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ABSTRACT. We consider norm inequalities associsted to McIntosh type inequality
$||4B||\leq||{\rm Re} BA||$ which is closely related to the Heinz one. Consequently, we give $\bullet$

simple and elementary proof of the Rein $f$ inequelity.

1. Introduction. This work is a continuation of preceding paper [2] in some
sense. Throughout $t$his note, a capital letter means a (bounded linear) operator on
a Hilbert space. Our starting point is the folowing norm inequality due to Heinz
[7]:

Theorem A. $IfA$ and $B$ are positive operators, $th$en

(1) $||AQ+QB||\geq||A’ QB^{1-}’+A^{1-}’ QB’||$

for $0\leq r\leq 1$ .

To give an elementary proof to the Heinz inequality, McIntosh [9] showed the
folowing inequality which is just the case $r=1/2$ in Theorem A.

Theorem B. For $ arbitra\eta$ operators $P,$ $Q$ an$dR$ ,

(2) $||P^{\cdot}PQ+QRR^{\cdot}||\geq 2||PQR||$ .

Very recently, we pointed out in [2] that both inequalities (1) and (2) are equiv-
alent to an interesting inequality recently obtained by Corach, Porta and Recht [1]
that

(3) $||STS^{-\iota}+S^{-1}TS||\geq 2||T||$
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for selfadjoint invertible operators $S$ . It is understood as a key in their study on

differential geometry.

Now, to prove (2), McIntosh required the folowing:

Theorem C. $IfAB$ is seltbdjoint, then

(4) $||AB||\leq||{\rm Re} BA||$ ,

where ${\rm Re} T=(T+T^{\cdot})/2$ is the $reaI$ part ofT.

In this note, we consider such nom inequalities as (4). Furthermore, we pose

another norm inequality equivalent to the Heinz one (1) via the McIntosh one (2),

which is an improvement of $t$he work in [2]. As a result, we have a simple and

elementary proof of (1).

2. Norm inequalities. First of al, we note that (4) is obtained by combining

the folowing facts:

Lemma 1. Let $\sigma(T)$ (resp. $r(T)$ ) be the $sp$ectrum (resp. spectral radius) ofT.

Then

(5) $\sigma(XY)=\sigma(YX)$ up to $0$ and $r(XY)=r(YX)$ .

In particular, if either $X$ or $Y$ is invertible, then

(5’) $\sigma(XY)=\sigma(YX)$ .

Lemma 2. $K\sigma(T)$ is contained in the real axis $R$ , then

(6) $r(T)\leq||{\rm Re} T||$ .

Proof. Since $\sigma(T)$ is contained in the closed numerical range $\overline{W(T)}$ of $T$ , we have
$\sigma(T)\subseteq{\rm Re}\overline{W(T)}=\overline{W({\rm Re} T)}$. Hence it folows that either $r(T)or-r(T)$ belongs

to $\overline{W({\rm Re} T)}$, so that $r(T)\leq||{\rm Re} T||$ .
For the sake of convenience, we write down a proof of (4):

$||AB||=r(AB)=r(BA\rangle\leq||{\rm Re} BA||$ .
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Now, in this section, we discuss some norm inequalities based on the above
lemmas. Folowing Wigner [12], an operator $T$ is weakly positive if $T$ is sinilar
to a positive operator. We note that the invertibility of $T$ is not assumed in our
definition. It is known that $T$ is weakly positive if and only if $T=AB$ for some
positive operators $A$ and $B$ , one of which is invertibl $e$ , cf. [12; Theorems 1 and
3]. Actually, suppose that $T=S^{-1}CS$ for some positive $C$ and invertible $S$ and
$S=UD$ is the polar decomposition of $S$ . Then we have $T=D^{-2}DU^{*}CUD$ .
Theorem 3. Let $T$ be a weakly positive operator With factorisation $T=AB$ for
some positive operators $A$ and B. Then the $n$orm of every factor is $e$valnated as

$||B||\leq||{\rm Re} TA^{-1}||$ (resp. $||A||\leq||{\rm Re} B^{-1}T||$ )

provided that $A$ (resp. $B$ ) is invertible.

Proof. It folows from Lemmas 1 and 2 that

$||B||=r(B)=r(A^{-1}T)=r(TA^{-\iota})\leq||{\rm Re} TA^{-1}||$ .

The other case is quite similar.

Remark. In [3], we obtained a factorization of an idempotent operator $T$ such
as $T=EA$ for some $A\geq 0$ and projection $E$ . From our viewpoint, this factorization
can be improved as folows: Suppose that $T$ is expressed as

$T=\left(\begin{array}{ll}1 & B\\0 & 0\end{array}\right)$ on $\overline{ranT}\oplus(ranT)^{\perp}$ .

Then we take
$B=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)$ and $A=\left(\begin{array}{ll}1 & B\\B\cdot & b\end{array}\right)$ .

If $b>||B||^{2}$ , then $A$ is positive invertible with the inverse

$A^{-1}=\left(\begin{array}{lll}1+ & BCB^{*} & -BC\\-CB & & C\end{array}\right)$ , where $C=(b-B^{\cdot}B)^{-1}$ .

Therefore we have $T=EA$ and so $A^{1/2}TA^{-1/2}=A^{1/2}BA^{1/2}\geq 0$ . Consequently,
we can see idempotent operators as typical examples of (noninvertible) weakly
positive operators.
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Next we discuss a similar norm inequality in some general setting. To do this,

we introduce the weak selfhdjointness for operators; an operator $T$ is weauy selfad$\cdot$

joint if $T$ is similar to a selkdjoint operator. It is easily checked that $T$ is weakly

selfadjoint if and only if $T=AB$ for some selhdjoint operators $A$ and $B$ , one of

which is positive invertible.

We here recal that an operator $T$ on $H$ is paranormal [4] if $||T^{2}x||||ae||\geq||T\iota||^{2}$

for $x\in H$ , and $T$ is hyponormal if $||Tx||\geq||Tx||$ for $x\in H$ , or equivalently

$TT\geq TT^{\cdot}$ . It is clear that every hyponormal operator is paranormal because
$||Tx||||\epsilon||\geq||T^{\cdot}T\iota||||x||\geq(T^{\cdot}Tx,x)=||Tx||^{2}$ .

Theorem 4. Let $T$ be $a$ weakly selfadjoint operator, which $c$an be wrriten as
$fo\Pi ows:T=B^{-1}AB$ where $A$ is $sdh\Phi ojnt$ and $B$ is positive invertible. Then

(i) ifAB is paranormal, $th$en $||BT||\leq||{\rm Re} TB||$ .
(ti) ifAB is hyponomal, then $BT={\rm Re} TB$ , that is, $BT$ is itself $se1h\phi oint$ and

so is AB.

Proof. Since $A$ is $selh\phi oint$ and $AB=BT$ , it folows fiom (5’) that

$\sigma(TB)=\sigma(BT)=\sigma(AB)=\sigma(B^{1/2}AB^{1/2})\subseteq R$ .

Suppose that $AB$ is paranormal. Then it is normaloid by [4] and [8], i.e., $r(AB)=$
$||AB||$ . Since $r(BT)=||BT||$ by $AB=BT$ , and $\sigma(TB)\subseteq R$ , it folows from

Lemmas 1 and 2 that

$||BT||=r(BT)=r(TB)\leq||{\rm Re} TB||$

Next suppose that $AB$ is hyponormal. Then it is convexoid by [5] and [11], i.e., its

closed numerical range coincides with the convex hul of its spectrum. Therefore ,
since $\sigma(AB)\subseteq R$ , it folows that $AB$ is selhdjoint.

Remark. The statements in Theorem 4 have a bit of contrast. As a mat-

ter of $hct$ , Halmos says that normal operators have two faces; that is, normaloid

and convexoid ones. There is no implication between them, actualy, there exist
convexoid operators that are not normaloid and vice versa [6]. It is known that

paranomality does not imply convexoidness [10] but so does hyponormality, and

–70 –



that paranormality implies normaloidness. It is obvious that (i) remains valid under

the assumption $AB$ belongs to subclasses of (nonconvexoid) normaloid operators,

e.g., quasihyponormal, semihyponormal and k-paranormal operators, whose defi-

nitions are as folows ; II$TTx||\leq||T^{2}ae||$ for $x\in H,$ $(TT^{\cdot})^{1/2}\leq(TT)^{1/2}$ and

11 $T^{h+1}\iota||\geq||Tx||^{h+1}$ for unit vectors $ae\in H$ respectively. Incidentaly, as a conse-

quence of (i1), $T$ turns out to be itself selfadjoint because $A$ and $B$ commute.

3. The Heins inequality. In the preceding note [2], we discuss some norm
in $e$qualities equivalent to the Heinz inequality (1). Thus we add to such an norm
inequality, which is a restricted version of (2) due to McIntosh.

Theorem 5. The inequalities (1), (2) and (3) are equivalent to the inequality

(7) $||{\rm Re} A^{2}Q||\geq||AQA$ II
for $A\geq 0$ and $selfa\phi oint$ operators $Q$ .

Proof. Since (2) implies (7) trivialy, it suffices to show the converse. For arbitrary
$P,Q$ and $R$ , we put

$T=\left(\begin{array}{ll}P & 0\\0 & R\cdot\end{array}\right)$ and $S=\left(\begin{array}{ll}0 & Q\\Q^{*} & 0\end{array}\right)$ .
Then it folows $gom$ the assumption (7) that

(8) $||T^{*}TS+ST^{\cdot}T||\geq 2|||T|S|T|||$ .
Moreover we have the folowing (9) and (10) since $||\left(\begin{array}{ll}0 & X\\X & 0\end{array}\right)||=||X||$ .
(9) $||T^{*}TS+ST^{*}T||=||P^{\cdot}PQ+QRR^{\cdot}||$

and

(10) $|||T|S|T|||=||TST^{\cdot}||=||PQR||$ ,

so that (2) is obtained by (8), (9) and (10).

Finaly we give a short proof to this proposed inequality (7), by which we also
have an alternative elementary proof of the Heinz inequaJity (1).

Proof of (7). We only use Lemmas 1 and 2. Suppose that $A\geq 0$ and $Q=Q^{\cdot}$ .
Then, since $\sigma(A^{2}Q)\subseteq R$ , we have

$||AQA||=r(AQA)=r(A^{2}Q)\leq||{\rm Re} A^{2}Q||$ .
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