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Characterization of generalized surfaces of revolution
Young Ho Kim *

Abstract : We study the so-called generalized surfaces of revolution in a Euclidean
space by considering normal sections.

1. Introduction

We define a generalized surface of revolution in (n+1)-dimensional Euclidean
space En*1 : Let C be a plane curve in En*1, A manifold of dimension n generated by
revolving C around an axis is said to be a generalized surface of revolution in En+1, In
the present paper, we characterize a generalized surface of revolution in En+1,

The author would like to express his sincere thanks to the referee who gave him
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2. Preliminaries

Let M = (M, x) be an n-dimensional submanifold in m-dimensional Euclidean
space EM, where x is an isometric immersion from M into EM, Let V and V be the
Levi-Civita connections of M and EM respectively. For any two vector fields X and Y’
tangent to M, the second fundamental form ¢ is given by o(X, Y) = VXY - VY.
For a vector field £ normal to M and X a vector field té.ngent to M, we may

~ ~ 1 1
decompose Vx& as Vy& = -AgX + V_E, where -AgX and V_E denote the
X X g X & X

tangential and normal components of ﬁxg, respectively, and V4 is called the normal

connection of the normal bundle T"M. Let <, > be the scalar product of Em. Then
the Weingarten map Ag and the second fundamental form ¢ have the following

relationship : < AgX, Y>=<0oX,Y), € > for all vector fields X and Y tangent to M
and every normal vector field &.

For the second fundamental form o, we define a covariant derivative Vo by

= i
2.1 (Vxo)(Y,Z) = VXO'(Y, Z)-o(VxY,Z) - o(Y, VxZ)

for vector fields X, Y and Z tangent to M. Let R be the curvature tensor of M. Then
the structure equations of Gauss and Codazzi are given by
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2.2) RX, V)Z=Agy, )X - Agx, )Y
23) (Vx0)(Y,2) - (Vy0)X,2)=0

for all vector fields X, Y and Z tangent to M.
For a point p in M and a unit vector t tangent to M at p, the vector t and the
normal space T;M to M at p form an (m-n+1)-dimensional affine space E(p,t) in EM

through p. The intersection of M with E(p,t) gives rise to a curve in a neighborhood of
p which is called the normal section of M at p in the direction of t (See [2], [3],
[4]and [ 5] etc. for detail ).

We shall recall the definition of isotropy in the sense of O'Neill [ 8 ]. A
submanifold M of E™ is said to be isotropic at p if the length of second fundamental
form |l o(v, v) Il is independent of the choice of the unit vector v in tangent space TPM

toM at p. If M is isotropic at every point, then M is said to be isotropic.

3. Submanifolds with geodesic normal sections through a point

Let M be a smooth hypersurface of an (n+1)-dimensional Euclidean space En+1,
A smooth manifold means that every geometric object is assumed to be smooth. We
now define a property (*).

(*) There isa point o in M such that every geodesic through ois a normal section.

We suppose that M satisfies (*). Without loss of generality we may assume
that o is the origin of EM*!. Let 7y be a geodesic through o parametrized by arc
length s and let ‘/(0) =0. Then we have

YO =X, Y() =0 %X, ¥'®) = -Agx, x)X + Tx0OX. X).

Since every geodesic through o is a normal section, Ac(v v)V AV = 0, where v = X(0),

ie.,
3.1 <o(v,V),o(v,u)>=0,

where u is a unit vector tangent to M at o orthogonal to v.
By O'Neill [ 8 ], M is isotropic at 0. Thus we have proved the following.
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Proposition 3.1. Let M be a hypersurface in E™* satisfying (*). Then M is
isotropic at o.

Since ¥ is a plane curve, Y(s) A Y'(s) AY"(s) =0 alongy. Thus we get
X A Ac(X, X)X AcX,X)=0

along vy. This gives

3.2) <oX,X), 60X, Y)>=0

along v, where Y is a unit vector field tangent to M orthogonal to X along ¥.

Since every geodesic through o is planar, we can write the immersion x : M —
En+1 Jocally on a neighborhood U of o with geodesic polar coordinate system (s, yi,
Y25 - ¥n-1) as

(3.3) X(S, ¥1» ¥2 «s ¥n-1) = h(s, Y1, y2, -, Yn-1) €Y1, Y2, s ¥n-1)

+ k(S, yl: y23 sooy Yn-l) Nv
where e(y1, y2, ..., yn-1) is a vector tangent to M at o, h and k functions satisfying
h(0, y1, y2, ..., ¥n-1) = k(0, y1, y2, ..., yn-1) = 0 and N a unique (up to sign) unit

vector normal to M at o. We then have mutually orthogonal local tangent vector fields
“from (3.3)

dh dk
(3.4) x,(9/9s) =£ (s, ¥1, Y2, --» Yn-1)€(¥Y15 ¥25 «es yn-1)+5; (S, ¥1,¥2s «-» ¥n-1) N,

Jh
(3°5) x*(a/aYi) =a_— (Ss )’1, YZ, ceey Yn-l) e(YI, YZ, coey Yn-l)

1

' de dk
+ h(S, Y1, ¥2, - YII-I) = (YI’ Y2, - Yn-l) + — (51 Y. ¥2, ..os Yn-l) N
9yi dyi :

fori=1,2, .., n-1, where x,(3/9s)(0, y1, y2, ---» Yn-1) = €(¥1, ¥2, .., Yn-1). Since
< X4(0/0s), X, (3/ds) > =1, we see that
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ch ok
3.6 —2+ ()2 =1,
(3.6) (as) (8s)
from which, we put
och ok .
3.7 — =cos f(s, Y1, Y2 --» ¥n-1)» — =sin f(s, y1, ¥2, ..., ¥n-1)s
os ds

where f is a smooth function satisfying £(0, y1, y2, ... ya-1) = 0 for all y1, y2, ...,
¥n-1.

Lemma 3.2. Let M be a hypersurface in EM™ satisfying (*). Then the curvature
of geodesics through o is independent of the choice of geodesics .

Proof. Let ybe a geodesic through o. Then ¥(s) = x(s, y1, ¥2, --.» Yn-1) for some
Y1» ¥2, .-» ¥Yn-1. The curvature X is given by

3.3 (x(s, Y1, Y2 - Yn-1))? = < (X, X), o(X, X) >,
where Y (s) = X. Now we compute

%x*( 2—) (K(S, Y1o Y20 -r Ya-1)2 = < V= G(9/0s, 3fs), 6(3fas, d/ds) >
yi 3 dy;

=<(V, /a),ic)(a/as, d/ds), 6(3/0s, 9/ds) > + 2 < a(V, ,ayia/as, 9/9s), 6(9/ds, 9/9s) >
=< (Va /0s9)(9/3yi, 9/9s), 6(9/ds, 9/0s) > +2 <c(Vy IaYia/as, 9/9s), 6(d/3s, 9/ds) >
(By Codazz equation)

=<(V, /9s0)(@/3yi, 3/ds), 6(3/ds, 9/0s) > ( By (3.2))

= Xy g;) < 6(9/dyj, 9/9s), 6(3/ds, 9/ds) > - <o(Vy /asalayi, 9/0s), 6(d/ds, 9/ds) >

-< (T?a /9s0)(9/9s, 9/3s), 6(9/9yi, 9/0s) >

= - < (Vy/350)(@/ds, dds), 5(d/3yi, 9/9s) > (By (3.2))
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foralli=1,2,.., n-1. Suppose that <(Va /0s9)(9/0s, 0/0s), G(9/dyi, 9/9s) > # O for
some So in Dom ¥, then (Va /0s9)(9/9s, 3/ds) # 0 and  G(9/dy;, 9/s) # O at (so, y1,
¥2, --» ¥n-1).- Thus there exists an open interval J containing s, such that
(Va/aso)(a/as, 9/0s) # 0 and ©(9/dyj, 9/ds) # 0 at (s, y1, ¥2, ..., yn-1) forall s € J.
Hence 6(d/ds, 9/9s) =0 at (s, y1, y2, ..., ¥n-1) for all s €J because of (3.2), which is a
contradiction. Therefore, we get <(V /9s0)(0/0s, 3/ds), G(3/dy;, 9/9s) >=0 for any s
in Dom Y. Thus we obtain

X( 2-) (%(s, ¥1, Y2, s Yn-1))2 =0
dyi

on a neighborhood of 0. Hence the curvature of geodesics through o is independent of
the choice of geodesics. (Q.E.D.).

Remark. Lemma 3.2 is different from Theorem 1 in [ 5 ] because (*) is satisfied at

every point of the submanifold in Theorem 1 in [ 5 ] but we only assume that ™ is
satisfied at a point in this paper. So the curvature of the geodesic through o is not
constant in general.

Lemma 3.3. The functions h and k are functions of s only ona neighborhood
of o.

Proof. Taking the covariant derivative of (3.4) along the geodesic itself and using
(3.7), we obtain

of
(3.8) (K(S, Y15 Y25 +oes Y0-1))2 = ( 3 ).
(3.2) implies
(39) < Vx*(a/as) x,,,(i)/as), Vx*(a/ayl) X*(a/aS) >= 0,
which gives
(3.10) of of =0 foralli=1,2,..,n-1.
Jds dyj

From (3.8), we get
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of
3% (Ss Y1» Y25 --s ¥n-1) = € K(S, Y1, ¥2, «-» ¥n-1), € =% 1.

Thus, by Lemma 3.2, we see that ? (s, Y1, Y2, ---» ¥n-1) is a function of s only, say,
s

&(s), for any (s, y1, 2, --» ¥n-1) in the domain of x :

of
(3.11) — (5, Y1, Y2 --» ¥n-1) = ¢(8).
ds
Integrating (3.11) with respect to s, we get
s
f(s, Y1, 2, - » ¥n-1) - f0, y1, y2, - » ¥n-1) = .[0 ¢(t) dt + q(y1, y2, - » ¥n-1)

for some function q of yi, y2, ... , Yn-1 only. Since f(0,y1, y2, ... , ¥n-1) = 0, we see
that q(y1, Y2, .- » ¥n-1) = 0 and hence

(3.12) £(s, 1, Y2, - yo) = g 600 dt .

We denote by y(s) the function given by the right hand side of the above equality
(3.12). Integrating (3.7) and taking account of (3.12), we get

S
h(s, y1, y2, -, ¥n-1) - h(0, y1, y2, ..., ¥n-1) =]q cosy(t) dt + hi(y1, y2, ..., ¥n-1)s

s .
k(S, )’l, y2a eee 9 Yn-l) = k(O) )'l, )'2, ese 3 Yn-l) = 0 SIDW(t) dt + kl(Yl, y2’ LITIE ) )'n-l)
for some functions h; and kj of yi, y2, ... , yn-1 only. Since h(0, yi1, y2, ... , Ya-1) =

0 and k(0, y1, ¥2, --- » ¥n-1) = 0, we see that hj(y1, y2, ... , ¥n-1) = 0 and kj(y1, y2,
. » ¥n-1) = 0 and hence h and k are functions of s only given by

S
h(s, y1, ¥2, --- » ¥n-1) =.[0 cosy(t) dt,

ks y1, 20 o) =g sioy©@ . @ E.D).

If a smooth hypersurface M of En+1 satisfies (*), then we can conclude M is locally a
generalized surface of revolution with vertex o by observing the equation (3.3), Lemma
3.2 and Lemma 3.3. The converse is trivial. Thus we have
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Theorem 3.4. (Characterization). Ler M be a smooth hypersurface of E™*1. Then
M is locally a generalized surface of revolution with vertex o if and only if there is a
point o such that every geodesic through o is a normal section .

Corollary 3.5. Let M be a complete connected smooth hypersurface of En+l,
Then M is a generalized surface of revolution if and only if there is a point o such
that every geodesic through o is a normal section .

Corollary 3.6. Let M be a smooth surface of E3. Then M is a locally surface of
revolution with vertex o if and only if there is a point o such that every geodesic
through o is a normal section.

Bibliography
[ 1] Chen, B.-Y., Geometry of submanifolds, Marcel Dekker, New York, 1973.
[ 2] Chen, B.-Y., Submanifolds with planar normal sections, Soochow J. Math. 7

(1981), 19 - 24.
[ 3] Chen, B.-Y., Surfaces with planar normal sections, J. Geometry 20 (1983), 122 -
127.

[ 4] Chen, B.-Y., Differential geometry of submanifolds with planar normal sections,
Ann. Math. Pura Appl. 130 (1982), 59 - 66.

[ 51 Chen, B.-Y. and Verheyen, P., Submanifolds with geodesic normal sections,
Math. Ann. 269 (1984), 417 - 429.

[ 6 ] Hong, S. L., Isometric immersions of manifolds with plane geodesics into
Euclidean space, J. Diff. Geometry 8 (1973), 259 - 278.

- [7]Kim, Y. H., Submanifolds of Euclidean spaces with planar or helical geodesics
through a point, Ph.D. Thesis, Michigan State University, 1988.

[ 8 1 O'Neill, B., Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 907 -
915.

Department of Mathematics
Kyungpook University
Teachers College

Taegu 702-701

Korea

Received December 17, 1990, Revised Febrﬁary 25, 1991

— 69 —



