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Commutators of Orthogonal Projections
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Abstract

In this note we prove that a bounded linear operator 7" on a complex
separable Hilbert space H is a commutator of projections if and only if 7* =
=T, |IT|| < % and T is unitarily equivalent to 1.

Key Words and Phrases: generic pairs of projections, orthogonal projec-
tions, spectrum.
2000 MR Classification: 47B47, 47B15.

1 Introduction

Let H be a separable complex Hilbert space and let B(H) denote the algebra of all
bounded linear operators on H. A operator C in B(H) is said to be a commutator

of operators if C = AB — BA for some A,B € B(H). In [6], some elementary

properties for an operator to be a commutator were considered and related results

have been studied by several authors(cf.[1, 2, 4]). Very recently, Drnovesk et al in

[3] considered a characterization of commutators of idempotents in an algebra. In

this note, we consider the commutator of orthogonal projections. We intensify the

results in [3] for self adjoint idempotent in a x— algebra. We prove that an operator

T is a commutator of orthogonal projections if and only if T* = —T, ||T|| < 1 and

T is unitarily equivalent to T™.

We next recall some notations and terminologies . For A € B(H), R(A), N(A),
o(A), r(A) and o,(A) denote the range, the null space, the spectrum, the spectrum
radius and the point spectrum of A, respectively. An operator A € B(H) is said
to be positive if (Az,z) > 0 for all z € H and A is an idempotent if A2 = A. An
orthogonal projection is a positive idempotent. A pair (P, Q) of projections means
two orthogonal projections P and @ in B(H). N and R denote the positive integer
and real number, respectively. For a closed subspace M of ‘H, dim M denotes the
dimension of it. Let {A;} be a net in B(H), A; — A (SOT) means {A;} convergent
to an operator A in B(H) in strong operator topology.

2 Main results

At first, we recall the following well-known result.
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Lemma 1. Let H have a orthogonal sum decomposition H = H; & H, and let
A € B(H) be an operator with the following operator matrix form

An A
A= . : 1
( An An @)
Then A is positive if and only if A;; is a positive operator on H; for ¢« = 1,2, and
1 1
A}, = Ayjp = A} DAZ, for a contraction D from H; into H;.

Definition 2.([5]) Let P and @ are two projections in B(H). If P and @ have
no common eigenvalues, then (P, Q) is called a generic pair.
Note that (P, Q) is a generic pair if and only if

R(P)NR(Q) = R(P)NN(Q) = N(P)N R(Q) = N(P)N N(Q) = {0}.

It is clear that (P, Q) is a generic pair of projections if and only if so are (I— P, Q),
(I - P,I-Q),and (P,I—Q), where I denotes the identity on H. For convenience,
we do not distinguish the identities acting on different spaces and denote them by
I. If P and @ are two projections on H, then by Lemma 1, they have the following
operator matrix forms

P (é g) and Q=( lQn . Qleinz) (2)
Q3D Q4 Q22

corresponding to the space decomposition H = R(P) & R(P)* .

Lemma 3. If (P,Q) is a generic pair such that P and Q) have the operator
matrix forms as (2), then

(1) Q11 and Qa2 are positive operators on R(P) and N(P), respectively;

(2) 0 and 1 are not in 0,(Q;) for i = 1,2 and consequently Q11, @22, I — Q11
and I — Q2 are injective;

(3) D is a unitary operator from N(P) onto R(P) and is uniquely determined
by (P, Q);

(4) Qu1 = D(I — Q22)D* and Q42 = D*(I — Q11)D;

(5) dim R(P) = dim N(P).

Proof. (1) This follows from Lemma 1.

(2) For the space decomposition H = R(P) & R(P)*, P and Q have operator
matrix forms as (2). Since the pair (P, Q) of projections is generic, it is easy to show
that both 0 and 1 are not in 0,(Q;;) for ¢ = 1,2. Consequently Q11, Q22, 1 — Q11
and 1 — ()29 are injective.




(3) @ is a projection, so

( 1Qll 1 QlélDQéz ) _ ( Qn +Q11DQ22D*Q11 Q11DQ22+Q11DQ22 ) .
Q:§2D*Q1§1 Q22 Q22D*Qll + Q22D*Q11 Q22 + Q11D*Q11DQ22

Comparing the entries of matrices in two side of the above equation , we have

1 1
Qu =Q3% + QleszD*Qﬁ,
Q22 = Q22 + Q11D Q11DQ227
QleQm = Q11DQ22 + Q11DQ22

Considering that Q);; and Q)9 are injective, hence

I = Qi1 + DQa2 D",
I = Qe+ D*QuD, (3)
D = Q11D + DQ22,

where I; and I, are identities on R(P) and N (P), respectively. From the first
equation of (3), we obtain that I; — Q1 = DQ22D*. Note that I} — Q1 is injective
since that 1 is not in 0,(Q11), then both D and D* are injective. Substituting the
first equation of (3) into the third equation of (3), D = (I; — DQ22D*)D + DQqq,
s0 DQq2(D*D — I) = 0. Note that both D and Q) are injective, then

D*D = I, (4)

Similarly, .
DD* =1. (5)
Combining (4) with (5), D is a unitary operator from N (P) onto R(P).

(4) By the second equation of (3) and (4), Q22 = D*(I; — Qu1)D. Similarly,
Q11 = D(I — Q22)D*, then the conclusion holds.

(5) This follows from the fact that D is unitary from A (P) onto R(P).

The proof is completed.

Assume that P and @ are two orthogonal projections on H. Put Hy = R(P) N
R(Q), H2 = R(P) N N(Q), Hz = N(P) N R(Q), Hs = N(P) N N(Q). It is easy to
see that H; (i = 1,2, 3,4) is a reducing subspace of P and @, and H; LH,;, ¢ # j. Set
Hs = H O (@4 H;), then H = ®?_;H; and so P and Q have the following operator
matrix form

F Qo




corresponding to the space decomposition H = @®3_;H;, where the missed entries
are all 0.

Clearly, (P, Qo) is a pair of generic orthogonal projections on Hs. So Py and Qo
have the forms in (2).

The following lemma might be known, but we cannot find the reference. Here
we give an elementary proof.

Lemma 4. If T is a commutator of a pair of orthogonal projections, then
(1) T is normal and ||T|| < 1/2.

(2) o(T) C{ib: b€ R and || <1/2}.

(3) T is unitarily equivalent to 7.

Proof. (1)Assume that T'= PQ — QP where P and (Q are orthogonal projec-
tions. Since T* = QP — PQ = —(PQ — QP) = —T, we have T is normal. If P and
@ have the forms in (6), then by Lemma 3(4), we have

0

1PQ—-QP| = | 0 |
0 Q%—IDQ2%2
—szD*Qu 0
= ||Q121DQ22” = ||Q121DQ22D Qu”

= ||Q11(1 - QII)Q11”2 by Q22 = D*(1 — Qu)D
= [Qu( - Qu)llz.

Since Q;; is a positive operator, applying functional calculus , we have ||Q;;(1 —
Qu)ll < sup{|]M1 - V)| : X € 0(Qu)} < 3. Hence ||IT|| < 3.

(2) Noting that (¢7')* = —iT™ = 3T, then o(T) C {sb: b€ R and || < 1/2}.

(3) Let U =2P—1. Then U* = U and UU = 1. Hence U is a self-adjoint unitary
operator. Meanwhile UT +TU = 0, thus T* = -T = UTU.

The proof is completed.

Theorem 5. T is a commutator of a pair of orthogonal projections if and only
ifT*=-T,|T| < % and T is unitarily equivalent to 7.

Proof. Necessity. By the proof of Lemma 4, it is clear.

Sufficiency. By the assumption, we have o(T) C {ib: b € R and |b| < 1/2}.
Let E be the spectral measure of T, and let C; = {ib : b € R* — {0}} , C> =
{ib: b€ R~ —{0}}. Then H = E(Ci)H & E(Co)H @ E(0)H. Put A = fcl ME),
B = f02 ME),. Then both A and B are injective operators. By assumption, there




Is a unitary operator U such that 7" = UTU*. Then according to this spatial
decomposition we have

A —A
T = B , T = -B
0 0
and

Un U Uss A —A Unn Uiz Uss
Unn Uz Uss B = —-B Un U Uy |. (7)
Usi Usy Uss 0 0 Usi Usy Uss

Since both A and B are injective, it follows that all of Us;, Usp, Uiz and U,z are 0.
We next prove that both U;; and U,y are also 0.

If 0 is an isolated point of o(T'), then both A and B are invertible operators So
by U11A = —AU11, UQQB = —~BU22, we have U11 = U22 =0.

Otherwise, if 0 is not an isolated pomt of cr(T) Put Cp, = {ib: b € [1/n, oo)}
Ch ={ib:be (0,1/n)}, C3 = {ib : b € (—o0,—1/n]} and CF, = {ib :
(=1/n,0)}. Let A, = fc?1 ME), B, = fcé‘l AME) and C,, = fc;'zu{o}ucg2 AE). Then
H=E(C}y)H® E(CH)H & E(C, U{0}UCs)H, and

U U U An | —4n Un Uy Ugs
Uy Uz Uss Bn = ~B, Usp U Uz |-
Ui Uy Usy G —Cn Usi Us; Uss

Since both A, and B, are invertible, by the proceeding analysis, U]y = UJ, = 0 for
each n € N. Meanwhile, E(CT,) — 0 (SOT) asn — oo and Uy = E(CY)Un1 E(CY)+
E(CH)UnE(CYL)+E(CHL)Uir (n € N). Since Uy =0foreachn € N, E(CY)Un E(CY) =
0. Then for each z € E(Cy)H,

[Unz|| < |E(CT)UnE(CR)z]l + | E(CT2)Unz|| — 0 as (n — o).

Hence U;; = 0. Similarly, we also have Uy, = 0.
It now follows that U, is unitary and that B is unitarily equivalent to A*. Hence
without loss of generality, we may assume that

(e )M

Define B = [, (3 + A2)2dE,. Since o(T) C {ib : |b] < 1/2}, we have 1 + X2 > 0.
Then B* = B. Note that

(6 %) (2 5)=(r 5) (%)




AN . . :
So it suffices to prove that ( 81 o )8 the commutator of a pair of orthogonal

. (T 0 _ %I - B A .
projections. Define P = 0 0 and QQ = A l+B ) . It is clear that
P and @ both are self-adjoint. By direct calculus, we have they are also idempotents
and PQ — QP = 21 61 It easily follows that 7" is also a commutator of

projections. The proof is completed.

Lemma 6. (P,Q) is a pair of generic projections if and only if PQ — QP is
injective.

Proof. If (P,Q) is a pair of generic projections, then by the forms in (2) we
have ) .
3 2
PQ—QP=( -1_0 1 QIIDQ22).
—Q5D*Qh 0

Hence N(PQ — QP) = {0}, since N(Qé) =0 (2 = 1,2) by Lemma 3(2).
If PQ — QP is injective, then Hy @ Ho @ Hs DHy = {0}. So P = Fy and Q = Qo
in the forms (6). Thus (P, Q) is a generic pair. The proof is completed.

Corollary 7. T is commutator of a pair of generic projections if and only if
T* = -T, ||T|| < 3, N(T) = {0} and T is unitarily equivalent to T*.

Proof. It is clear by Theorem 4 and Lemma 5.

1 1
Remark. IfP=((1) 8) and Q = (f i),then IPQ — QP|| = 1. Hence
2 2

the equation ||T'|| = ; may hold.

Proposition 8. Let P and @ be the orthogonal projections. Then the norm
equation |PQ — QP|| = 1 holds if and only if € o(PQP).

Proof. Sufficiency. Let T'= PQ — QP. Then by the proof of Lemma, 4, we have
I(PQ — QP)|| = ||Q11(1 — Q11)||7. By functional calculus of positive operators and
1/2 € o(PQP), we have [Qu (1 — @u)| = 1/4. So ||PQ — QP = 1/2.

Necessity. By the proceeding analysis, if ||PQ — QP|| = 1/2, we have ||Q11(1 —
Q11)|| = 1/4. So there exists a A € 0(Q1;) such that |[A(1—A)| = 1/4. Then A = 1/2.
Hence 1/2 € o(PQP). The proof is completed. :
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