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A note on the differentiability of the distance function

to regular submanifolds of Riemannian manifolds

Kazuko MATSUMOTO

Introduction. Let M be a C* Riemannian manifold with a metric g,
let S be a submanifold of M and denote by d(z) the distance from z € M to
S induced by the metric g. In the study of various problems of analysis, the
function d = d(z) is a useful tool and one must ensure that it is sufficiently
differentiable (on some open subset of M) for one’s purpose.

In this paper we prove that if S is a C* regular submanifold of M and
2 < k < oo, then there exists an open subset A of M such that S C A and
the function A = A(z) = d(z)? is of class C* on A. Here we say that S
is a C* regular submanifold of M if each point zoq of S has a C* coordinate
neighborhood (U, %), % = (¥1,... ,%s), such that SNU ={p € U : Y, 41(p) =
- = 1,(p) =0}, where n =dim M and 0 < r < n — 1. In particular, the set
S has no boundary but it needs not be closed or connected.

When S is a hypersurface of the Euclidean space R, it is easy by the implicit
function theorem to see that if S is of class C*, k > 2, then there exists an open
set including S where A is of class C*~1. In this case, Gilbarg-Trudinger ([2],
Lemma 1 of Appendix) showed, as the strict result of Serrin ([5], Lemma 1 of
Chapter I, §3), that h is further of class C* on some open set including S. Their
proofs depend on the geometric method, but later Krantz-Parks [3] showed it by
elementary means (see also Krantz [4], pp. 136-137). Our proof in this paper
is the extension of Krantz-Parks’ one.

We note here that the statement above is false in the case k = 1. In fact,
there is a C! curve S in the Euclidean space R? which contains a point without
positive reach (see, for example, [3]). It follows from the general result of
Federer ([1], Theorem 4.8) that the function h = d? is then not differentiable
near the point of S without positive reach.



1. Let M be a C* Riemannian manifold of dimension n and let g be a
metric on M. For two points = and y of M, we denote by é(z, y) the distance
between z and y induced by the metric g.

It is well-known that each zp € M has a coordinate neighborhood U where
any two points z and y can be joined by a unique minimizing geodesic £ = £(s),
s € [0,1], in M. If the neighborhood U of zq is sufficiently small, the geodesic
€ has the expression £(s) = exp, sv for some v = v(z,y) € T(M) and the
mapping v = v(z,y) i1s of class C* on U x U. Then we can write

§(z,y) = 6(z, exp, v) = V/ 92 (v,v)
forz,yeU.

Regarding the coordinate neighborhood U as an open subset of R", we put
z=(z1,...,2,) and y = (y1,... ,Yn) for z,y € U. Moreover, we put

g 0
ij — a1 aq_ | 1<1< ’
93 g(@z, 621) =hJ =T

n 0
U:igv,' (E:>$

Then the functions g;; = gi;(z) and v; = v;(z,y) are of class C* on U and
U x U respectively, and the matrix (g;;) is positive definite symmetric at each
point of U. Further, it follows from the property of the exponential mapping
y = exp, v that the functions v; = v;(z,y), 1 < i < n, satisfy the conditions

and write

Ov
dy;

‘Thus we obtain the following:

vi(zo, o) = 0, (20, z0) = &ij, 1<i,j<n.

LEMMA. For each point zq of a C*® Riemannian manifold M, there exist a
coordinate neighborhood U of zg and C* functions v; = v;(z,y), 1 < i < n,

on U x U such that

(i) §(z,y)* = 2 9ii(@) vilz,9) v (2, 9),
i,j=

(i) v;(Zo, To) = 0, ’%(‘Bo, zo) = b;j, 1<3,5<n
Oy;

2.  For a given submanifold S of M, we define the function d= d(z) by
d(z) = §(z,S) = inf{é(z,y) : y € S}, x € M.

We shall now prove the following:



THEOREM. If S is a C* regular submanifold of a C* Riemannian manifold
M and 2 < k < oo, then there exists an open subset A of M such that S C A
and the restriction to A of the function h = d? is of class C*.

PROOF: Let zo be a point of S and let r be the dimension of the connected
component of S containing zo. Then we can take a coordinate neighborhood
U (C M) of zg, so that the set SN U 1s written by

SNU = {p() = (p1(t), ... ,pn(t)) : t = (t1,...,t) € E}

for some open subset £ C R” and some C* mapping ¢ : E — U such that the
Jacobian matrix

& — D(p1,...,%n) _ (8_(3._)
D(tq,...,1,) ot, 1<i<n1<ulr
has the rank r at ¢ = tg if 2o = ¢(to) for to € E. (When r = 0, we take U so
that SNU = {2:0}.)
Now if U’ (C M) is a neighborhood of zo and

U'C{:veM:(S(a:,:z:o)<€}C‘{:1:€M:5(:z:,zo)<2€}CU

for some € > 0, then it follows that d(z) = 6(z,S) = 8(z,SNU) for z € U'.
Therefore, it is sufficient for the proof of Theorem to show that the point z¢
has a neighborhood Uy (C U’) where the function h = d(z)? = §(z, SNU)? is
of class C¥. Moreover, we may, by shrinking the neighborhoods U and U’ of
zo if necessary, assume that for this U there exist C* functions v; = v;(z, ¥),
1 < i< n,on U x U satisfying the conditions (i) and (ii) of Lemma.

First if » = 0, that is, if SN U = {zg}, it follows immediately from the
condition (i) that h = d(z)? = 6(z,z0)? is of class C*® on U’. Hence we
suppose that 1 <r <n —1.

For z = (z1,... ,2,) € U and t = (¢4,...,t,) € E, we put

n

f(z,0) = 6(z, (1)* =

i,7=1

gii (z) vi (2, 9(2)) v; (2, (1))

and
Fy(z,t) = gt;f-(x,t), 1<pu<r.
B



Then the mapping F = (Fy,...,F,) is of class C*! k > 2 on U x E.
Moreover, we can verify that

D(Fy,... ,F

r)
D(ty,...,t;) (zo0,t0) # 0.

™) . det
In fact, it follows from the condition (ii) and the symmetry of the matrix G =
(gij) that

OF, O f

51, (Zorto) = g (w0, to)

=2 3 g5(a0){ & 2 (e

i,7=1

}

{2 g—”-m,zo) o)

=1
Opi ,, \ O
=2 Z:l.q‘J (‘50) (P ( (PJ (io)
1,J
for1 < p,v < r, and hence
D(F,,...,F,) L
Dy 1) (Forto) = 2 ®(to) G(zo) ¥(to).

Now since G(zo) is positive definite symmetric and (%) has the rank r, the
matrix ‘@(t9) G(zo) P(to) is also positive definite symmetric and so its deter-
minant does not vanish. This implies (*). Therefore, we can by the implicit
function theorem find a neighborhood Up (C U’) of zg, so that each z € Uy
has a unique solution t = #(z) € E of the system of equations F,(z,t) = 0,
1 < p < r, and the mapping t = t(z) = (t1(z),...,t,(z)) is of class C*~! on
Uo. Then for each z € Up there exists at least one point # € E such that
d(z) = 6(z,SNU) = é(z, (t')). Further, the point ¢ is uniquely determined
by z and it must coincide to ¢(z) because f = f(z,t) = §(z, ¢(¢))? is minimal
at t =t’ for each z.
Hence we can write

h(z) = 8(z, S NU)? = §(z, p(t(2)))* = f(=,1(z))

for ¢ € Up, and first see that h is of class C*~! on Uy. Then the partial
derivatives of h are expressed by

Oh of r. Of ot,
52 ) = o (B 1@ + T 5 (e @) A ).



Since t = () is the solution of F,(z,t) = (8f/0t,)(z,t) =0for 1 < p <7, we
further obtain

oh ., _ 0f -
53:—,(2) = Bz, (z,t(z)), 1<i1<n,

and see that they are also of class C*~! on Up. Therefore, we can conclude
that the function h = d? is of class C* on Uy = U(zo) and hence on the open
set A = Uz,esU(zg) including S, which proves the theorem. O

3. When M = R"™ and the metric ¢ of M is Euclidean, the distance
6(x,y) between z = (z1,...,2,) and ¥y = (¥1,-.-,¥n) is given by §(z,y)? =
ST, (yi — z:)2. Then the functions g;; = gi;(z) and v = vi(z,y) in Lemma
are written by g;;(z) = &; and v;(z,y) = y;i — z;. Finally we note that the
calculation above of our proof of Theorem is simpler than that of Krantz ([4],
pp. 136-137) in this case.
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