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NORM INEQUALITIES RELATED TO
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ABSTRACT. We consider norm inequalities associated to McIntosh type inequality
llAB|| < [IRe BA|| which is closely related to the Heinz one. Consequently, we give a
simple and elementary proof of the Heinz inequality.

1. Introduction. This work is a continuation of preceding paper [2] in some
sense. Throughout this note, a capital letter means a (bounded linear) operator on

a Hilbert space. Our starting point is the following norm inequality due to Heing
[7]:
Theorem A. If A and B are positive operators, then

1) 14Q + Q@B|| > ||4"QB* ™" + A" QB"||

for0 <r<1.

To give an elementary proof to the Heing inequality, McIntosh [9] showed the
following inequality which is just the case » = 1/2 in Theorem A.

Theorem B. For arbitrary operators P,Q and R,
(2) |1P*PQ + QRR"|| > 2||PQR]|.

Very recently, we pointed out in [2] that both inequalities (1) and (2) are equiv-
alent to an interesting inequality recently obtained by Corach, Porta and Recht [1]
that |

(3) ISTS* + 57'TS|| > 2||T|
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for selfadjoint invertible operators S. It is understood as a key in their study on
differential geometry.
Now, to prove (2), McIntosh required the following:

Theorem C. If AB is selfadjoint, then
(4) lABJ| < [IRe BA]|,

where ReT = (T + T*)/2 is the real part of T.

In this note, we consider such norm inequalities as (4). Furthermore, we pose
another norm inequality equivalent to the Heinz one (1) via the McIntosh one (2),
which is an improvement of the work in [2]. As a result, we have a simple and

elementary proof of (1).

2. Norm inequalities. First of all, we note that (4) is obtained by combining
the following facts:

Lemma 1. Let o(T) (resp. »(T)) be the spectrum (resp. spectral radius) of T.
Then

(5) o(XY)=0(YX) upto0 and »(XY)=»YX).
In particular, if either X or Y is invertible, then

() o(XY) = o(Y X).

Lemma 2. If o(T) is contained in the real axis R, then

(6) < *(T) < |[ReT||.

Proof. Since o(T) is contained in the closed numerical range W(T') of T', we have
o(T) C ReW(T) = W(ReT). Hence it follows that either »(T") or —»(T') belongs
to W(ReT), so that »(T') < ||ReT]||.

For the sake of convenience, we write down a proof of (4):

|AB|| = »(AB) = »(BA) < |Re BA||.
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Now, in this section, we discuss some norm inequalities based on the above
lemmas. Following Wigner [12], an operator T is weakly positive if T is similar
to a positive operator. We note that the invertibility of T' is not assumed in our
definition. It is known that T is weakly positive if and only if T = AB for some
positive operators A and B, one of which is invertible, ¢f. [12; Theorems 1 and
3]. Actually, suppose that T = S~1CS for some positive C and invertible S and
S = UD is the polar decomposition of S. Then we have T = D-2DU*CUD.

Theorem 8. Let T be a weakly positive operator with factorization T = AB for

some positive operators A and B. Then the norm of every factor is evaluated as
IBI < IReTA™Y(| (resp. |lAll < [[Re B-T])

provided that A (resp. B) is invertible.

Proof. It follows from Lemmas 1 and 2 that
1Bl = 7(B) = r(47*T) = #(TA™") < |ReTA"Y|.
The other case is quite similar.

Remark. In (3], we obtained a factorization of an idempotent operator T such
as T = E A for some A > 0 and projection E. From our viewpoint, this factorization

can be improved as follows : Suppose that T is expressed as

T= ((1) ?) on ranT @ (ranT) .

(10 (1 B
£ (2 0) maan (A ).

If b > || B||?, then A is positive invertible with the inverse

Then we take

A1 = (1 + BCB* -—-BC

_CB* c ) , where C = (b— B*B)~L.

Therefore we have T = FA and so AY/2TA-1/2 = A1/2EAY/? > (. Consequently,
we can see idempotent operators as typical examples of (noninvertible) weakly

positive operators.
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Next we discuss a similar norm inequality in some general setting. To do this,
we introduce the weak selfadjointness for operators; an operator T is weakly selfad-
joint if T is similar to a selfadjoint operator. It is easily checked that T is weakly
selfadjoint if and only if T = AB for some selfadjoint operators A and B, one of
which is positive invertible.

We here recall that an operator T on H is paranormal [4] if (|T?2|||z[] > (|T=|
for z € H, and T is hyponormal if ||Tz|| > ||T*2| for z € H, or equivalently
T*T > TT*. 1t is clear that every hyponormal operator is paranormal because

IT?2lll=]| 2 IT*T=|ll|2l| > (T*T=,2) = ||T=|’.

Theorem 4. Let T be a weakly selfadjoint operator, which can be wrriten as
follows: T = B~ AB where A is selfadjoint and B is positive invertible. Then

(i) if AB is paranormal, then ||BT|| < |ReTB||.

(ii) if AB is hyponormal, then BT = ReTB, that is, BT is itself selfadjoint and
so is AB.

Proof. Since A is selfadjoint and AB = BT, it follows from (5°) that
o(TB) = o(BT) = 0(AB) = o(B'/?AB**) C R.

Suppose that AB is paranormal. Then it is normaloid by [4] and [8], i.e., »(AB) =
||AB||. Since »(BT) = ||BT|| by AB = BT, and o(T'B) C R, it follows from
Lemmas 1 and 2 that

|BT|| = »(BT) = »(TB) < ||Re T B||

Next suppose that AB is hyponormal. Then it is convexoid by [5] and [11], i.e., its
closed numerical range coincides with the convex hull of its spectrum. Therefore ,

since 0(AB) C R, it follows that AB is selfadjoint.

Remark. The statements in Theorem 4 have a bit of contrast. As a mat-
ter of fact, Halmos says that normal operators have two faces; that is, normaloid
and convexoid ones. There is no implication between them, actually, there exist
convexoid operators that are not normaloid and vice versa [6]. It is known that

paranormality does not imply convexoidness [10] but so does hyponormality, and
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that paranormality implies normaloidness. It is obvious that (i) remains valid under
the assumption AB belongs to subclasses of (nonconvexoid) normaloid operators,
e.g., quasihyponormal, semihyponormal and k-paranormal operators, whose defi-
nitions are as follows ; ||T*Tz|| < ||T22| for = € H,(TT*)Y/? < (T*T)*/? and
IT**12|| > ||T2||*** for unit vectors = € H respectively. Incidentally, as a conse-

quence of (ii), T’ turns out to be itself selfadjoint because A and B commute.

3. The Heinz inequality. In the preceding note [2], we discuss some norm
inequalities equivalent to the Heinz inequality (1). Thus we add to such an norm
inequality, which is a restricted version of (2) due to McIntosh.

Theorem 5. The inequalities (1),(2) and (3) are equivalent to the inequality
(M) IRe 47Q]| > || AQ4|)
for A > 0 and selfadjoint operators Q.

Proof. Since (2) implies (7) trivially, it suffices to show the converse. For arbitrary
P,Q and R, we put

T='(€’ 13) and § = (cg g)

Then it follows from the assumption (7) that

@) IT*TS + ST*T|| > 2||T|S|T]|l-

Moreover we have the following (9) and (10) since || (;_ f) I = 1X|).
9) |T*TS + ST*T| = | P*PQ + QRR"||

and

(10) NTISITI = ITST*|| = || PQRI,

so that (2) is obtained by (8), (9) and (10).

Finally we give a short proof to this proposed inequality (7), by which we also
have an alternative elementary proof of the Heinz inequality (1).

Proof of (7). We only use Lemmas 1 and 2. Suppose that 4 > 0 and Q = Q*.
Then, since 0(42Q) C R, we have

|AQA|| = r(AQA) = »(4’Q) < ||Re A*Q|.
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