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1. Introduction ,

The theory of monodiffric and comnodiffric functions has been developed
by Berzsenyi [1, 2], Kurowski [3] and Tu [4, 5]. In a recent paper [5], some
properties of the comonodiffric Laplace transform by use of comonodiffric
exponential functions are obtained. Our results can be applied to solve
difference equations with constant coefficients. In the present paper, we shall
investigate the Fouier transform via comonodiffric exponential functions. First,
we deal with some basic properties of Fourier transforms. Then we deal with
an inversion formula, a convolution theorem and an analog Parseval's identity.

Finally, we give an application to the filtering problem.
2. Definition and Notation

Let € be the complex plane, D = {z € (| z = x+iy,.x and y are
integers} and f: D — (.

Definition 1. The function f: D — € is said to be comonodiffric at z if

(i=1)f(z) + f(z—i) — if(z—1) = o.
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The function f is said to be comonodiffric in D, if it is comonodiffric at

~any point in D.
In the theory of comonodiffric function, a function
e(z, a) = (1-a) X(1-ai) ¥ where z = x+iy, 1-a # 0, 1-ai # 0,

satisfies the equation f'(z) — af(z) = 0 with £(0) = 1, if we defined the

comonodiffric derivative ' of f as
f(z) = F(1-)(z) — fz—1) +if(z—)).

The function e(z, a) is called to be comonodiffric exponential function.

In this paper, we are maimly concerned with the case y = 0 and
2is
= ﬁ—s‘ ; 8 € R.
ie, e(x, is) = (i%tg)x where x is an integer.

Definition 2. Let f(x) and g(x) be two complex valued function defined

for an integer x and the double dot line integral of f and g are defined

by
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[ sax = § [ 4 K] ) ateon)]

- X=—00

Definition 3. Let I be a set of integers and f I — C. If

S(E)(s) = f oof(x): e(k, is)dx exists for every real s,

then its function value F(s) is called the Fourier transform of f(x) and we

denote it by
8(f)(s) = F(s).

For convenience, we denote J(f)(s) by F(f). It is easy to see that if

(e o]
Y |f(x) + f(x-1)] < o then JF(f) = F(s) for all real s. ie., the

X=—00
Fourier transform of f(x) exists for all real s. We define

B ={fl £1—€C and T |f(x) + fx-1)| < w}.

X=—0

3. Some Basic Properties of Fourier Transform

Let 3J(f) = F(s) and J(g) = G(s) with f and g are in 3:(D).
Then we have the following basic properties:

(a) S(af(x) + bg(x)) = aF(f) + bF(g) = aF(s) + bG(s), where a

and b are real or complex numbers,
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(b)  3(f(—=x)) = F(-s),
() 3(x) = F(-s),
(d)  F(f(x+k)) = e(—k, is)F(s) where k is an integer.

Properties (a) through (d) follow immediately from the definition of the Fourier

transform.

4. Inversion Forniula.

We begin with following lemmas.

Lemma 1. Let %’(f) = F() with f is in (), and P(p) =

Sk _ .y _ l4is _ 1+
L p°|f(x)+f(x-1)| where p = e(l, is) = ;== then F(s) = I;BP(p).

=—0w

Proof. F(s) = f wf(x): e(x,is)dx = 0)5 [f(x)-%—f(x—l)] [p x;‘o x-l] = %B P(p).

—0 X=—m0

Lemma 2. For f e § (I), we have
1 (P _ .
O fc F’(A dp = f(x) + f(x-1),

2 P & is continuous relative to the unit circle C, where C is
px

the unit circle taken in the counterclockwise sense and x is an integer.

Proof. Since f € F:(I)
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PO = | £ M) + (k-D]| < T [f0) + f(k-1)| <

X=—w X=—w

P(p) exists. And

6D g [ =g [ 5 AT + el

=—w

= L k°§ [f(k) + f(k-1)] j; K1 g,

=—w

Now,

27 . . 27
f pk—x-—l dp = f (elﬂ)k—x—l del? = f el (k) de.
c 0 0

¥ k=x then [ p*ldp = 2r, and if k # x then f X4y = 0.

C C
(3.1) becomes ko f %{1} dp = f(x) + f(x-1).

Proof of (2). Let g (o) = A 7[i(k) + f(k-1)] and M, = [f(k) + f(k—1)]

then

|gk(P)| = M,

and g (p) is continuous throughout C for each k. For f € 3:(D), we

have
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£ M= T [t + k]| < w

k=—w =—w

00
By Weierstrass M—test we obtain that kZ gk(p) is uniformly convergent
=—00

F P
throughout C and ) gk(p) converges to —(-2} which is continuous
k

X+
i p

throughout C.

Lemma 3. For f € F() with JF(f) = F(s), we have

fx) + f(x-1) = L [TF@)e(x, —is) + e(x-1, —i)}ds

-

for all integers x.

Proof. Let p=l:*'_l§=e19, —r < 8 < w we obtain s=tan%—0.

From Lemma 2,

f(x) + f(x-1) = 5k ( %@} dp
_ 1 r® P%eg 1,is¢) .
~ 2m _ €(x+1,is d(e(1, is))
_1 f°° Pgeglzis)% 1+ e(l, i )]st
T o 1€ x+1,18 ) 18

3
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1 l+e!lzlS! 1+e(1,is
"7rf e(l,1s P(e’ls))exls

f ” F(s)[e(x,—is) + e(x—1, —is)]ds.

-

|
L

Thus Lemma 3 is proved. Now, we give the Inversion Formula as follows:

Theorem 1 (The Inversion Formula). If f € F:(I), then the Fourier transform

F(s) of f(x) exists for all real s and

i) = (0 — L ¢ Fe)as) + L ¢ Flsle(x, —is)ds

—00 -0

1 p® T
where - f F(s)ds = 1im f F(s)ds expresses Cauchy principle value.
T

—0 Tow -

Proof.  First, for all s, we want to show that

f ’ F(s)[(—‘l)x‘*'1 + e(x, —is)]ds exists.

~00

Since f € §:(I), i.e. F(s) wxists for all real s. By Lemma 3,

—00

i) + f(x-1) = & [ F(s)le(x—is) + e(x—1, —is)}ds
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Multiplying both sides by (—l)x—1 and summing for x =1, 2, ..., n,

f1) + £0) = L f° Fo)ex, —is) + e(0, —is)lds

-

(2) — f1) = L 7 Fle)l-e(2, i) — e(1, —is)ds

—o0

1" i) - f@-1)] = £ f°° F(s)[(-1)" le(n~is) + (—1)" le(n—1,-is)]ds

-

gives

ftn) = (D™M0) + & [ FOI-D™ + e, —is)lds.

-0

o0
Thus [ F(s)[(-1)"*! + e(n, —is)lds exists for all real s. Next, we shall

—

T
show that f T[e(x, —is) + e(x—1, is)]ds is uniformly bounded in T and x.

Le¢ T > 0, then for any integer x

T .
(3.2) f T[e(x, —is) + e(x—1, is)lds = 2 [_ z g31—(—_{1_—35’;—s)ds.
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1

Take w = 2 tan 's and let wy = 2 tan 'T then e(x, is) = ¢"* and

T . Wo .
e(x, i8)y, _ exp[i(x— 4)w]
2[—T Fis 8 = wa cos W/ dw

Wo Wo ¢
_ cos(x— 4)w . sin(x— 4w
= f cos w/é dw + 1./: wy €08 W/2 dw

2 tan!T
— f an cos(x— 4)w dw.
9 tan-IT ©O8 w/2
Since cgggx; /%)w = cos xw + (sin xw)-tan -g is continuous on (—m, =),

(3.2) becomes

lT
lim fT[e(x, is) + e(x—1, is)]ds

- 00 -_

T
_ cos(x— 4)w
= J:-w cos w/> dw

_ 9 f” (=1)x*t sin[(x— H)(wtm)] 4
0 sin———2——

27 .
_1yx+1 sin xt cos t/2 - cos xt sin t/2
= 20" 570 T/2 dt

T
= 9(-1)¥*1 fo (sin xt cot § — cos xt)dt.
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From Zygmund [6, p.57] we can show

¢
sin nt cot % dt is uniformly bounded,

I

therefore, lim f [e(x, is) + e(x—1, is)]Jds is uniformly bounded. Now, it
=00 -

00
remains to prove that f F(s)ds exists. Since
-0

T T o . .
f F(s)ds = f Y {f(x) +2f(x-"1) }[e(x, is) -5 e(x—1, 1s)] ds

- -T x=—w

= § 1 + D) ffelx, -1, i)
=2 7lf(x X i e(x, is) + e(x—1, is)]ds,

we have

T © T
IfTF(S)dsl < 31; L |f(x) + f(x—1)|fT|e(x, is) + e(x—1, is)|ds.

Thus,
|6 Fis)s|

1 W ® .
<7 X ) + fx=1)| le(x, is) + e(x-1, is)|ds < w. Q.E.D.
—

X=—
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From Theorem 1, we immediately get the following.

Corollary. If f and g € F(I) with F(F) = J(g) then f(x) — g(x) = (-1)*K

for all integer x and some constant K.

Remark. In the inversion formula, it is of interest to ask "Can we change

Q0
the Cauchy principle value f F(s)ds into the improper integral in the

—®
® T
ordinary sense, that is f F(s)ds = lim f F(s)ds. The answer is negative.

—00 Tow “a
a— -

Let f(n) = (1) for n > 0 and zero otherwise. Clearly, f € F(I).
And

Fis) = [ £(s): e(x, is)ds = T~ AT -

—o0
©
Here f_w 7(—1%27 ds exists; however, the integral

® is T is
ds = lim S
S oy o ./; HT+s7)0
a—+ -0

does not exist in the ordinary sense. But its Cauchy principle value is zero.

4. The Convolution Theorem and Parseval's Identity
Definition 4. For f and g € §:(I), the convolution product of f and
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g is defined by

(R)x) = [ fx-t): g(e)de
Theorem 2. Let f and g € §(I) with JF({f) = F(s) and 3J(g) = G(s),
then J(fxg) = F(s)G(s).

' ©
Proof  From Lemma 1, F(s) = L}g Y pNf(x) + f(x-1)]. Similary,

X=-—0w

G =142 5 gt + g61))

X=-—

X==-= 00 =— 0w

FEIGE) = 0?2 5 XD [ieck) + fe1-k)lgk) + g(k-1))

= Mo+ S M k) + Hxe1-R]le) + g(k-1)

X== ==

=L 3 (Y f fx1-t): gU)dt + T (K405 [ Hx-1K)g(t)dt

X=- X==o0w

= zlf T 4+~ f f(x—1—t): g(t)dt + Z b P+~ f f(x—t):g(t)dt

X=~ X=- o

- Lo T X f f(x—1-t): g(t)dt + f f(x—t):g(t)dt]

X==—

— 42 —



= 1ty gB)atl: elx, is)dx = F(ixg).
This proves Theorem 2.

Theorem 3 (Parseval's Identity). For f and g are in J:(I) with J(f)
and §(g) = G(s)

Il

[T gwax = L [TFe)TE)s.

In particular,

(i) fxyax = & f7[F(s)| %as.

00 -0

Proof. By Lemma 3,

f(x) + f(x-1) = % f 0()F(s)[e(x, —is) + e(x—1, —is)]ds

we have

[« )

[T gdx = T M0 + f(e-1]Ex) + Foeb)]

—00 X=—00
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= L (TR Fs): elx, —is)dxlds

= % f_:F(s)G(s)ds. Q.E.D.

Finally, we give an example of the filtering problem. For given two functions
Q0
f and g in J:(I), we want to find h such that f f(x): h(t—x)dx = g(t).

—0

We can solve this problem by Theorems 1 and 2. Let

f(n) = {(—1)“ "0
0

n<29o0
and
1 n =20
g(n)={
0 n # 0.

The problem is to find h(x) such that

L7H(x): B(t)dx = g(t).

-

1 n=290
Here f(n) + f(n—-1) = {
0 n £ 0

F(s) = gle(0, is) + e(1, —is)]
G(s) = gle(0, is) + e(1, —is)][e(0, is) + e(1, is)]-
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Thus,
F(h(x)) = g%} = e(1, is)[e(0, —is) + e(l, —is)] = 4 F(f(x—1)).

On solution h(x) of this problem is h(x) = 4f(x—1).
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