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Characterization of generalized surfaces of revolution

Young Ho Kim *

Abstract : We study the so-called generalized surfaces of revolution in a Euclideanspace by considering normal sections.

1. Introduction
We define a generalized surface of revolution in (n+l)-dimensional Euclidean

space $E^{n+1}$ : Let $C$ be a plane curve in $E^{n+1}$ . A manuifold of dimension $n$ generated by
revolving $C$ around an axis is said to be a generalized surface of revolution in $E^{n+1}$ . In
the present paper, we characterize a generalized surface of revolution in $E^{n+1}$ .

The author would like to expres $s$ his sincere thanks to the referee who gave him
many valuable suggestions to improve the paper.

2. Preliminaries
Let $M=(M, x)$ be an n-dimensional submanifold in m-dimensional Euclidean

space $E^{m}$ , where $x$ is an isometric immersion ffom $M$ into $E^{m}$ . Let V and $\tilde{\nabla}$ be the
Levi-Civita connections of $M$ and $E^{m}$ respectively. For any two vector fields X and $Y$

tangent to M. the second fundamental form $\sigma$ is given by $\sigma(X, Y)=\tilde{\nabla}_{X}Y-$ $\nabla_{X}Y$ .
For a vector field $\xi$ normal to $M$ and X a vector field tangent to $M$, we may
decompose $\tilde{\nabla}_{X}\xi$ as $\tilde{V}_{X}\xi=- A\xi X+V_{X}^{\perp}\xi$ , where $- A\xi X$ and $V_{X}^{1}\xi$ denote the

tangential and normal components of $\tilde{\nabla}_{X}\xi$ , respectively, and $\nabla^{\perp}$ is called the normal
connection of the normal bundle $T^{L}M$ . Let $<,$ $>be$ the scalar product of $E^{m}$ . Then
the Weingarten map $A\xi$ and the second fundamental form $\sigma$ have the following
relationship $:<A\xi X,$ $Y>=<o(X,$ $Y\rangle$, $\xi>for$ all vector fields X and $Y$ tangent to $M$

and eveIy normal vector field $\xi$ .
For the second fundamental form $\sigma$, we define a $COV\mathfrak{U}irt$ derivative $\overline{\nabla}\sigma$ by

(2.1) $(\overline{\nabla}_{X}\sigma)(Y, Z)=\nabla_{X}^{1}\sigma(Y, Z)- o(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$

for vector fields X, $Y$ and $Z$ tangent to M. Let $R$ be the curvature tensor of M. Then
the structure equations of Gauss and Codazzi are given by
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(2.2) $R\alpha,$ $Y$)$Z=A_{\sigma(Y.Z)}X- A_{\sigma(X,Z)}Y$ ,

(2.3) $(\overline{\nabla}_{X}\sigma)(Y, Z)-(\overline{\nabla}_{Y}0)(X, Z)=0$

for ab vector fields X, $Y$ and $Z$ tangent to $M$

For a point $p$ in $M$ and a unit vector $t$ tangent to $M$ at $p$. the vector $t$ and the

normal space $T_{p}^{1}M$ to $M$ at $p$ form an (m-n+l)-dimensional affinc space E(p,t) in $E^{m}$

thmugh $p$. The intersection of $M$ with E(p.t) gives rise to a curvc in a neighborhood of
$p$ which is called the normal section of $M$ at $p$ in the direction of $t$ (Sec [2], [3],

[4] and [5] erc. for denil).

We shall recall the defmition of isotropy in the sense of O’Neill [8]. A

submanifold $M$ of $E^{m}$ is said to be isotropic at $p$ if the length of second fundamental
form 11 $\sigma(v,v)11$ is independent of the choice of the unit vector $v$ in tangent space $T_{p}M$

to $M$ at $p$. If $M$ is isouopic at every point. then $M$ is said to be isotropic.

3. Submanifolds with geodesic normal sections through a point

Let $M$ be a $sm\infty th$ hypersurface of an (n+l)-dimensional Euclidean space $E^{n+1}$ .
A $sm\infty th$ mamifold means that every geometric object is assumed to be smooth. We

now define a property $(^{*})$.

$(^{*})$ There is a point $0$ in $M$ such that every geodesic through $0$ is a nomal section.

We suppose that $M$ satisfies $(^{*})$ . Without loss of generality we may assume
that $0$ is the onigin of $E^{n+1}$ . Let $\gamma$ be a geodesic thuough $0$ parametrized by arc
length $s$ and let $X0$) $=0$. Then we have

$Y(s)=X,$ $ Y^{\prime}(s)=\sigma\otimes$. $X$)
$,$

$Y^{\prime\prime}(s)=- A_{\sigma(X,X)}X+(\overline{\nabla}_{X}\sigma)(X, X)$ .

Since every geodesic through $0$ is a normal section, $A_{\sigma(v,v)}v\wedge v=0$, where $v=X(0)$,

$i.e.$ ,

(3.1) $<\sigma(v, v),$ $\sigma(v, u)>=0$,

where $u$ is a unit vector tangent to $M$ at $0$ orthogonal to $v$.
By O’Neil [8], $M$ is isouopic at $0$. Thus we have proved the following.
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Proposition 3.1. Let $M$ be a hypersurface in $E^{n+1}$ satisfying $(^{*})$ . Then $M$ is
isotropic at $0$.

Since $\gamma$ is a plane curve, $y(s)\wedge Y^{\prime}(s)\wedge Y^{\prime\prime}(s)=0$ along $\gamma$. Thus we get

X A $A_{\sigma(X,X)}X$ A $\sigma(X, X)=0$

along $\gamma$. This gives

(3.2) $<\sigma(X, X),$ $\sigma(X, Y)>=0$

along $\gamma$, where $Y$ is a unit vector field tangent to $M$ omhogonal to X along $\gamma$.
Since every geodesic through $0$ is planar, we can write the immersion $x:M\rightarrow$

$E^{n+1}$ locally on a neighborhood $U$ of $0$ with geodesic polar coordinate system $(s,$ $y_{1}$ ,
$y_{2},$

$\ldots,$
$y_{n- 1}$ ) as

(3.3) $x(s, y_{1}, y2, \ldots, y_{n- 1})=h(s, y_{1}, y2, \ldots, y_{n- 1})e(y_{1}, y2\cdot\ldots, y_{n- 1})$

$+k(s, y\iota, y2, \ldots, y_{n- 1})N$ ,

where $e(yl, y2, \ldots, y_{n-}1)$ is a vector tangent to $M$ at $0,$ $h$ and $k$ functions $sa\dot{u}sfying$

$h(O, y\iota y2, \ldots, y_{n- 1})=k(0, y_{1}, y2, \ldots.y_{n- 1})=0$ and $N$ a unique (up to sign) unit
vector normal to $M$ at $0$. We then have mutually omhogonal local tangent vector fields
from (3.3)

(3.4) $x_{*}(\partial/\partial s)\frac{\partial h}{-\partial s}(s, y\iota y2, \ldots.y_{n-}\iota)e(y_{1}, y2, \ldots, y_{n- 1})+\frac{\partial k}{\partial s}(s, y_{1}, y_{2}, \ldots, y_{n- 1})N$,

(3.5) $x_{*}(\partial/\partial y_{i})=\frac{\partial h}{\partial y_{i}}(s, y\iota, y2, \ldots, y_{n-}\iota)e(y_{1}, y2, \ldots, y_{n\rightarrow 1})$

$+h(s, y_{1}, y_{2}, \ldots, y_{n- 1})\frac{\partial e}{\partial yi}(y_{1}, y_{2}, \ldots, y_{n- 1})+\frac{\partial k}{\partial y_{i}}(s, y_{1}, y2, \ldots, y_{n- 1})N$

for $i=1,2,$ $\ldots$ , n-l, where $x_{*}(\partial/\partial s)(O, y_{1}, y2, \ldots, y_{n-}\iota)=e(y1, y2, \ldots, y_{n-}1)$ . Since
$<x_{*}(\partial ks),$ $x_{*}(\partial/\partial s)>=1$ , we see that
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(3.6) $t\frac{\partial h}{\partial s})^{2}+(\frac{\partial k}{\partial s})^{2}=1$ ,

fiom which, we put

(3.7) $\frac{\partial h}{\partial s}=\cos f(s. y_{1}. y_{2}\ldots., y_{n-}\iota).\frac{\partial k}{\partial s}=\sin f(s. y_{1}. y_{2}, \ldots.y_{n- 1})$ .
where $f$ is a $sm\infty th$ function satisfying $f(O, y\iota y2\cdot\ldots.y_{\mathfrak{n}-}\iota)=0$ for all $y\iota y2\cdots\cdot$ .
$y_{n- 1}$ .

Lemma 3.2. Let $M$ be a hyperswface in $E^{n+1}$ satisfying $(^{*})$. Then the curvature

ofgeo&sics through $0$ is in&pendent ofthe choice ofgeo&sics.
Proof. Let $\gamma$ be a geodesic through $0$. Then $Xs$) $=x(s. y\iota, y2, \ldots, y_{n-}\iota)$ for some
$y_{1},$ $y2\cdots.,$ $y_{n- 1}$ . The curvature $\kappa$ is given by

(3.8) $(\kappa(s, y\iota y_{2}\ldots., y_{n-}\iota))^{2}=<\sigma(X.X),$ $\sigma(X.X)>$.
where $Y(s)=X$. Now we compute

$\frac{1}{2}x_{*}(\frac{\partial}{\partial y_{i}})(\kappa(s. y_{1}, y_{2}. \ldots, y_{n}- 1))^{2}=<\nabla_{\partial/\partial y:}^{\perp}\sigma(\partial ks, \partial ks).\sigma(\partial ks.\partial/\partial s)>$

$=<(\overline{\nabla}_{\partial/\partial yi}\sigma)(\partial ks, \partial/\partial s),$ $\sigma(\partial ks, \partial ks)>+2<\sigma(\nabla_{\partial/\partial yi}\partial/\partial s, \partial/\partial s),$
$\sigma(\partial\beta s, \partial/\partial s)>$

$=<(\overline{\nabla}_{\partial\partial s}\sigma)(\partial ky_{i}, \partial/\partial s),$ $\sigma(\partial/\partial s, \partial\beta s)>+2<\sigma(\nabla_{\partial\beta yi}\partial ks, \partial ks),$
$\sigma(\partial ks, \partial/\partial s)>$

(By Codazzi equation)
$=<(\overline{\nabla}_{\partial\beta_{S}}\sigma)(\partial/\partial yi, \partial/\partial s),$

$\sigma(\partial ks, \partial/\partial s)>$ (By (3.2))

$=x_{*}(\frac{\partial}{\partial s})<\sigma(\partial\beta y_{i}, \partial/\partial s),$ $\sigma(\partial/\partial s, \partial ks)>-<\sigma(\nabla_{\partial/\partial s}\partial/\partial yi, \partial\beta s),$
$o(\partial/\partial s, \partial/\partial s)>$

$-<(\overline{\nabla}_{\partial\beta s}\sigma)(\partial/\partial s, \partial/\partial s),$ $\sigma(\partial\beta y_{i}, \partial\beta s)>$

$=-<(\overline{\nabla}_{\partial/\partial s}\sigma)(\partial ks, \partial/\partial s),$ $\sigma(\partial/\partial y_{i}, \partial/\partial s)>(By(3.2))$
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for all $i=1,2,$ $\ldots$ , n-l. Suppose that $<(\overline{\nabla}_{\partial/\partial s}\sigma)(\partial/\partial s, \partial ks),$ $\sigma(\partial/\partial yi, \partial/\partial s)>\neq 0$ for

some $s_{O}$ in Dom $\gamma$, then $(\overline{\nabla}_{\partial/\partial s}\sigma)(\partial/\partial s, \partial/\partial s)\neq 0$ and $\sigma(\partial\beta yi, \partial/\partial s)\neq 0$ at $(s_{O},$ $y_{1}$ ,

$y2,$ $\ldots,$ $y_{n- 1}$ ). Thus there exists an open interval $J$ containing $s_{O}$ such that
$(\overline{\nabla}_{\partial/\partial s}\sigma)(\partial/\partial s, \partial ks)\neq 0$ and $\sigma(\partial/\partial yi, \partial/\partial s)\neq 0$ at $(s, y\iota, y_{2}, \ldots.y_{n- 1})$ for all $s\in J$ .
Hence $\sigma(\partial ks.\partial/\partial s)=0$ at $(s, y_{1}, y_{2}, \ldots, y_{n- 1})$ for all $s\in J$ because of (3.2), which is a
$con\sigma adic\dot{u}on$ . Therefore, we get $<(\overline{\nabla}_{\partial/\partial s}\sigma)(\partial/\partial s, \partial/\partial s),$ $\sigma(\partial/\partial yi, \partial/\partial s)>=0$ for any $s$

in Dom $\gamma$. Thus we obtain

$x_{*}(\frac{\partial}{\partial y_{i}})(\kappa(s, y_{1}, y_{2}, \ldots.y_{n- 1}))^{2}=0$

on a neighborhood of $0$. Hence the curvature of geodesics through $0$ is independent of
the choice of geodesics. (Q.E.D.).

Remark. Lcmna 3.2 is different fiom Theorem 1 in [5] because $(^{*})$ is satisfied at
every point of the submanifold in Theorem 1 in [5] but we only assume that $(^{*})$ is
satisfied at a point in this paper. So the curvature of the geodesic thuough $0$ is not
constant in general.

Lemma 3.3. The functions $h$ and $k$ are $fi\ell nct;ons$ of $s$ only on a neighborhood
of $0$ .
Proof. Taking the covariant derivative of (3.4) along the geodesic itself and using
(3.7), we obtain

(3.8) $(\kappa(s, y\iota, y2\cdot\ldots, y_{n-}\iota))^{2}=(\frac{\partial f}{\partial s})^{2}$ .

(3.2) implies

(3.9)
$<\tilde{V}_{x_{*}(\partial/\partial s)}x_{*}(\partial/\partial s),\tilde{\nabla}_{x_{*}(\partial/\partial y_{i})}x_{*}(\partial\beta s)>=0$,

which gives

$\partial f$ $\partial f$

(3.10) – – $=0$ for all $i=1,2,$ $\ldots$ , n-l.
$\partial s\partial y_{i}$

From (3.8), we get
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$\frac{\partial f}{\partial s}(s, y_{1}. y_{2}, \ldots.y_{n- 1})=\epsilon\kappa(s. y\iota, y_{2}, \ldots, y_{n- 1}),$ $\epsilon=\pm 1$ .

Thus, by Lemma 3.2, we see that $\frac{\partial f}{\partial s}(s, y1\cdot y2, \ldots, y_{n- 1})$ is a function of $s$ only, say,

$\phi(s)$. for any $(s, y\iota.y2\cdots., y_{n-}\iota)$ in the domain of $x$ :

(3.11) $\frac{\partial f}{\partial s}(s. y\iota y2, \ldots.y_{n-}\iota)=\phi(s)$ .

Integrating (3.11) with respect to $s$, we get

$f(s, y_{1}, y_{2}, \ldots, y_{n}- 1)- f(0, y_{1}, y_{2}, \ldots, y_{n- 1})=\int_{0}^{S}\phi(t)dt+q(y_{1}, y_{2}, \ldots, y_{n- 1})$

for some function $q$ of $y\iota,$ $y2,$ $\ldots$ , $y_{n- 1}$ only. Since $f(0,yl, y2\cdots. , yn- 1)=0$, we see
that $q\mathfrak{G}1,$ $y2,$ $\ldots.y_{n}-1$) $=0$ and hence

(3.12) $f(s, y\iota y2, \ldots.y_{n- 1})=\int_{0}^{S}\phi(t)$ dt.

We denote by $\psi(s)$ the function given by the right hand side of the above equality
(3.12). Integrating (3.7) and taking account of (3.12), we get

$h(s, y\iota y2\cdot\ldots.y_{n}-\iota)- h(O. y1, y2, \ldots.y_{n}- 1)=\int_{0}^{S}\cos\psi(t)dt+h\iota(y\iota, y2\cdot\cdots , y_{n- 1})$ ,

$k(s. y_{1}, y2\cdot\ldots.y_{n- 1})- k(O, y_{1}, y2, \ldots , y_{n- 1})=\int_{0}^{S}\sin\psi(t)dt+k_{1}(y_{1}.y2, \ldots.y_{n- 1})$

for some functions $h\iota$ and $k\iota$ of $y1,$ $y2,$ $\ldots,$
$y_{n\rightarrow 1}$ only. Since $h(O, y1, y2, \ldots , y_{n- 1})=$

$0$ and $k(O, y_{1}, y2, \ldots.y_{n- 1})=0$, we see that $h_{1}(y_{1}, y2, \ldots.y_{n- 1})=0$ and $k_{1}(y_{1},$ $y_{2}$ ,

... , $y_{n- 1}$) $=0$ and hence $h$ and $k$ are functions of $s$ only given by

$h(s, y_{1}, y_{2}, \ldots, y_{n- 1})=\int_{0}^{S}\cos\psi(t)$ dt,

$k(s, y\iota y2, \ldots , y_{n-}\iota)=\int_{0}^{S}\sin\psi(t)$ dt. (Q. E. D.).

If a $sm\infty th$ hypersurface $M$ of $E^{n+1}$ satisfies $(^{*})$, then we can conclude $M$ is locally a
generalized surface of revolution with vertex $0$ by observing the equation (3.3), Lemma
3.2 and Lemma 3.3. The converse is nivial. Thus we have
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Theorem 3.4. (Characterization). Let $M$ be a smooth hypersurface of $E^{n+1}$ . Then
$M$ is locally a generalized suface of revolution with venex $0$ ifand only ifthere is a
point $0$ such that every geo&sic through $0$ is a normal section.

Corollary 3.5. Let $M$ be a complete connected smooth $hypersu_{R}face$ of $E^{n+1}$ .
Then $M$ is a generalized sufface of revolution $\iota f$ and only if there is a point $0$ such
that every $ge\ovalbox{\tt\small REJECT} sic$ through $0$ is a normal $sec\dot{a}on$ .

Corollary 3.6. Let $M$ be a smooth $su$face of $E^{3}$ . Then $M$ is a locally surface of
revolution with vertex $0$ if and $ on\phi$ if there is a point $0$ such that every geodesic
through $0$ is a normal sectio$n$ .

Bibliography
[1] Chen, B.-Y., Geometry of submanifolds, Marcel Dekker, New York, 1973.
[2] Chen, B.-Y., Submanifolds with planar normal sections, Soochow J. Math. 7

(1981), 19-24.
[3] Chen, B.-Y., Surfaces with planar normal sections, J. Geometry 20 (1983), 122-

127.
[4] Chen, B.-Y., Differential geometry of submanifolds with planar normal sections,

Ann. Math. Pura Appl. 130 (1982), 59 - 66.
[5] Chen, B.-Y. and Verheyen, P., Submanifolds with geodesic normal sections,

Math. Ann. 269 (1984), 417-429.
[6] Hong, S. L., Isometric immmersions of manifolds with plane geodesics into

Euclidean space, J. Diff. Geometry 8 (1973), 259-278.
[7] Ki Y. H., Submanifolds of Euclidean spaces with planar or helical geodesics

thuough a point, Ph.D. Thesis, Michigan State University, 1988.
[8] O’Neill, B., Isouopic and Kaehler immersions, Canad. J. Math. 17 (1965), 907-

915.

Department ofMathematics
$Kyungp\infty k$ University
Teachers College
Taegu 702-701
Korea

Received December 17, 1990, Revised February 25, 1991

–69–


