TRANSVERSAL CONFORMAL FIELDS OF FOLIATIONS

Jeong Hyeong PARK and Shinsuke YOROZU

1. Introduction

Let (M,g_M,\mathcal{F}) be a closed, oriented, connected Riemannian manifold of dimension p+q with a transversally oriented foliation \mathcal{F} of codimension $q\geq 2$ and a bundle-like metric g_M with respect to \mathcal{F} . Let Q be the normal bundle of \mathcal{F} and $\pi:\Gamma(TM)\longrightarrow\Gamma(Q)$ the natural projection. We denote by D the transversal Riemannian connection of \mathcal{F} . Let $V(\mathcal{F})$ denote the set of infinitesimal automorphisms of \mathcal{F} and $V(\mathcal{F})$ = $\{v\in\Gamma(Q)\mid v=\pi(Y), Y\in V(\mathcal{F})\}$, the set of transversal infinitesimal automorphisms of \mathcal{F} .

Throughout this paper, we also use the following notation: $\tau \qquad : \ \, \text{the tension field of} \ \, \mathcal{F} \ \, ,$

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C12.

Key words and phrases. Foliation, Transversal infinitesimal automorphism, Transversal conformal field.

div_D v: the transversal divergence of v, grad_D f: the transversal gradient of a function f, ρ_D : the transversal Ricci operator, $\Delta_D = \{ \text{the Laplacian acting on } \Omega^0(M,Q) = \Gamma(Q) \},$ $\theta(Y)$: the transversal Lie derivative operator for $Y \in V(\mathcal{F})$, $A_D(v) = \theta(Y) - D_Y \qquad (v = \pi(Y) \in \overline{V}(\mathcal{F})),$ $B_D(v) = A_D(v) + {}^tA_D(v) + {}^2q(\text{div}_Dv) \cdot I$ (I: the identity map of $\Gamma(Q)$).

In the case where $\mathcal F$ is a harmonic foliation (τ = 0), geometric tranversal fields such as transversal Killing, transversal affine (projective, conformal) fields have been studied by Kamber, Tondeur, Molino and others ([1, 2, 3, 5]). For example, a transversal infinitesimal automorphism ν of $\mathcal F$ is a transversal Killing field of $\mathcal F$ if and only if ν satisfies $\Delta_D \nu = \rho_D(\nu)$ and $\operatorname{div}_D \nu = 0$ ([1, 2, 5]). On the other hand, in the case where $\mathcal F$ is not a harmonic foliation, Nishikawa and Yorozu[4] give a necessary and sufficient condition for a transversal infinitesimal automorphism of $\mathcal F$ to be a transversal Killing field of $\mathcal F$.

A transversal infinitesimal automorphism $\nu=\pi(Y)$ $\in \overline{V}(\mathcal{F})$ is called a transversal conformal field of \mathcal{F} if ν satisfies $\theta(Y)g_Q=2f\cdot g_Q$, where f is a function on M. The purpose of this paper is to find a necessary and sufficient

condition for a transversal infinitesimal automorphism of $\mathcal F$ to be a transversal conformal field of $\mathcal F$, without assuming the harmonicity of $\mathcal F$. We prove the following theorem.

Theorem. Let (M,g_M,\mathcal{F}) be a closed, oriented, connected Riemannian manifold of dimension p+q with a transversally oriented foliation \mathcal{F} of codimension $q\geq 2$ and a bundle-like metric g_M with respect to \mathcal{F} . Let v be a transversal infinitesimal automorphism of \mathcal{F} . Then v is a transversal conformal field of \mathcal{F} if and only if v satisfies

(i)
$$\Delta_D v = D_{\sigma(\tau)} v + \rho_D(v) + (1 - \frac{2}{q}) \cdot grad_D div_D v$$
 and

(ii)
$$\int_{M} g_{Q}(B_{D}(v)v, \tau) dM = 0$$
.

We shall be in C^{∞} -category. We use the following convention on the range of indices: $1 \le i$, j, $\cdots \le p$ and $p+1 \le a$, b, $\cdots \le p+q$. The authors would like to thank the referee for kind suggestion.

2. Preliminaries

Let (M,g_M,\mathcal{F}) be a closed, oriented, connected Riemannian manifold of dimension p+q with a transversally oriented foliation \mathcal{F} of codimension q \geq 2 and a bundle-like metric g_M with respect to \mathcal{F} . Let E and Q = TM/E be the tangent bundle and the normal bundle of \mathcal{F} , respectively. The metric g_M gives a splitting σ of the exact sequence

$$0 \longrightarrow \Gamma(E) \longrightarrow \Gamma(TM) \xrightarrow{\pi} \Gamma(Q) \longrightarrow 0$$

with $\sigma(\Gamma(Q)) = \Gamma(E^{\perp})$, where E^{\perp} denotes the orthogonal complement bundle of E in TM with respect to g_M . Then g_M induces a metric g_Q on Q defined by $g_Q(\nu, \mu) = g_M(\sigma(\nu), \sigma(\mu))$ for $\nu, \mu \in \Gamma(Q)$. In a flat chart $U(x^i, x^a)$ with respect to \mathcal{F} , a local frame $\{X_i, X_a\} = \{\partial/\partial x^i, \partial/\partial x^a - \Sigma_j A^j a \partial/\partial x^j\}$ is called the basic adapted frame to \mathcal{F} . Here A^j_a are functions on U with $g_M(X_i, X_a) = 0$. We notice that $\{X_i\}$ spans $\Gamma(E^{\perp}|_U)$ and $\{X_a\}$ spans $\Gamma(E^{\perp}|_U)$. We put

$$g_{ij} = g_{M}(X_{i}, X_{j})$$
, $g_{ab} = g_{M}(X_{a}, X_{b})$,
$$(g^{ij}) = (g_{ij})^{-1}$$
, $(g^{ab}) = (g_{ab})^{-1}$ ([5]).

A connection D on Q is defined by

$$\begin{split} & D_X \ v = \pi([\ X,\ Y_v\]) & \text{if} \ X \in \Gamma(E)\ , \\ & D_X \ v = \pi(\ \nabla_X\ Y_v\) & \text{if} \ X \in \Gamma(E^\perp)\ , \end{split}$$

where $Y_{v} = \sigma(v)$, and ∇ denotes the Levi-Civita connection with respect to g_{M} . Since D is torsionfree and metrical with respect to g_{Q} ([1]), we call D the transversal Riemannian connection of $\mathcal F$. The curvature R_{D} of D is defined by

$$R_{D}(X,Y)v = D_{X}D_{Y}v - D_{Y}D_{X}v - D_{[X,Y]}v$$

for all X, Y \in $\Gamma(TM)$ and $\nu \in \Gamma(Q)$. We notice that $i(X)R_D$ = 0 , where i(X) denotes the interior product with respect

to X \in $\Gamma(E)$. The transversal Ricci operator ρ_D : $\Gamma(Q)$ \longrightarrow $\Gamma(Q)$ is given by

$$\rho_{D}(v) = \Sigma_{a,b} g^{ab} R_{D}(\sigma(v), X_{a})\pi(X_{b})$$
,

and let $Ric_D(v) = g_O(\rho_D(v), v)$.

We denote by $V(\mathcal{F})$ the set of all infinitesimal automorphisms of \mathcal{F} , that is,

 $V(\mathcal{F}) = \{ \ Y \in \Gamma(TM) \ | \ [X, \ Y] \in \Gamma(E) \ \text{for all} \ X \in \Gamma(E) \} \ .$ A transversal infinitesimal automorphism v of \mathcal{F} is an element of the set

$$\overline{V}(\mathcal{F}) = \{ v \in \Gamma(Q) \mid v = \pi(Y), Y \in V(\mathcal{F}) \}$$
.

The transversal Lie derivative operator $\Theta(Y)$: $\Gamma(Q)$ $\longrightarrow \Gamma(Q)$ for $Y \in V(\mathcal{F})$ is defined by

$$\theta(Y)\mu = \pi([Y, Z_n])$$

for all $\mu \in \Gamma(Q)$ with $\sigma(\mu) = Z_{\mu}$. For $\nu = \pi(Y) \in \overline{V}(\mathcal{F})$, we define an operator $A_{\overline{D}}(\nu)$: $\Gamma(Q) \longrightarrow \Gamma(Q)$ by

$$A_{D}(v)\mu = \Theta(Y)\mu - D_{Y}\mu$$

for all $\mu \in \Gamma(Q)$ ([1]). We notice that the definition of $A_D(\nu)$ is independent of the choice of Y with $\pi(Y) = \nu$ ([1]).

Definition. A transversal infinitesimal automorphism $\nu = \pi(Y) \in \bar{V}(\mathcal{F}) \quad \text{is called a } \underbrace{\text{transversal conformal field of}}_{\mathcal{F}} \quad \text{if } \nu \quad \text{satisfies} \quad \theta(Y) g_Q = 2 f \cdot g_Q \; , \; \text{where } f \; \text{ is a function on } M \; .$

The tension field τ of \mathcal{F} is given by

$$\tau = \Sigma_{i,j} g^{i,j} \pi(\neg \nabla_{X_i} X_j \rightarrow \neg.$$

If $\tau=0$, then $\mathcal T$ is called harmonic([1]). The transversal divergence ${\rm div}_D$ ν of $\nu\in\Gamma(Q)$ is given by

$$\operatorname{div}_{D} v = \Sigma_{a,b} g^{ab} g_{Q}(D_{X_{a}} v, \pi(X_{b}))$$
,

and the transversal gradient $\operatorname{\mathsf{grad}}_D$ for a function for M is given by

$$\operatorname{grad}_{D} f = \Sigma_{a,b} g^{ab} X_{a}(f) \cdot \pi(X_{b})$$

([5]).

Let $\Omega^r(M,Q)$ be the set of all Q-valued r-forms on M . We notice that $\Omega^0(M,Q) \cong \Gamma(Q)$. The global inner product <<, >> on $\Omega^r(M,Q)$ is defined by

$$\langle\langle \xi, \eta \rangle\rangle = \int_{M} g_{Q}(\xi \Lambda * \eta)$$

for all ξ , $\eta \in \Omega^r(M,Q)$ ([1]). Let $d_D: \Omega^r(M,Q) \longrightarrow \Omega^{r+1}(M,Q)$ be the exterior differential operator, and δ_D the adjoint operator of d_D with respect to <<, >> ([1]). The Laplacian Δ_D acting on $\Omega^r(M,Q)$ is defined by

$$\Delta_{D} = \delta_{D} d_{D} + d_{D} \delta_{D} .$$

Then we have

Green's Theorem([6, 7]). For all $v \in \overline{V}(\mathcal{F})$, it holds that

$$\int_{\mathbf{M}} \operatorname{div}_{\mathbf{D}} \mathbf{v} \quad d\mathbf{M} = \langle\langle \mathbf{v}, \mathbf{\tau} \rangle\rangle .$$

Proposition 1([7]). For all ν , $\mu \in \tilde{V}(\mathcal{F})$, it holds that

$$<<$$
 Δ_D ν , μ $>>$ = $<<$ D ν , D μ $>>$.

Proposition 2([7]). For all $v \in \overline{V}(\mathcal{F})$, it holds that

(i)
$$\operatorname{Ric}_{D}(v) + \operatorname{Tr} A_{D}(v) A_{D}(v) - (\operatorname{div}_{D}v)^{2}$$

 $+ \operatorname{div}_{D}(A_{D}(v)v) + \operatorname{div}_{D}(\operatorname{div}_{D}v)v) = 0$,

(ii) Tr $A_D(v)A_D(v) = -$ Tr $^tA_D(v)A_D(v) + \frac{1}{2}$ Tr $(A_D(v) + A_D(v))^2$, where Tr C denotes the trace of an operator C: $\Gamma(Q) \longrightarrow \Gamma(Q)$ with respect to g_Q , and $^tA_D(v)$ denotes the transposed operator of $A_D(v)$ with respect to g_Q .

Proposition 3([5]). A transversal conformal field ν of ${\mathcal F}$ satisfies

$$\Delta_{D} v = D_{\sigma(\tau)} v + \rho_{D}(v) + (1 - \frac{2}{q}) \operatorname{grad}_{D} \operatorname{div}_{D} v .$$

Let $B_{\overline{D}}(v):\Gamma(Q)\longrightarrow\Gamma(Q)$ ($v\in \overline{V}(\mathcal{F})$) be an operator defined by

$$B_{D}(v) = A_{D}(v) + {}^{t}A_{D}(v) + \frac{2}{q} (\operatorname{div}_{D}v) \cdot I ,$$

where I denotes the identity map of $\Gamma(Q)$. Note that the operator $B_D(\nu)$ is symmetric.

Proposition 4([5]). A transversal infinitesimal automorphism ν of $\mathcal F$ is a transversal conformal field of $\mathcal F$ if and only if $B_D(\nu)=0$.

3. Proof of Theorem

By Propositions 3 and 4, it is immediate that a transversal conformal field of \mathcal{F} satisfies the conditions (i) and (ii). Conversely, we assume that a transversal infinitesimal automorphism ν of \mathcal{F} satisfies the conditions (i) and (ii). We first note that, by Proposition 2, we have $\int_{\mathcal{M}} \left(\operatorname{Ric}_{D}(\nu) - \operatorname{Tr}^{-t} A_{D}(\nu) A_{D}(\nu) + \frac{1}{2} \operatorname{Tr}(A_{D}(\nu) + {}^{t} A_{D}(\nu) \right)^{2}$

$$- (\text{div}_D v)^2 + \text{div}_D (A_D(v)v)^2 + \text{div}_D ((\text{div}_D v)v) \} \text{dM} = 0 .$$
 By the condition (i) and $\text{Ric}_D(v) = g_Q(\rho_D(v), v)$, we have

$$\int_{M} \operatorname{Ric}_{D}(v) dM = \langle \langle \Delta_{D} v, v \rangle \rangle - \langle \langle D_{\sigma(\tau)} v, v \rangle \rangle$$

- (1 -
$$\frac{2}{q}$$
) << grad_D div_D ν , ν >> .

By direct calculation, we have for $v \in \Gamma(Q)$

$$g_Q(grad_D div_D v, v) = div_D((div_D v)v) - (div_D v)^2$$
.

Thus we have

(1)
$$\int_{M} \operatorname{Ric}_{D}(v) \ dM = \langle \langle \Delta_{D} \ v, \ v \rangle \rangle - \langle \langle D_{\sigma(\tau)} v, \ v \rangle \rangle$$
$$- \langle 1 - \frac{2}{q} \rangle \int_{M} \operatorname{div}_{D}(\langle \operatorname{div}_{D} v \rangle v) \ dM$$
$$+ \langle 1 - \frac{2}{q} \rangle \int_{M} (\operatorname{div}_{D} v)^{2} \ dM \ .$$

By direct calculation, we also have for $v \in \Gamma(Q)$

$${\rm Tr}^{-t} {\rm A}_{\rm D}(\nu) {\rm A}_{\rm D}(\nu) = \Sigma_{\rm a,b} \ {\rm g}^{\rm ab} \ {\rm g}_{\rm Q}(\ {\rm D}_{\rm X_a}\nu,\ {\rm D}_{\rm X_b}\nu) \ ,$$
 which implies

(2)
$$\int_{M} Tr^{-t} A_{D}(v) A_{D}(v) dM = \langle \langle Dv, Dv \rangle \rangle .$$

We have, by Green's Theorem,

$$\int_{M} \operatorname{div}_{D}(A_{D}(v)v) dM = \langle\langle A_{D}(v)v, \tau \rangle\rangle,$$

$$\int_{M} \operatorname{div}_{D}((\operatorname{div}_{D}v)v) dM = \langle\langle (\operatorname{div}_{D}v)v, \tau \rangle\rangle.$$

On the other hand, we have

$$- g_{Q}(D_{\sigma(\tau)}v, v) = g_{Q}(^{t}A_{D}(v)v, \tau) .$$

Thus we have

(3)
$$\langle\langle A_{D}(v)v, \tau \rangle\rangle - \langle\langle D_{\sigma(\tau)}v, v \rangle\rangle$$

= $\langle\langle (A_{D}(v) + {}^{t}A_{D}(v))v, \tau \rangle\rangle$.

By direct calculation, we have

$$Tr(A_D(v) + {}^{t}A_D(v)) = -2 div_Dv$$
,

which implies

(4) Tr
$$(B_D(v))^2 = Tr (A_D(v) + {}^tA_D(v))^2 + \frac{4}{q} (div_Dv)^2 + \frac{4}{q} (div_Dv)^2 + \frac{4}{q} (div_Dv) \cdot Tr (A_D(v) + {}^tA_D(v))$$

$$= Tr (A_D(v) + {}^tA_D(v))^2 - \frac{4}{q} (div_Dv)^2 .$$

By Proposition 1, (1), (2), (3) and (4), we have

$$0 = \int_{M} \left\{ \text{Ric}_{D}(v) - \text{Tr}^{t} A_{D}(v) A_{D}(v) + \frac{1}{2} \text{Tr} \left(A_{D}(v) + {}^{t} A_{D}(v) \right)^{2} \right\}$$

$$- (\operatorname{div}_{D} v)^{2} + \operatorname{div}_{D} (A_{D}(v)v) + \operatorname{div}_{D} ((\operatorname{div}_{D} v)v)) dM$$

$$= \langle \langle \Delta_{D} v, v \rangle \rangle - \langle \langle D_{\sigma(\tau)} v, v \rangle \rangle$$

$$- (1 - \frac{2}{q}) \int_{M} \operatorname{div}_{D} ((\operatorname{div}_{D} v)v) dM + (1 - \frac{2}{q}) \int_{M} (\operatorname{div}_{D} v)^{2} dM$$

$$- \langle \langle Dv, Dv \rangle \rangle + \frac{1}{2} \int_{M} \operatorname{Tr} (A_{D}(v) + {}^{t}A_{D}(v))^{2} dM$$

$$- \int_{M} (\operatorname{div}_{D} v)^{2} dM + \langle \langle A_{D}(v)v, \tau \rangle \rangle + \int_{M} \operatorname{div}_{D} ((\operatorname{div}_{D} v)v) dM$$

$$= \langle \langle (A_{D}(v) + {}^{t}A_{D}(v))v, \tau \rangle \rangle + \frac{2}{q} \int_{M} \operatorname{div}_{D} ((\operatorname{div}_{D} v)v) dM$$

$$+ \frac{1}{2} (\int_{M} \operatorname{Tr} (A_{D}(v) + {}^{t}A_{D}(v))^{2} dM - \frac{4}{q} \int_{M} (\operatorname{div}_{D} v)^{2} dM)$$

$$= \langle \langle (A_{D}(v) + {}^{t}A_{D}(v))v, \tau \rangle \rangle + \frac{2}{q} \langle (\operatorname{div}_{D} v)v, \tau \rangle \rangle$$

$$+ \frac{1}{2} \int_{M} \operatorname{Tr} (B_{D}(v))^{2} dM$$

$$= \langle \langle (B_{D}(v)v, \tau \rangle \rangle + \frac{1}{2} \int_{M} \operatorname{Tr} (B_{D}(v))^{2} dM .$$

By (ii) in Theorem, we have

(5)
$$\int_{M} Tr (B_{D}(v))^{2} dM = 0.$$

Since the operator $B_D(v)$ is symmetric, (5) implies that $B_D(v)=0$. Therefore, by Proposition 4, v is a transversal conformal field of $\mathcal F$.

4. Remark

On a non-compact foliated Riemannian manifold (M,g_M,\mathcal{F}) , there exists a transversal infinitesimal automorphism of \mathcal{F}

satisfying the conditions (i) and (ii) in Theorem, but which is not a transversal conformal field of $\mathcal F$. For example, we have the following.

Let $M = R^1 \times R^3$ be a product manifold with a metric $f^2 \cdot (dx^1)^2 + \Sigma_{a=2}^4 (dx^a)^2 ,$

where (x^1, x^2, x^3, x^4) is a coordinate system of M , (x^1) and (x^2, x^3, x^4) being coordinate systems of R^1 and R^3 respectively, and $f = f(x^2, x^3, x^4) = \exp(x^3 - x^4)$. The family $\{R^1 \times \{t\}\}_{t \in R^3}$ defines a foliation $\mathcal F$ on M for which the metric is a bundle-like metric. We consider a vector field Y on M defined by

$$Y = x^2 \partial/\partial x^2 + \partial/\partial x^3 + \partial/\partial x^4 .$$

Then Y is an infinitesimal automorphism of $\mathcal F$ so that Y induces a transversal infinitesimal automorphism $\nu=\pi(Y)$ of $\mathcal F$, that is,

$$v = x^2 \pi(\partial/\partial x^2) + \pi(\partial/\partial x^3) + \pi(\partial/\partial x^4)$$

The tension field τ of \mathcal{F} is given by

$$\tau = -\pi(\theta/\theta x^3) + \pi(\theta/\theta x^4) .$$

Then we have

$$\begin{split} &D_{\sigma(\tau)} v = 0 \quad , \qquad &D_{\sigma(v)} v = x^2 \; \pi(\partial/\partial x^2) \quad , \\ &g_Q(v,\tau) = 0 \quad , \quad &\operatorname{div}_D v = 1 \quad , \\ &g_Q((A_D(v) + {}^t A_D(v))v, \tau) \\ &= -g_Q((D_{\sigma(v)} v, \tau) - g_Q((D_{\sigma(\tau)} v, v)) \end{split}$$

Thus we have

(6)
$$g_{Q}(B_{D}(v)v, \tau)$$

= $g_{Q}((A_{D}(v) + ^{t}A_{D}(v) + (1 - \frac{2}{3})(div_{D}v)\cdot I)v, \tau)$
= 0.

On the other hand, we have

$$\rho_{D}(v) = 0 ,$$

$$D_{\sigma(\tau)}v + \rho_{D}(v) + (1 - \frac{2}{3}) \operatorname{grad}_{D} \operatorname{div}_{D} v = 0 ,$$

$$\Delta_{D} v = 0 .$$

Thus we have

(7)
$$\Delta_{D} v = D_{\sigma(\tau)} v + \rho_{D}(v) + (1 - \frac{2}{3}) \operatorname{grad}_{D} \operatorname{div}_{D} v$$
.

By (6) and (7), ν satisfies (i) and (ii) in Theorem. But we have

$$(\theta(Y)g_Q)(\pi(\partial/\partial x^2),\pi(\partial/\partial x^2)) = 2 ,$$

$$(\theta(Y)g_Q)(\pi(\partial/\partial x^3),\pi(\partial/\partial x^3)) = 0 .$$

Hence $v = \pi(Y)$ is not a transversal conformal field of \mathcal{F} .

References

[1] F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tôhoku Math. J. 34 (1982), 525-538.

- [2] F. W. Kamber, Ph. Tondeur and G. Toth, Transversal Jacobi fields for harmonic foliations, Michigan Math. J. 34 (1987), 261-266.
- [3] P. Molino, Feuilletages riemanniens sur les variétés compactes; champs de Killing transverses, C. R. Acad. Sc. Paris 289 (1979), 421-423.
- [4] S. Nishikawa and S. Yorozu, Transversal infinitesimal automorphisms for foliations, Preprint, 1992.
- [5] J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25 (1988), 83-92.
- [6] Ph. Tondeur, Foliations on Riemannian manifolds, Universitext, Springer-Verlag, 1988.
- [7] S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hung. 56 (1990), 239-245.

Department of Mathematics

Honam University

Kwangju, 506-090 KOREA

Department of Mathematics
Miyagi University of Education
Sendai, 980 JAPAN

Received Dec. 24 1992