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On closed regular curves in Riemannian manifolds

Dedicated to Professor Masahisa Adachi on his 60th birthday
Kojun  ABE
§ 0. Introduction.

The purpose of this paper is to classify closed regular
curves in Riemannian manifolds by an equivalence relation of
some flows on thg tubular neighborhoods of the curves. In {1]
we considered a class of algebras of smooth sections of smooth
vector bundles over Riemannian manifolds with bracket operations.
In the case when the manifolds are one.dimensional those algeb-
ras are closely related to the above flows. The classification
is reduced to the problem to solve infinite series of ordinary

differential equations which give the Taylor expansions of the

equations of the flows. We shall present a method for computing
them and calculate first five terms. In the case of symmetric
spaces it is more simpler and interesting. Especially the case

of Riemannian manifolds of constant curvature or projective spa-
ces we shall see that those calculations are related to the

total torsions or the fundamental forms of the projective spaces
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([21,031).
The paper is organized as follows. In §1 we define an

equivalence relation of closed regular curves and indicate a
motivation of this paper. In §2 we give a method for computa-

tions of the equations of the flows for any Riemannian manifolds.

In §3 we calculate the equations in the case of symmetric spaces.
In 84 we classify the equivalence classes in the case of three

dimensional Riemannian manifolds of constant curvature.
I would like to thank Professors K.Sekigawa, A.Asada and
I.Yokota for their useful conversations and advices, and to

thank H.Kamiya who helped me using computer.

§ 1. Preliminaries.

Let M be an n-dimensional Riemannian manifold with Riemann-

ian connection v. Let C = {c(t)} be a closed regular curve in

M. In this paper we assume that any closed regular curve is par-

ameterized by arc length. Let U6 be a 8-tubular neighborhood
of C, and n: U — C be the natural projection. We define a
vector field X on U5 as follows. For era with n(x) = c(t), Xx

is parallel to c’(t) along the geodesic joining x and c(t).
Let ‘{55 be a flow on U6 given by integral curves of X. Let

F(%a) denote the Lie algebra of smooth vector fields on U5 which

are tangent to flows of 66.

Definition 1.1, We say the above vector field X and the

— 48 —



flow ﬁa to be the parallel vector field and parallel flow to the
curve C on U5 respectively. Let C’ be the other smooth regular
closed curve and let 85 be the pérallel flow to C’ on a &-tubu-
lar neighborhood Ué. We say that C and C’ are equivalent if
there exist a positive number § and a diffeomorphism

o: (Ugy T5) — (U3, §})
which is a flow map. Let @ and “é be the Poincaré maps for

the flows 86 and Gg respectively (see Irwin [8], Chapter 2).

Proposition 1.2. (1) C and C’ are equivalent if and

-only if the Poincaré maps @ and Wé are differentiably conjugate

for some positive number §.
(2) The Lie algebras F(Ga) and F(%é) are isomorphic for some
positive number § if and only if there exists a flow preserving

. . . ’ ’
diffeomorphism o: (Ua,%s) —_— (Ua,ﬁa).

Proof. (1) follows from Irwin [8], (5.39) and (5.40). (2)

follows from Amemiya [4].
Remark. The starting point of the problem here was Pursell-

Shanks type theorem‘for the algebras r(%a). By Proposition

1.2, it is reduced to classify the equivalence classes of closed

regular curves.

§ 2. Closed curves in Riemannian manifolds.

Let M be an n-dimensional Riemannian manifold with Riemann-
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ian connection v. Let C = {c(t)} be a closed regular curve in
M and X be the parallel vector field to C on a 8-tubular neigh-
borhood US’ Let v(C) denote the normal bundle of C in M. Fixed
a unit normal vector Vo € vc(o)(C). Let n: U6 —— C be the
projection. Let ¢(t,s) (-=<t<e», -5§<s<8) be a family of
integral curves of X such that
¥(0,s) = eXP.(0)SVo and n(¢(t,s)) = c(t).

There exists a family of unit vector fields

Y(t,s) € v ()(C) (-=<tc=, -5<s<8) _
such that ¢(t,s) = expc(t)sY(t,s). Let g¢: (-»,») x (-8,8) — R

be a C° function such that

(2.1) B¢{tss) - g(t,s) X(#(t,s)).

Y(t,s)

Let
k

Zg=0 5 Yi(t)

and

e(t,s) = 2;=0 Sk

ek(t)
be the the formal Taylor expansions of Y(t,s) and g(t,s) respec-

tively. Here Yk(t) € vc(t)(C) and gy € c”(R). Put

A
¥(t,s,x) = exPC(t) AY(t,s) (—o<t<m, -5<8<8, -85<r<8).
For each v € vP(C) (p € C) 1let

* -1
(v )q = TphqV for qe€en (p),
where Tha is the parallel translation along the geodesic which
A
joins p and q (c.f. Helgason [7], Chapter I, § 6). Let v be

A
the induced connection by ¢ (c.f. Cheeger Ebin [5],Chapt I, § 0).

We shall use the following notations:
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A A

A A
- _ 8¥(t,s,2)
¥, (t,s,1) = BfLasaa) oy (t,5,x) = B{Lasia)
A A A A . N A
v, = vg_, vy = vg_, vy = U, o+ v,
A s

A 11+Jl+12+32+~~- A . A . A . A .
1, Ji 12 Ja2...
Vo ligdi,iagda, .. (v,) "1 (vg)Y (v, ) 2(vy)

Ws(t,S) = 8 St = ’ *t(t’s) = g%%£4§l ]

n

t Wt(tgs) ’
J _ J! e eead = 3
Cil_“1k = SEEEEE (11+ i = J).

: A
Lemma 2.1. Let X be a smooth vector field along ¥. Then

A n+l A n+l j
(1) v lsn X = v Sn)\ X + zj 211+10+13+14 J Ci]izisi4
Al Alog A Alg A A n-1- J+14
. (v i;R)(v 12wl,v 13¢ ) v gh-1-j+is X.
A m+n A m+n
(2) v , mgn X = v Snlm X

n- k 1 k 2+k
+ 2 211+12+13"k 2 2p+q=m—1 §J1+J2+J3+J4 =p Ci;igia CQ k

Ali+7,. Algt+je A Alg+js A An-k-1+j4+q

Ci1ndsda (Tadigis RI(v,Jdogin ¥,y V,Jsgis ¥g) 9,54 gn-k-1,q9 X.

Proof. (1) follows by easy calculations. Put
A n+1l A n+l
A (X) = v ash X - v on, X.
Then by induction we have
A m+n A m+n
v, mgn X = w gh,m X + 2p+q =m-1 Vpp A (qu X).

(2) follows from (1).

Let V be a smooth vector field on U&' Then V is regarded
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A
as a vector field along ¥.

Lemma 2.2. Let X be a smooth vector field along ¢ and let V

be a smooth vector field on U5‘ Then
(/\ m+n+1 ) (/\ m+n+l )
(A m+n+2 ) ( m+n+2 )
(2) v SmAZSn v (t 0 0) = v m+n12 \"/ (t,0,0)
n-1 n-k-1 k+Q m . . '
* 2k=0 Eiz+iz=k Cil ( EQ ) ZJ1+J2+Js—m 0515233 (11454)!
. . (/\ n- k 1+J3 )
. (12+J2+1)! R(Yl +j1 (t), Yl +32+l(t)) ~k-1+gs V (t,0,0)"°
( ) A m+n+3
(3) v S n v (t o 0) = v Sm+nl3 \" (t,0,0)
n-1 n- k+Q k m (3 .
+ 3pog ( 22 cx*g) [ 2i,4ip=k  Cijip Cjijags O (11tdn)!

Jitiotis=m

A n-k+jg

“(iz4J2+41)! R(Y; L5 (£), Y5 o5 4q(t)) (v v gn-ktjs-1 , V )(t,0,0)

k m (4 . V(s . Vs . '
+ 211+12+13—k Cixizis 031525354 2-(i;+j,)1(io+jo)(ig+jgtl)!
Jitiotistia=m
A n-k+j,-1

-(VYi1+jl(t) R)(Yl +J (t)’YiS"'J'S"'l(t)) ( Vsn"k+j4-1 \"A (t’o,o)]o

N .
Proof. Since ¢,(t,s,x) = Y(tvs)*ﬁ(t,s,g)’

A A
( Vsk *x )(t’O,o). = k! Yk(t) (k=1’2,o.o)o
A A A A
Since vsk ws is divisible by a, ( vSk ws )(t,0,0) =0 (k=1,

2...). If Vl’ V2 and V3 are smooth vector fields on U&’ then

A
( (v ¥k R)(V;,V,)V, )(t,0,0) =0 (k=1,2,...).

Combining those equations and Lemma 2.1 we can prove Lemma 2.2.



Let Tt(M) denote the tangent bundle of M. Let Z € tc(t)(M).

Using Lemma 2.2 we have the following lemmas.

Lemma 2.3. (1) ( Ve z* )
x
(2 ( Vg2 Z )(t,0,0) = 0.

(t,0,0) = 0-

3) (93 2%) ¢ g0y = R(Y(t),¥,(t))z.
() (v,az* )(t,0,0) = BR(Yy(t),Y,(t))zZ
+ (9y ()R (Yo(t),Y,(£))Z.
0
(5) (vs52*) ¢ 0.0) = 3(7y” (£)R) (Yo (£), Y1 (£))2

+ 8(VY1(t)R)(Y0(t),Y1(t))Z + 16(Vyo(t)R)(Yo(t)’Yz(t))z

+ 12R(Y1(t),Y2(t))Z + 36R(Y0(t),Y3(t))Z

+ R(Y(£),R(Yy(t), Y (£))Y,(t))Z.

Lemma 2.4. (1) ( Vs ¥ (tss) ). 0,0) = Ti¥ol(t)-
(2) (v 2 ¥, (t,8) ) g.0) = 29.¥;(t) + R(Yg(t),c’(£))Yq(t).
(3) (93 ¥e(tys) )y g,0) = | 87¢Y¥p + 4R(Yg,c’)Y,
+ 2R(Yy,e’)Yg + 81R(Yg,e”)Yg + (vy R)(Yg,e')Yg leey-
(4) (94 ¥ (t,s) )y 9.0y = [ 247¢¥3 + 2(v,R)(Yg,Y1)Y,
48,R(Yy,c’ )Y, + 18R(Y,,c’)Y, + 6(VYOR)(Yo,c’)Y1 + 12R(Y,,c’)Y,

+

2
Yo

+

881R(Yo,c’)Y1 - 4(VYOR)(C’,Y1)Y0 - (v R)(c’,YO)Y0

281(VY0R)(C’,Y0)Y0 - 6R(c’,Y,)Yy + R(Yy,R(c’,Yy)Yg) Yy [ty
(5) (95 ¥y (t,8) )¢ g.0) = [(vyg R)(Yg,c’)Y,

2
Yo

+

2 ' 2
6(v R)(Yl,c’)Y0 + 2(vYo R)(Yo,c’)Y1 + 381(VY0 R)(Yo,c’)Y0
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2 ’ - ’
+ 6(vY0 R)(Yo,c )Y1 + 4(vc,vY0R)(YO,Y1)YO 1082(VY0R)(c ,YO)YO

+ 48y (vy R)(YouYp)e’ + 88y (vy R)(Yy,')Yg + 168, (vy R)(Yg,0°)Y;
+ 36(7y R)(Yg,0" )Y, + 18(%y R)(Y5.0")¥q + 32(vy R)(Y¥1,0')Y,
+ 2(9y R)(YguR(c*,¥()Yg)Yg + 12(761R)(Yg,¥ )Yy

+ 14(v_,R)(Y,,Y,)Y, + 7/3 R(Yo,(vYoR)(c’,Yo)Yo)Y0 + 120 v, Y

t 4
+ 2083R(Yo,c’)Yo + 4082R(Y0,c’)Y1 + IOSIR(C’,YZ)YO

+ 5081R(Y1,c’)Y2 + 2081R(Y1,c’)Y1 + 7/3 elR(YO,R(c’,YO)YO)Y0
+ 96R(Y0,c’)Y3 + 24R(Y3,c’)Y0 + 48R(Y2,c’)Y1 + 72R(Y1,c’)Y2
+ 8R(Y0,R(c’,Y1)Y0)Yo + 6R(YO,R(c’,Y0)Y1)Y0

+ 12R(Y0,R(c’,Y0)Yo)Y1 - 6R(Y1,R(c’,Y0)Y0)YO

- 10R(c’,R(Y(,Y,)Y)Y, + 8R(YO,R(Y0,Y1)Y0)C’]

c(t)"
From (2.1)
[ vek ¥e(tis) ] = [ vek (e(t,s)e’(0)®) ]
s t' (t,0,0) s ’ (t,0,0)
(k=0,1,2...). Combining Lemma 2.3 and Lemma 2.4 we can solve ey

and Yk inductively.

Theorem 2.5. (1) eo(t) = 1.
(2) w,¥o(t) = e (t)e’(t).
(3) 29, Y (t) + R(Yy(t),c’(£))Y(t) = 2e,(t)c’(t).
(4) 9, ¥,(t) + 1/2 R(Yy(t),e’(£))¥(t)
+ 1/2 R(Y,(t),c’ (£))Y(t) + 1/6 g,(t)R(Yy(t),c’(t))Y¥,(t)
+ 176 (7y ()R (Yg(t),e’ (6))Yg() =  eylt)e’(t).
(5) [ 24v,¥5 + 2(v ,R) (Y, Y )Yq + 6(vy R)(Yg,c')Y,

2

- ’ - ? -
(VYO R)(c ,YO)Y0 281(VY0R)(C ,YO)Y0 Z(VYOR)(YO,YI)C’
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- 4(vYoc’)(c’,Y1)Y0 + 482R(Y0,c’)Yo + 12R(Y0,c’)Y2
+ 12R(Y1,c’)Y1 + 481R(Y0,c’)Y1 + 481R(Y1,c')Y0 - 12R(c’,Y2)Y0
+ R(Yg,R(c*,Y0)Yg) Yy Jo(p)y =  244(t)c’(t).
(6) [ 12007, + (sz R)(Yg,c’)Y, + G(VYi R)(Y;,c’)Y,
2 ’ 2 2 ’
+ 2(vYo R)(Yo,c )Y1 + Gez(vYo R)(Yo,c’)Yo + 18(vYo R)(Yo,c )Y2

2

- 3(VYo R)(YO,Yl)c’ - 8(VY1R)(Y0,Y1)C’ + 4(VC,VY0R)(Y0,Y1)YO

+ IOSZ(VYOR)(YO,c’)YO + 451(\7Y0R)(Y1,c’)Y0 + 2081(VY0R)(Y0,c’)Y1

+ 36(VY0R)(Y0,C’)Y2 + 18(VY0R)(Y2,C’)Yo + 32(w R)(Yl,c’)Y1

Yo
- 10(VYOR)(Y0’Y1)C’ ~ 16(VYOR)(Y0,Y2)c’
- 1

2(vYOR)(YO,(Yo,c )YO)YO + 12(VC,R)(Y0,Y1)Y1
+ 14(9_sR)(Y,,Y,)Y, - 7/3 R(YO,(VYOR)(YO,c’)YO)YO
+ 2083R(Y0,c’)Y0 + 2082R(Y0,c’)Y1 + 2082R(Y1,c’)Y0
+ ZOelR(Yz,c’)Yo + zoelR(Yo,c’)Y2 + 2081R(Y1,c’)Y1
- 7/3 elR(Yo,R(Yo,c’)YO)YO + 60R(Y,,c’)Yg + 60R(Y3,c’)YO
+ 60R(Y2,c’)Y1 + 60R(Y1,c’)Y2 - 8R(Y0,R(Y1,c’)Y0)Y0
—6R(YO,R(Y0,c’)Y1)Y0 - 12R(YO,R(YO,C’)YO)Y1

+ TR(Yg,R(Yg,Y;)¥g)e’ | (p) = 120e5(t)e’(t).
§ 3. Symmetric spaces.

In this section we consider the equation (2.1) in the case
of symmetric spaces.

Let M be a symmetric space. Then there exists a symmetric
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pair (G,H,0) such that M = G/H and o is an involutive automor-

phism of G satisfying (Go)0 c H c Go’ where Ga denote the closed

subgroup of G consisting of all the elements fixed by o. Let
q: G — G/H be the natural projection. We have a symmetric
algebra (¥9,#,0) and a canonical decomposition 9 = # + & of

(G,H,0). Let C = {c(t)} be a closed regular curve in M. There

A A
exists a horizontal 1lift C = {c(t)} of C. Let Lg and Rg be a
left and a right translation of G by g, respectively. | We use
the same notations as in §2. Put

A
w(t) = (dLé(t)'l)é(t) c’(t) ,

Z(t,s) = (dLe(t)-l)é(t) Y(t,s).
Q(t,S) = g(t) exp sZ(t,s).

Here we identify the tangent space tO(G/H) of G/H at 0=1H with

: A
. Then q(¢¥(t,s)) = ¢(t,s). By Helgason [7], Chapter IV,
Theorem 3.3,

((dq)e w(t’))*exp sZ(t,s)-0 ° (dtexp sZ(t,s))O (dq)e wit).

Hence by(2.1) we have

A

(3.1)  (dadg(y,q) HFE=) = e(t,s) (dr

at - exp sZ(t,s))O (dq)e wit).

From Helgason [7], Chapter II, Theorem 1.7 we have

8 _exp sZ(t,s) _ (dL ) 1 - exp(-ad sZ(t,s)) <9Z ( , )
at - exp sZ(t,s)’e ad sZ(t,s)
Note that
(dR exp sZ(t,s))e w(t) = (dL)ﬁ(t,s) (exp ad(-sZ(t,s)))w(t).

Therefore from (3.1) we have the following
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Theorem 3.1.

(da) [ (exp ad(-sz(t,s))w(t) + s Lo—explzad sZ(t.s)) 92(t.s) |

= (da)_ e(t,s)w(t).

Let Z(t,s) = 2;=0 sk Zk(t) be the formal Taylor expansion
of Z(t,s). Combining the relations
[ #, £ ] c & , [ #, # 1 c %

and Theorem 3.1 we obtain the following

Theorem 3.2. (1) Zé(t) = el(t)w(t).

(2)  2Z](t) + [Zg(t),[w(t),Z5(t)1] = 2e,(t)w(t).

(3) 6Z5(t) + 3[Z,(t),[Z,(t),w(t)]] + 3[Z,(t),[Zy(t),w(t)]]
+ e (E)[Zg(1),[Z5(t),w(t)]] = eg(t)w(t).

(4) [ 2423 + 1202(,025,w]] + 1202,0(2;,w]] + 12[Z,,[Zy,w]]
- (ad zg)tw + 48,12, 02,,wl] + 48,0Z,,[Zy,w]]
tep020,020,w1] Jo(p) = E4(t)wlt).

(5) [ 120z} + 20e402,[2y,w]] + 20e,[Z;,[Zy,w]]

t 20e,[24,024,w]] + 20g,[2,,[Z,,w]] + 20e,(2,,[2,,w]]

+ 20e,02,,(2,,wl] - 7/3 g;(ad Zy)*w + 6002y, (24,w]]

+ 60[23,[Zo,w]] + 60[21,[Zz,w]] + GO[ZZ,[Zl,w]]

- 5(ad 2zy)%(ad z)w - 5(ad z,)(adZy) w

- 5(ad Zg)(ad Zy)(ad Zy)%w - 5(ad Zg)?(ad Z,)(ad Zy)w |
12085(t)w(t).

c(t)

Now consider the case that C is a geodesic in an m-dimensio-
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nal symmetric space G/H. Let {xl,...,xm} be a Fermi coordinates

along the geodesic C such that (_gzl)c(t) = c'(t). Let <,> be a

G-invariant Riemannian metric on G/H. Since <Y(t,s),c’(t)> = 0,

Yo(t) is a pafallel vector field along C. Thus we can assume

ei(t) = (_g;i)C(t) (i = 1,...,m'),

Rijkn < R(ei(O),eJ(O))ek(O), eQ(O) > (i,j,k,2 = 1,...,m).

From Theorem 3.2 we have the following

Theorem 3.3. (1) Sl(t) =0,

_ m
Y, (t) = - t/2 =7

2 Rajaj

(2) &y(t) = 1/2 Ryypy
.2 m
Yy(t) = t7/8 Zi,5=2 ( Ro123R215: * R211;Rj12i e, (t).
_ m

_ m 3 m
Y3(t) = -1/24 5,0 2tRy 5 Ry 9y + £7/2 2575 5( Ryyp;Ray 55

3

m
JRogik + 725 522 Ra1ajiR2124R

* Ryy15R5121 jlik

3 m
t7/2 2, 5220 RogasRa15: * Ra113R5125 IRy2k

m
+ tZ;.5 RygaiRajiok ] ep(t).

2 2

2121 R

(4) e4(t) = 1/12 R +1/8 t

m
Z;,5=2 Ra12;

2 m
+ 1/8 t% =5 5-9 Ro1a;R212iR 141

2151
* Ry115R5121 IR2141
2

Riza; -

m
- 1/24 2,7,
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§ 4. Total torsions.

In this section we consider in the case that M is a Riemann-

ian manifold of constant curvature.

Theorem 4.1, Let M be an m-dimensional Riemannian manifold

of constant curvature K. Then Y does not depend on s and is

determined by the following equations.

(1) If K=0, then c’(t) + s th(t) = g(t,s) c’(t).
(2) If K>0, then
(cos s/r) c’(t) + (r sin s/r) VtY(t) = g(t,s) c’(t) (r = VK ).
(3) If K<0, then
(cosh s/r) c¢’(t) + (r sinh s/r) th(t) = g(t,s) c’(t) (r = /~K).
Proof. It is clear‘that (1) follows from Theorem 3.1.
Assume that K>O0. Since
<c’(t),Y(t,s)> = 0 and <Y(t,s),th(t,s)> = O,k
it follows from Wolf [9], Chapter 2, §3 that
R(Y(t,s),c’(t))Y(t,s) = - 1/r? ¢’ (t),
R(Y(t,s),v,Y(t,s))¥(t,s) = - 1/r% v, ¥(t,s).
By Theorem 3.1 we have
(cos s/r) c¢’(t) + (r sin s/r) v Y(t,s) = e(t,s) c’(t).
Since <c’(t),Y(t,s)> = 0, Y does not depend on s. Then (2)
follows. Similarly we can prove (3).
Now assume that dim M = 3 and M is orientable. Let C(M) be

the set of regular curves in M with C2 topology and let F(M)
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denote the set of regular curves with nonzero curvature k. Let
C = {c(t)} € F(M) and {el,ez,es} be the Frenet frame of C. Let
yi(t) (-»<t<e, i=2,3) be smooth functions such that

Y(t) = Yz(t)ez(t)+73(t)e3(t)°

Combining Theorem 4.1 and Frenet-Serret equations we have

(72’(t)] _ ( 0 w(t)] (Vz(t)]
(4.1) va'(0)) T lee(t) o ) Lrge))-
Here v is the torsion of C. Put E(t) = IB o(t) dt. Then

the differential equation (4.1) has the following fundamental

matrix
o(t) = ( cos E(t) - sin £(t) ]
sin E(t) cos E(t) '
Let ©(C) denote the total torsion of C. Put

2(Cc) = (C)/2n mod Z € S1 = R/Z.

From Proposition 1.2, we have the following.

Lemma 4.2. If Ci € F(M) (i=1,2), then C1 and C2 are equi-
valent if and only if %(Cl) = %(Cz).

Let C € C(M). By Feldman [6], Theorem 6.2, we can take a seq-
uence Ci € F(M) (i=1,2,...) such that limi_qw Ci = C. Put
R(c) = lim,_,_ %(cy).
By [2], Propopsition 4.1 2 is well defined. Let C(M) be the
set of equivalence classes of C(M). Then % induces a map <:
(_J(M) —_ Sl.
Theorem 4.3. If M is an orientable three dimensional Riema-

nnian manifolds of constant curvature. Then t is bijective.
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