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A note on the differentiability of the distance function

to regular submanifolds of Riemannian manifolds

Kazuko MATSUMOTO

Introduction. Let $M$ be a $C^{\infty}$ Riemannian manifold with a metric $g$ ,
let $S$ be a submanifold of $M$ and denote by $d(x)$ the distance from $x\in M$ to
$S$ induced by the metric $g$ . In the study of various problems of analysis, the
function $d=d(x)$ is a useful tool and one must ensure that it is sufficiently
differentiable (on some open subset of $M$ ) for one) $s$ purpose.

In this paper we prove that if $S$ is a $C^{k}$ regular submanifold of $M$ and
$ 2\leq k\leq\infty$ , then there exists an open subset $\Delta$ of $M$ such that $ S\subset\Delta$ and
the function $h=h(x)=d(x)^{2}$ is of class $C^{k}$ on $\Delta$ . Here we say that $S$

is a $C^{k}$ regular submanifold of $M$ if each point $x_{0}$ of $S$ has a $C^{k}$ coordinate
neighborhood $(U, \psi),$ $\psi=(\psi_{1})$ $\psi_{n}$ ), such that $S\cap U=\{p\in U$ : $\psi_{r+1}(p)=$

. . . $=\psi_{n}(p)=0$ }, where $n=\dim M$ and $0\leq r\leq n-1$ . In particular, the set
$S$ has no boundary but it needs not be closed or connected.

When $S$ is $a$ hypersurface of the Euclidean space $R^{n}$ , it is easy by the implicit
function theorem to see that if $S$ is of class $C^{k},$ $k\geq 2$ , then there exists an open
set including $S$ where $h$ is of class $C^{k-1}$ . In this case, Gilbarg-Trudinger ([2],
Lemma 1 of Appendix) showed, as the strict result of Serrin ([5], Lemma 1 of
Chapter I, \S 3), that $h$ is further of class $C^{k}$ on some open set including $S$ . Their
proofs depend on the geometric method, but later Krantz-Parks [3] showed it by
elementary means (see also Krantz [4], pp. 136-137). Our proof in this paper
is the extension of Krantz-Parks’ one.

We note here that the statement above is false in the case $k=1$ . In fact,
there is a $C^{1}$ curve $S$ in the Euclidean space $R^{2}$ which contains a point without
positive reach (see, for example, [3]). It follows from the general result of
Federer ([1], Theorem 4.8) that the function $h=d^{2}$ is then not differentiable
near the point of $S$ without positive reach.
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1. Let $M$ be a $C^{\infty}$ Riemannian manifold of dimension $n$ and let $g$ be a
metric on $M$ . For two points $x$ and $y$ of $M$ , we denote by $\delta(x, y)$ the distance
between $x$ and $y$ induced by the metric $g$ .

It is well-known that each $x_{0}\in M$ has a coordinate neighborhood $U$ where
any two points $x$ and $y$ can be joined by a unique minimizing geodesic $\xi=\xi(s)$ ,
$s\in[0,1]$ , in $M$ . If the neighborhood $U$ of $x_{0}$ is sufficiently small, the geodesic
$\xi$ has the expression $\xi(s)=\exp_{x}sv$ for some $v=v(x, y)\in T_{x}(M)$ and the
mapping $v=v(x, y)$ is of class $C^{\infty}$ on $U\times U$ . Then we can write

$\delta(x, y)=\delta(x, \exp_{x}v)=\sqrt{g_{x}(v,v)}$

for $x,$ $y\in U$ .
Regarding the coordinate neighborhood $U$ as an open subset of $R^{n}$ , we put

$x=$ $(x_{1}, \ldots , x_{n})$ and $y=(y_{1}, \ldots , y_{\mathfrak{n}})$ for $x,$ $y\in U$ . Moreover, we put

$g_{ij}=g(\frac{\partial}{\partial x:},$ $\frac{\partial}{\partial x_{j}})$ , $1\leq i,$ $j\leq n$ ,

and write
$v=\sum_{i=1}^{n}v_{i}(\frac{\partial}{\partial x_{i}}I_{x}$

Then the functions $g_{ij}=g_{ij}(x)$ and $v_{i}=v_{i}(x, y)$ are of class $C^{\infty}$ on $U$ and
$U\times U$ respectively, and the matrix $(g_{ij})$ is positive definite symmetric at each
point of $U$ . Further, it follows from the property of the exponential mapping
$y=\exp_{x}v$ that the functions $v;=v_{i}(x, y),$ $1\leq i\leq n$ , satisfy the conditions

$v_{i}(x_{0}, x_{0})=0$ , $\frac{\partial v_{i}}{\partial y_{j}}(x0, x_{0})=\delta_{ij}$ , $1\leq i,j\leq n$ .

Thus we obtain the following:
LEMMA. For each point $x_{0}$ of a $C^{\infty}$ Riemannian manifold $M$ , there exist a

coordinate neighborhood $U$ of $x_{0}$ and $C^{\infty}$ functions $v;=v_{i}(x, y),$ $1\leq i\leq n$,
on $U\times U$ such that

(i) $\delta(x, y)^{2}=\sum_{i,j=1}^{n}g_{ij}(x)v_{i}(x, y)v_{j}(x, y)$ ,

(ii) $v_{i}(x_{0}, x_{0})=0$ , $\frac{\partial v_{i}}{\partial y_{j}}(x_{0}, x_{0})=\delta_{ij}$ , $1\leq i,$ $j\leq n$ .

2. For a given submanifold $S$ of $M$ , we define the function $d=d(x)$ by

$d(x)=\delta(x, S)=\inf\{\delta(x, y) : y\in S\}$ , $x\in M$ .

We shall now prove the following:
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THEOREM. If $S$ is a $C^{k}$ regular $subm$anifold of a $C^{\infty}$ Riemannian manifold
$M$ and $ 2\leq k\leq\infty$ , then there exists an $op$en $su$ bset $\Delta$ of $M$ such that $ S\subset\Delta$

and the restriction to $\Delta$ of the function $h=d^{2}$ is of class $C^{k}$ .

PROOF: Let $x_{0}$ be a point of $S$ and let $r$ be the dimension of the connected
component of $S$ containing $x_{0}$ . Then we can take a coordinate neighborhood
$U(\subset M)$ of $x_{0}$ , so that the set $S\cap U$ is written by

$S\cap U=\{\varphi(t)=(\varphi_{1}(t), \ldots\varphi_{n}(t)):t=(t_{1}, \ldots t_{r})\in E\}$

for some open subset $E\subset R^{r}$ and some $C^{k}$ mapping $\varphi$ : $E\rightarrow U$ such that the
Jacobian matrix

$\Phi=\frac{D(\varphi_{1},..\cdot.\cdot.’\varphi_{n})}{D(t_{1},,t_{r})}=(\frac{\partial\varphi_{i}}{\partial t_{\mu}})_{1\leq i\leq n,1\leq\mu\leq r}$

has the rank $r$ at $t=t_{0}$ if $x_{0}=\varphi(t_{0})$ for $t_{0}\in E$ . (When $r=0$ , we take $U$ so
that $S\cap U=\{x_{0}\}.$ )

Now if $U^{\prime}(\subset M)$ is a neighborhood of $x_{0}$ and

$U^{l}\subset\{x\in M : \delta(x, x_{0})<\epsilon\}\subset\{x\in M : \delta(x, x_{0})<2e\}\subset U$

for some $e>0$ , then it follows that $d(x)=\delta(x, S)=\delta(x, S\cap U)$ for $x\in U^{\prime}$ .
Therefore, it is sufficient for the proof of Theorem to show that the point $x_{0}$

has a neighborhood $U_{0}(\subset U^{\prime})$ where the function $h=d(x)^{2}=\delta(x, S\cap U)^{2}$ is
of class $C^{k}$ . Moreover, we may, by shrinking the neighborhoods $U$ and $U^{\prime}$ of
$x_{0}$ if necessary, assume that for this $U$ there exist $C^{\infty}$ functions $v_{i}=v_{i}(x, y)$ ,
$1\leq i\leq n$ , on $U\times U$ satisfying the conditions (i) and (ii) of Lemma.

First if $r=0$ , that is, if $S\cap U=\{x_{0}\}$ , it follows immediately from the
condition (i) that $h=d(x)^{2}=\delta(x, x_{0})^{2}$ is of class $C^{\infty}$ on $U^{\prime}$ . Hence we
suppose that $1\leq r\leq n-1$ .

For $x=$ $(x_{1)}\ldots , x_{n})\in U$ and $t=(t_{1}, \ldots t_{r})\in E$ , we put

$f(x,t)=\delta(x, \varphi(t))^{2}=\sum_{i,j=1}^{n}g_{ij}(x)v_{i}(x, \varphi(t))v_{j}(x, \varphi(t))$

and
$F_{\mu}(x,t)=\frac{\partial f}{\partial t_{\mu}}(x, t)$ , $1\leq\mu\leq r$ .
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Then the $m$apping $F=(F_{1}, \ldots F_{r})$ is of class $C^{k-1},$ $k\geq 2$ , on $U\times E$ .
Moreover, we can verify that

$(^{*})$ $\det\frac{D(F_{1},\ldots,F_{r})}{D(t_{1},\ldots,t_{r})}(x_{0}, t_{0})\neq 0$ .

In fact, it follows from the condition (ii) and the symmetry of the matrix $G=$
$(g_{ij})$ that

$\frac{\partial F_{\mu}}{\partial t_{\nu}}(x_{0}, t_{0})=\frac{\partial^{2}f}{\partial t_{\mu}\partial t_{\nu}}(x_{0}, t_{0})$

$=2\sum_{i,j=1}^{n}g:j(x_{0})\{\sum_{\alpha=1}^{\mathfrak{n}}\frac{\partial v_{i}}{\partial y_{\alpha}}(x_{0}, x_{0})\frac{\partial\varphi_{\alpha}}{\partial t_{\mu}}(t_{0})\}$

$\times\{\sum_{\beta=1}^{n}\frac{\partial v_{j}}{\partial y_{\beta}}(x_{0}, x_{0})\frac{\partial\varphi\rho}{\partial t_{\nu}}(t_{0})\}$

$=2\sum_{i,j=1}^{\mathfrak{n}}g_{ij}(x_{0})\frac{\partial\varphi_{i}}{\partial t_{\mu}}(t_{0})\frac{\partial\varphi j}{\partial t_{\nu}}(t_{0})$

for $1\leq\mu,$ $\nu\leq r$ , and hence

$\frac{D(F_{1},..\cdot..’ F_{r})}{D(t_{1},.,t_{r})}(x_{0},t_{0})=2^{\ell}\Phi(t_{0})G(x_{0})\Phi(t_{0})$ .

Now since $G(x_{0})$ is positive definite symmetric and $\Phi(t_{0})$ has the rank $r$ , the
matrix $\ell\Phi(t_{0})G(x_{0})\Phi(t_{0})$ is also positive definite symmetric and so its deter-
minant does not vanish. This implies $(^{*})$ . Therefore, we can by the implicit
function theorem find a neighborhood $U_{0}(\subset U^{\prime})$ of $x_{0}$ , so that each $x\in U_{0}$

has a unique solution $t=t(x)\in E$ of the system of equations $F_{\mu}(x, t)=0$ ,
$1\leq\mu\leq r$ , and the mapping $t=t(x)=(t_{1}(x), \ldots , t_{r}(x))$ is of class $C^{k-1}$ on
$U_{0}$ . Then for each $x\in U_{0}$ there exists at least one point $t^{\prime}\in E$ such that
$d(x)=\delta(x, S\cap U)=\delta(x, \varphi(t^{\prime}))$ . Further, the point $\ell^{\prime}$ is uniquely determined
by $x$ and it must coincide to $\ell(x)$ because $f=f(x, t)=\delta(x, \varphi(\ell))^{2}$ is minimal
at $t=t^{\prime}$ for each $x$ .

Hence we can write

$h(x)=\delta(x, S\cap U)^{2}=\delta(x, \varphi(t(x)))^{2}=f(x,t(x))$

for $x\in U_{0}$ , and first see that $h$ is of class $C^{k-1}$ on $U_{0}$ . Then the partial
derivatives of $h$ are expressed by

$\frac{\partial h}{\partial_{X}:}(x)=\frac{\partial f}{\partial_{X}:}(x, t(x))+\sum_{\mu=1}^{r}\frac{\partial f}{\partial\ell_{\mu}}(x, t(x))\frac{\partial t_{\mu}}{\partial x_{i}}(x)$ .
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Since $t=t(x)$ is the solution of $F_{\mu}(x, t)=(\partial f/\partial t_{\mu})(x, t)=0$ for $1\leq\mu\leq r$ , we
further obtain

$\frac{\partial h}{\partial x_{i}}(x)=\frac{\partial f}{\partial x_{i}}(x, t(x))$ , $1\leq i\leq n$ ,

and see that they are also of class $C^{k-1}$ on $U_{0}$ . Therefore, we can conclude
that the function $h=d^{2}$ is of class $C^{k}$ on $U_{0}=U(x_{0})$ and hence on the open
set $\Delta=\bigcup_{x_{0}\in S}U(x_{0})$ including $S$ , which proves the theorem. $\square $

3. When $M=R^{n}$ and the metric $g$ of $M$ is Euclidean, the distance
$\delta(x, y)$ between $x=(x_{1}, \ldots x_{n})$ and $y=(y_{1}, \ldots y_{n})$ is given by $\delta(x, y)^{2}=$

$\sum_{:=1}^{n}(y_{i}-x_{i})^{2}$ . Then the functions $g_{ij}=g;;(x)$ and $v;=v_{i}(x, y)$ in Lemma
are written by $g_{ij}(x)\equiv\delta;$; and $v_{i}(x, y)=y;-x_{i}$ . Finally we note that the
calculation above of our proof of Theorem is simpler than that of Krantz ([4],
pp. 136-137) in this case.
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