus we have

$gCg^{\ell}=\left(\begin{array}{lll}c_{l} & 0 & 0\\0 & c^{2}c_{2}+s^{2}c_{3} & sc(c_{2}-c_{3})\\0 & sc(c_{2}-c_{3}) & c^{2}c_{3}+s^{2}c_{2}\end{array}\right)$ ,

$X(g)=BgCg^{\ell}B=\left(\begin{array}{llll}a_{l}c_{l} & 0 & & 0\\0 & & b_{2}b_{3^{C}} & s(c_{2}-c_{3})\\0 & & & \end{array}\right)$ .

Hence the points $x_{12}(g)=0,x_{13}(g)=0,$ $x_{23}(g)$ lie on a straight line passing through the

origin $0$ on the complex plane C. Thus $g$ is a critical point of $\Phi$ . The proof of Theorem

3.1 is complete.
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We shall prove Theoreml.3. Since $\partial W(C, A)\subseteq\{\Phi(g);g$ is a critical point of

$\Phi\}$ and { $\Phi(g)$ : $X(g)$ has a multiple eigenvalue} $\subseteq\Gamma$ , it is sufficient to show the

inclusion

{ $\Phi(g);g\in SO(3)$ has an entry equal to 1 or $-1$ }

$\subseteq\{tz_{1}+(1-t)z_{2} : 0\leq t\leq 1, z_{1}\in Vz\in V_{-}\}$ .

This inclusion follows from the equation

{$gog:g\in SO(3)$ has an entry equal to 1 or $-1$ } $=\{tP+(1-t)Q:P$ is an even

3 $x3$ permutation matrix, $Q$ is an odd $3\times 3$ permutation matrix}.

The proof of Theorem 1.3 is complete.

An analogous assertion to Theorem 1.3 in a special case $C=A$ was already an-
nounced by the author in [4].
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