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On self-dual almost Hermitian 4-manifolds *

Un Kyu Kim, In-Bae Kim and Jae-Bok Jun

1. Introduction

For an oriented Riemannian 4-manifold M, the space A2M of 2-forms on
M splits with respect to the star operator * into A2M = A2 M @& A2 M, where
A% M are eigenspaces corresponding to the eigenvalues +1. The Weyl conformal
curvature tensor W viewed as an End(TM)-valued 2-form decomposes into
W = W, & W_ and we say that M is self-dual if W_ = 0.

An almost Hermitian 4-manifold (M, g, J) is said to be of pointwise constant
holomorphic sectional curvature if the holomorphic sectional curvature of M is
constant for every unit tangent vectors and depends only on points of M. S.
Tachibana ([7]) introduced the notion of Ricci *-tensor on an almost Hermitian
manifold M, and we say that M is weakly *- Einstein if the Ricci *-tensor p*
takes the form p* = A\*g for some differentiable function A* on M. In particular,
if A* is constant on M, then M is said to be x-Eisenstein (see also [5] and [6]).

The main purpose of this paper is to prove the followings

Theorem A. An almost Hermitian 4-manifold (M, g, J) is self-dual, and the

components of the Ricci tensor p of M satisfy

(1~1) P11 + p22 = P33 + P44, P14 = P23,P13 + P24 = 0,

or the components of the Ricci *-tensor p* of M satisfy

* This research was supported by TGRC-KOSEF.
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(1.2) PI1 = P32 = P33 = Pi4r P14 = P23:P13 + P24 =0
for any local orthonormal frame field {e;,e; = Je;,e3,eq = Jeg} if and only if

M is of pointwise constant holomorphic sectional curvature.

The conditions (1.1) and (1.2) are always satisfied on an almost Hermitian
4-manifold of pointwise constant holomorphic sectional curvature (see Lemma
3.3). The following is immediate from Theorem A, and the Einstein case is
proved by T. Koda ([3]).

Corollary B. Every self-dual almost Hermitian Einstein or weakly *-Einstein

4-manifold is of pointwise constant holomorphic sectional curvature.

The following is somewhat interesting.

Theorem C. Assume that an almost Hermitian 4-manifold (M,g,J) of

pointwise constant holomorphic sectional curvature satisfies
(1.3) g(R(JX,JY)JZ,JW) = g(R(X,Y)Z,W)
for any vector fields X,Y,Z and W on M. Then M is both Einstein and weakly

*-Finstein.

A.Gray and L.Vanhecke ([2]) have constructed examples of Hermitian mani-
folds of pointwise constant holomorphic sectional curvature. We may show that
their examples are weakly *-Einstein and not Einstein. In the last section, we

shall give the proof when the dimension is equal to four.
The authors would like to express their hearty thanks to Professor K. Seki-

gawa for many valuable suggestions.

2. Self-dual almost Hermitian 4-manifolds
Let (M, g) be a Riemannian 4-manifold and V be the Riemannian connection
with respect to the metric g. The Riemannian curvature tensor R, Ricci tensor

p, Ricci operator @ and scalar curvature T of M are defined by
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R(X,Y)Z =[Vx,Vy]|Z - Vix,v|Z,
(2.1) p(X,Y) = trace(Z — R(Z,X)Y),9(QX,Y) = p(X,Y),

T = trace(X — QX)
for any vector fields X,Y and Z on M. The Weyl conformal curvature tensor
W of M is given by
(2.2)

W(X,Y)Z = R(X,Y)Z — 3 {p(Y, 2)X = o(X, Z)Y
+9(Y, 2)QX — 9(X, 2)QY} + ¢ {o(Y, 2)X — 9(X, 2)Y},

and satisfies the identity
(2.3) trace(Z - W(Z,X)Y)=0

for any vector fields X, Y and Z on M. Let {e1,e2,e3,e4} be any local frame
field on M. With respect to the frame, we denote the components of R and p by
Rk,-.-h and pj; respectively, where here and in the sequel the indices k, j,1,...
run over the range {1,2,3,4}, unless otherwise stated. Then it follows from

(2.1) that

‘o T ’

Rj212 — R3saq = 5~ (p11 + p22),
T

(2.4) { Riz13 — Raq24 = 72~ (P11 + p33),
T

\ Ris14 — Raaz3 = e (p11 + Pas)s

where Rgjin = g(R(ek,ej)ei, en).
Let (M, g,J) be an almost Hermitian 4-manifold oriented by the volume form

3%, where Q is the Kaehler form defined by

AUX,Y) =g(X,JY)
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for any vector fields X and Y on M. Let {e;} = {e1,e2 = Je1,e3,e4 = Je3} be
a positively oriented orthonormal basis for the tangent space T,(M), p € M,
and {e',e?,e3, et} be the dual basis. Then the set {e! Ae? —ed Aet,e! Aed —
e* Ae? el Ae? —e? Ae®} is a basis for the eigenspace (A2 M ),- Therefore we
see that M is self-dual if and only if the components of the Weyl conformal

curvature tensor W satisfy
(2.5) Wizin = Wigin, Wizin = Wazin, Wigin = Wazia
for the local orthonormal frame field {e;}. We shall prove

Lemma 2.1. Let (M, g,J) be an almost Hermitian 4-manifold. Then M is
self-dual if and only if the components of the Weyl conformal curvature tensor

W satisfy
(2.6) Wizsh = Waqan  and  Wizan = Wyaas
for any local orthonormal frame field {e;,e2 = Je1,e3,e4 = Je3}.

Proof. The relation (2.6) follows from (2.5). Conversely, by putting A = 1
into the first of (2.6), we obtain Wjz;3 = Wai4q3. Since we have Wia3; =
—Wazas and Wiy = —Wayar by (2.3), we get Wigzq = Wiyzq and Wiz =
W3442. Similarly, by putting A = 2,4 into the first of (2.6) and using (2.3),
we also obtain W22z = Wagas, Wiaie = Wigg, Wizgn = Wagqy, Wizgs =
Wi3443,Wi212 = Wi412, Wi221 = W3421. Summing up these results, we see that
the first of (2.6) yields the first of (2.5). By an argument similar to the above,
we also see that the second of (2.6) yields the second of (2.5). The third of (2.5)
follows from the first and second of (2.5).
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It is immediate from (2.2) and Lemma 2.1

Proposition 2.2. An almost Hermitian 4-manifold (M, g,J) is self-dual if
and only if the components of the Riemannian curvature R and Ricci tensor p

of M satisfy

( 1
Rj231 = R3431 + §(P23 + p14),
1
Rj232 = Raqz2 + §(P24 — p13)s
\ 1 T
(2.7) { Rjs34 = R3q34 + -2-(P33 + paa) — 5’

1
Ri323 = Ry223 — 5([’12 + p34),

1 T
\ Ri324 = Ry224 — §(P22 + pas) + 5’

for any local orthonormal frame field {e1,e2 = Jej,e3,e4 = Jes}, where T is

the scalar curvature of M.

A tensor field p* of type (0,2) defined by
(2.8) p*(X,Y) = g(Q*X,Y) = é—trace(Z - R(X,JY)JZ)

for any vector fields X, Y and Z is called the Ricci *-tensor of M. The trace of
the linear endomorphism Q* is denoted by 7* and called the *-scalar curvature

of M. It follows (2.8) that
(2.9) p*(X,Y) = p*(JY,JX)

for any vector fields X and Y on M. With respect to the local orthonormal
frame field {e;,e; = Je;,e3,e4 = Jez} on M, it is easily seen from (2.4), (2.8)
and (2.9) that the components of the Ricci *-tensor p* satisfy
% * * * T * * * *
P11 — P33z = P22 — Paa = P11 t P22 — 5 P12 7 P31 = P34 = Pa3 =0,

PIa + paq = P;1 + Pzz = p13 + P24, P;4 - P;:; = Py — P32 = P14 + pa3.
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Therefore we can state

Lemma 2.3. Let (M,g,J) be an almost Hermitian 4-manifold. Then the
components of the Ricci tensor p of M satisfy (1.1) if and only if those of
the Ricci *-tensor p* of M satisfy (1.2) for any local orthonormal frame field

{61,62 = J61,63,e4 = JC3}.

3. Pointwise constant holomorphic sectional curvatures
The holomorphic sectional curvature H(X) for a unit vector field X on an al-
most Hermitian manifold (M, g, J) is the sectional curvature g(R(X, JX)J X, X).

In the 4-dimensional case, we can state

Proposition 3.1. An almost Hermitian 4-manifold (M, g, J) is of pointwise
constant holomorphic sectional curvature if and only if the components of the
Riemannian curvature tensor R of M satisfy
( Ri212 = R3434, Ri3za + R2434 =0, Ryg3s4 = R23aa,

Rj313 + R2424 + 2(R1234 + Ri324) = 2R3212,
(3.1) { Rigq + Raazs + 2(Rizss — Ry423) = 2Ry2;2,
Ri314 + Ri424 = Ri323 + Raaaq,

\ R1213 + Ri224 =0, Rj214 = Rj223

for any local orthonormal frame field {e;,e; = Je;,e3,e4 = Jez} on M.

Proof. By definition, M is of pointwise constant holomorphic sectional

curvature if and only if it satisfies

(3.2) g(R(X, JX)JX, X) = R3443
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for X = Y,aie;, where a;, az, az and a4 are any scalar functions such that
Yia? = 1. Let z = a? + a3, y = azas — aja4 and z = aja;z + aza4. Then the
functions z, y and z are linearly independent, and satisfy z? = z — y* — z2. By

a simple computation, we see that the equation (3.2) implies

(Ri212 — R3434)T + 2(Ry334 + Roasa)y + 2(Ri43s — Ra334)2
+{Ri313 + Raa24 + 2(Ri1234 + Ri324) — Riz12 — Raaza}y’
+{Ria14 + Raszs + 2(Ri234 — Ria23) — Riz12 — Rasas}2?
+2(Ri323 + R23z4 — Ri314 — R1424)yz + 2(Ri33s + R2434 — R1213 — Ri224)7y
+2(Ri223 + Ri43s — Ri1214 — R2334)2z |
=0.

This completes the proof.

Remark 3.2. S.Tanno ([8]) has studied the curvature identities for an n-
dimensional almost Hermitian manifold to be of pointwise constant holomorphic
sectional curvature. By his results, Proposition 3.1 will be also obtained.

As for the Ricci tensor and Ricci *-tensor of M, we can state

Lemma 3.3. Let (M,g,J) be an almost Hermitian 4-manifold of pointwise
constant holomorphic sectional curvature. Then the components of the Ricci
tensor p and Ricci *-tensor p* of M satisfy (1.1) and (1.2) respectively for any

local orthonormal frame field {e;,e; = Jey,e3,e4 = Jez} on M.
Proof. It follows from the first, fourth and fifth of (3.1) that

p11 + p22 = paz + pas = 6(Ri234 + Ry212)-

By the second and seventh of (3.1), we can verify that p;4 = p23. Since the
third and eighth of (3.1) imply p13 + p24, We see that (1.1) is satisfied on M.

The remaining part of the Lemma follows from Lemma 2.3.
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4. Proof of Theorems

Let (M,g,J) be a self-dual almost Hermitian 4-manifold. Assume that the
components of the Ricci tensor p of M satisfy (1.1) for a local orthonormal
frame field {e;,e2 = Jey,e3,e4 = Jes}. Then the first of (3.1) follows from the
first relations of (1.1) and (2.4). From the first of (2.7) and the second of (1.1),
we get the second and seventh of (3.1). We also obtain the third and eighth of
(3.1) from the third of (1.1) and the second of (2.7). It is easily seen that the
fourth of (2.7) is equivalent to the sixth of (3.1). Since we have

1
Ry234 + Ri1324 = R3q34 + Ry224 + §(P33 — p22)

from the third and fifth of (2.7), then we get the fourth of (3.1) by use of the
first of (3.1) and the definition of Ricci tensor. From the third of (2.7), we
obtain

2
3

1 1
Rjz34 = —-Rj212 + 6(R1331 + Rau42) + E(Ruu + R3332)

by virtue of the first of (3.1). Applying the fourth of (3.1) and the identity
Ri324 = Rj234 — Ry432 to the above equation, we have the fifth of (3.1). There-
fore, by Proposition 3.1, M is of pointwise constant holomorphic sectional cur-
vature.

Conversely, let (M, g,J) be an almost Hermitian 4-manifold of pointwise
constant holomorphic sectional curvature. Then, by Lemma 3.3, we have (1.1).
Since it follows from the fourth and fifth of (3.1) and the identity R;324+Rj432 =
—Rj243 that

6R1234 = —6R1212 + p11 + p22,

then we get the third of (2.7) by taking account of the first of (1.1) and (3.1).
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From the fourth of (3.1), we obtain

-
2Ry324 = 3~ (p33 + pasa) + Rizz1 + Ra224

by virtue of the third of (2.7) and first of (3.1). The above equation and the first
of (3.1) yield the fifth of (2.7). The first and second of (2.7) follows from the
seventh and eighth of ‘(3.1), respectively, by use of (1.1). We have already seen
that the fourth of (2.7) is equivalent to the sixth of (3.1). Thus, by Proposition
2.2, M is self-dual.

The remaining part of Theorem A follows from Lemmas 2.3 and 3.3. This
completes the proof of Theorem A.

Remark 4.1. T. Koda and K. Sekigawa ([4]) announced that an almost
Hermitian 4-manifold of pointwise constant holomorphic sectional curvature is

self-dual.

If M is Einstein, then M satisfies (1.1). Provided that M is weakly *-
Einstein, we also have (1.2). Thus Corollary B is immediate from Theorem

A.

Now we shall prove Theorem C. First of all, we have (1.1) and (1.2) by
Lemma 3.3. It follows from (1.3) that

(4.1) p(X,Y) = p(JX,JY)

for any vector fields X and Y on M. Thus we see from (1.1) and (4.1) that
P11 = P22 = p3s = pas and 0 otherwise for the orthonormal frame field {e1,e2 =
Jei,e3,eq = Jez}, which means that M is Einstein.

It follows from (1.3), (2.8) and (2.9) that

(4.2) p*(X,Y) = p"(Y,X) = p*(JX,JY)
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for any vector fields X and Y on M. By taking account of (1.2) and (4.2),
we see that pj; = p3, = p3; = pi, and 0 otherwise. Thus M is also a weakly

*-FEinstein manifold.

5. Examples

Let M be an open connected domain of C? = R, and (21, 22) = (2!, ¢!, %, 4?),
z* = z* + /=1y', be the canonical coordinate system of M, where here and in
the sequel the indices i,; run over the range {1,2}. For the canonical basis
{0/0z',8/0y',8/0z?,8/8y*} for the tangent space T,(M), p € M, we define
an endomorphism J : Tp(M) — T,(M) by

(5.1) Jo/0z' = 0/8y' and JB/dy' = —8/8z".

Then J is a complex structure on M. Let <,> be the canonical metric on M,

that is,
< 8/0z*,8/0z7 >= §;;, < 8/0z*,8/3y’ >=0, < 8/dy*,8/8y’ >= 6;;.

Then we see that (M, <,>,J) is a Kaehlerian 4-manifold.
Let f : M — C be a non-linear holomorphic function such that Ref > —1,
and we put 0 = —log(1 + Ref). As a conformal change of <, >, we consider a

Riemannian metric ¢ on M such that
(5.2) 9(X,Y) =ezp(20) < X,Y >

for any vector fields X and Y on M. Let V and D be the Riemannian con-

nections of M with respect to the metrics ¢ and <, > respectively. Then we

have

(5.3) VxY =DxY +(Xo)Y +(Yo)X— < X,Y > grado
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for any vector fields X and Y, where grad o is the gradient vector field of o
given by

doc 0O +60 3)
Oz' 8z*  Oy' Oyt

(5.4) grado = X

It is easily seen from (5.1) and (5.2) that (M, g, J) is a Hermitian 4-manifold.
Now we define a linear endomorphism ¥ : T,(M) — T,(M) by

(5.5) ¥(X)=—-Dxgrado + (Xo)grado

for @y X € T,(M). Then the 2-form 1 on M defined by
P(X,Y) =< ¥(X),Y >

is bilinear and symmetric for X and Y, and is given by

(5.6) v(X,Y)=(DxY)o— XYo + (Xo)(Yo)

for any vector fields X and Y on M. By a straightforward computation, the

Riemannian curvature tensor R of M with respect to the connection V is given

by

(5.7) R(X,Y)Z =y, 2)X - (X, 2)Y
+<Y,Z>¥X)-<X,Z>9(Y)
4+ |lgrade}(< X,Z >Y~-<Y,Z > X)
for any vector fields X, Y and Z on M.
Let f = u + v/—1v, where u = Ref and v = Imf. Since f is a holomorphic

function on M, we have

(5.8) v  Ou %u _ 8%v
. dz'0z7  Oy'dyl’ 8z'dyi  Ozidzi’

Since o0 = —log(1 + u), then, using (5.8), we obtain
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([ 8%c 9o do 1 6%
0zidzi Pz 8z3 1+ u dridzi’
< 0%c _ 8o Oo + 1 0%y
0r'dy?! 0z'8y’ 1+ udzridzi’
8%c _ 0o 8o 1 8%u
\ Dvoy Sy oy | 1tubdzidn

(5.9)

We choose an orthonormal basis{e; = ezp(—o)0/8z, e; = Je; = exp(—0)d/8y*,
es = ezp(—0)0/0z%,e4 = Je3 = exp(—0)8/8y?} for T,(M) with respect to the
metric g. We put

0%u 8%v

= orow 4 VT grign

u,‘j

Then, by taking account of (5.4), (5.5) and (5.9), the linear endomorphism ¥

is given by
Ui11 —v11 Ui2 —vi12
1 —v —-u —v —-u
(5.10) ‘I’ = 11 11 12 12
14+u Uj2 —U12 U2 —U22
—V12 —Uj2 —V22 —U22

with respect to the basis {e;, ez, €3,€4}.

Since the Riemannian curvature tensor R of (M, g,J) can be written as

(5.11)
I(R(X,Y)Z,W) = ¢(Y,Z)g9(X, W) — (X, Z)g(Y, W) + ¢(Y, Z)%(X, W)

— 9(X, Z)Y(Y, W) + ezp(—20)|lgrad o||*{9(X, Z)g(Y, W)

- g(Y7 Z)g(X, W)}
for any vector fields X,Y, Z and W on M, then, by comparing (3.1) with (5.10)
and (5.11), we see that (M, g, J) is a Hermitian 4-manifold of pointwise constant

holomorphic sectional curvature —ezp(—20)||grad o||? (see also A. Gray and L.
Vanhecke [2]).
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Since (M, g, J) is conformally flat and not of constant sectional curvature, it
is not Einstein. This fact can be also checked explicitly by use of (5.10) and
(5.11). Since it follows from (2.8), (5.10) and (5.11) that

piL = P32 = P33 = piy = —ezp(—20)||grad o||?,

P13 = —Rig12 — Rigza = Pas + 13 =0,
Pl = —Ya3 + Y14 =0

and so on, where ;; are the components of ¢ for the basis {e1,e2,e3,e4} of

T,(M), then we have
o"(X,Y) = —ezp(~20)|lgrado|Pg(X, ¥)

for any vector fields X and Y on M. Summing up these results, we see that
(M, g,J) is a Hermitian 4-manifold of pointwise constant holomorphic sectional

curvature, which is not Einstein but weakly *-Einstein.
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