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Commutators of Orthogonal Projections
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Abstract

In this note we prove that a bounded linear operator $T$ on a complex
separable Hilbert space $\mathcal{H}$ is a commutator of projections if and only if $T^{*}=$

$-T,$ $\Vert T\Vert\leq\frac{1}{2}$ and $T$ is unitarily equivalent to $T^{*}$ .
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1 Introduction
Let $\mathcal{H}$ be a separable complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of all
bounded linear operators on $\mathcal{H}$ . A operator $C$ in $\mathcal{B}(\mathcal{H})$ is said to be a commutator
of operators if $C=$ AB–BA for some $A,$ $B\in \mathcal{B}(\mathcal{H})$ . In [6], some elementary
properties for an operator to be a commutator were considered and related results
have been studied by several authors(cf.[l, 2, 4]). Very recently, Drnovesk et $al$ in
[3] considered a characterization of commutators of idempotents in an algebra. In
this note, we consider the commutator of orthogonal projections. We intensify the
results in [3] for self adjoint idempotent in $a*$ -algebra. We prove that an operator
$T$ is a commutator of orthogonal projections if and only if $\tau*=-T,$ $\Vert T\Vert\leq\frac{1}{2}$ and
$T$ is unitarily equivalent to $\tau*$ .

We next recall some notations and terminologies. For $A\in \mathcal{B}(\mathcal{H}),$ $R(A),$ $N(A)$ ,
$\sigma(A),$ $r(A)$ and $\sigma_{p}(A)$ denote the range, the null space, the spectrum, the spectrum
radius and the point spectrum of $A$ , respectively. An operator $A\in \mathcal{B}(\mathcal{H})$ is said
to be positive if $(Ax, x)\geq 0$ for all $x\in \mathcal{H}$ and $A$ is an idempotent if $A^{2}=A$ . An
orthogonal projection is a positive idempotent. A pair $(P, Q)$ of projections means
two orthogonal projections $P$ and $Q$ in $\mathcal{B}(\mathcal{H})$ . $N$ and $\mathbb{R}$ denote the positive integer
and real number, respectively. For a closed subspace $M$ of $\mathcal{H}$ , dim $M$ denotes the
dimension of it. Let $\{A_{i}\}$ be a net in $\mathcal{B}(\mathcal{H}),$ $A_{i}\rightarrow A$ (SOT) means $\{A_{i}\}$ convergent
to an operator $A$ in $\mathcal{B}(\mathcal{H})$ in strong operator topology.

2 Main results

At first, we recall the following well-known result.
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Lemma 1. Let $\mathcal{H}$ have a orthogonal sum decomposition $\mathcal{H}=\mathcal{H}_{1}\oplus \mathcal{H}_{2}$ and let
$A\in B(\mathcal{H})$ be an operator with the following operator matrix form

$A=\left(\begin{array}{ll}A_{11} & A_{12}\\A_{21} & A_{22}\end{array}\right)$ . (1)

Then $A$ is positive if and only if $A_{ii}$ is a positive operator on $\mathcal{H}_{i}$ for $i=1,2$ , and
$A_{21}^{*}=A_{12}=A_{1}^{\frac{1}{12}}DA_{2}^{\frac{1}{22}}$ for a contraction $D$ from $\mathcal{H}_{2}$ into $\mathcal{H}_{1}$ .

Deflnition 2.([5]) Let $P$ and $Q$ are two projections in $\mathcal{B}(\mathcal{H})$ . If $P$ and $Q$ have
no common eigenvalues, then $(P, Q)$ is called a generic pair.

Note that $(P, Q)$ is a generic pair if and only if

$R(P)\cap R(Q)=R(P)\cap N(Q)=N(P)\cap R(Q)=N(P)\cap N(Q)=\{0\}$ .

It is clear that $(P, Q)$ is a generic pair of projections if and only if so are $(I-P, Q)$ ,
$(I-P, I-Q)$ , and $(P, I-Q)$ , where $I$ denotes the identity on $\mathcal{H}$ . For convenience,
we do not distinguish the identities acting on different spaces and denote them by
I. IfPandQ are two projections on $\mathcal{H}$ , then by Lemma l, they have the following
operator matrix forms

$P=$ $\left(\begin{array}{ll}I & 0\\0 & 0\end{array}\right)$ and $Q=\left(\begin{array}{ll}Q_{11} & Q_{1}^{\frac{1}{12}}DQ_{2}^{\frac{1}{22}}\\Q_{2}^{\frac{1}{22}}D^{*}Q_{1}^{\frac{1}{12}} & Q_{22}\end{array}\right)$ (2)

corresponding to the space decomposition $\mathcal{H}=R(P)\oplus R(P)^{\perp}$ .

Lemma 3. If $(P, Q)$ is a generic pair such that $P$ and $Q$ have the operator
matrix forms as (2), then

(1) $Q_{11}$ and $Q_{22}$ are positive operators on $R(P)$ and $N(P)$ , respectively;
(2) $0$ and 1 are not in $\sigma_{p}(Q_{ii})$ for $i=1,2$ and consequently $Q_{11},$ $Q_{22},$ $I-Q_{11}$

and $I-Q_{22}$ are injective.;
(3) $D$ is a unitary operator from $N(P)$ onto $R(P)$ and is uniquely determined

by $(P, Q)$ ;
(4) $Q_{11}=D(I-Q_{22})D^{*}$ and $Q_{22}=D^{*}(I-Q_{11})D$ ;
(5) dim $R(P)=\dim N(P)$ .

Proof. (1) This follows from Lemma 1.
(2) For the space decomposition $\mathcal{H}=\mathcal{R}(P)\oplus \mathcal{R}(P)^{\perp},$ $P$ and $Q$ have operator

matrix forms as (2). Since the pair $(P, Q)$ of projections is generic, it is easy to show
that both $0$ and 1 are not in $\sigma_{p}(Q_{ii})$ for $i=1,2$ . Consequently $Q_{11},$ $Q_{22},1-Q_{11}$

and $1-Q_{22}$ are injective.
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(3) $Q$ is a projection, so

$\left(\begin{array}{ll}Q_{11} & Q_{1}^{\frac{1}{12}}DQ_{2}^{\frac{1}{22}}\\Q_{2}^{\frac{1}{22}}D^{*}Q_{1}^{\frac{1}{12}} & Q_{22}\end{array}\right)=($ $Q_{2}^{\frac{121}{22}}D^{*}Q_{1}^{\frac{3}{12}}+Q_{2}^{\frac{32}{22}}D^{*}Q_{1}^{\frac{11}{12}}Q_{1}+Q_{1}^{\frac{1}{12}}DQ_{2}D^{*}Q^{\frac{1}{12}}$ $Q_{22}^{2}+Q_{1}D^{*}Q_{11}DQ_{2}^{\frac{12}{22}}Q_{1}^{\frac{3}{12}}DQ^{\frac{1}{2\frac{212}{12}}}+Q_{1}^{\frac{1}{12}}DQ^{\frac{3}{22}}$ ).
Comparing the entries of matrices in two side of the above equation, we have

$\left\{\begin{array}{l}Q_{11}=Q_{11}^{2}+Q_{1}^{\frac{1}{12}}DQ_{22}D^{*}Q_{1}^{\frac{1}{12}}\\Q_{22}=Q_{22}^{2}+Q_{1}^{\frac{1}{12}}D^{*}Q_{11}DQ_{2}^{\frac{1}{22}}\\Q_{1}^{\frac{1}{12}}DQ_{2}^{\frac{1}{22}}=Q_{1}^{\frac{3}{12}}DQ_{2}^{\frac{1}{22}}+Q_{1}^{\frac{1}{1^{2}}}DQ_{2}^{\frac{3}{22}}\end{array}\right.$

Considering that $Q_{11}$ and $Q_{22}$ are injective, hence

$\left\{\begin{array}{l}I_{1}=Q_{11}+DQ_{22}D^{*}\\I_{2}=Q_{22}+D^{*}Q_{11}D\\D=Q_{11}D+DQ_{22}\end{array}\right.$ (3)

where $I_{1}$ and $I_{2}$ are identities on $\mathcal{R}(P)$ and $\mathcal{N}(P)$ , respectively. From the first
equation of (3), we obtain that $I_{1}-Q_{11}=DQ_{22}D^{*}$ . Note that $I_{1}-Q_{11}$ is injective
since that 1 is not in $\sigma_{p}(Q_{11})$ , then both $D$ and $D^{*}$ are injective. Substituting the
first equation of (3) into the third equation of (3), $D=(I_{1}-DQ_{22}D^{*})D+DQ_{22}$ ,
so $DQ_{22}(D^{*}D-I_{2})=0$ . Note that both $D$ and $Q_{22}$ are injective, then

$D^{*}D=I_{2}$ . (4)

Similarly,
$DD^{*}=I_{1}$ . (5)

Combining (4) with (5), $D$ is a unitary operator from $\mathcal{N}(P)$ onto $\mathcal{R}(P)$ .
(4) By the second equation of (3) and (4), $Q_{22}=D^{*}(I_{1}-Q_{11})D$ . Similarly,

$Q_{11}=D(I-Q22)D^{*}$ , then the conclusion holds.
(5) This follows from the fact that $D$ is unitary from $\mathcal{N}(P)$ onto $\mathcal{R}(P)$ .
The proof is completed.

Assume that $P$ and $Q$ are two orthogonal projections on $\mathcal{H}$ . Put $\mathcal{H}_{1}=R(P)\cap$

$R(Q),$ $\mathcal{H}_{2}=R(P)\cap N(Q),$ $\mathcal{H}_{3}=N(P)\cap R(Q),$ $\mathcal{H}_{4}=N(P)\cap N(Q)$ . It is easy to
see that $\mathcal{H}_{i}(i=1,2,3,4)$ is a reducing subspace of $P$ and $Q$ , and $\mathcal{H}_{i}\perp \mathcal{H}_{j},$ $i\neq j$ . Set
$\mathcal{H}_{5}=\mathcal{H}\ominus(\oplus_{i=1}^{4}\mathcal{H}_{i})$ , then $\mathcal{H}=\oplus_{i=1}^{5}\mathcal{H}_{i}$ and so $P$ and $Q$ have the following operator
matrix form

$\left(\begin{array}{lllll}I & & & & \\ & I & & & \\ & & 0 & & \\ & & & 0 & P_{0}\end{array}\right)$ and $\left(\begin{array}{lllll}I & & & & \\ & 0 & & & \\ & & I & & \\ & & & 0 & Q_{0}\end{array}\right)$ (6)
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corresponding to the space decomposition $\mathcal{H}=\oplus_{i=1}^{5}\mathcal{H}_{i}$ , where the missed entries
are all $0$ .

Clearly, $(P_{0}, Q_{0})$ is a pair of generic orthogonal projections on $\mathcal{H}_{5}$ . So $P_{0}$ and $Q_{0}$

have the forms in (2).
The following lemma might be known, but we cannot find the reference. Here

we give an elementary proof.

Lemma 4. If $T$ is a commutator of a pair of orthogonal projections, then
(1) $T$ is normal and $\Vert T\Vert\leq 1/2$ .
(2) $\sigma(T)\subseteq$ { $ib:b\in \mathbb{R}$ and $|b|\leq 1/2$}.
(3) $T$ is unitarily equivalent to $\tau*$ .

Proof. (l)Assume that $T=PQ-QP$ where $P$ and $Q$ are orthogonal projec-
tions. Since $\tau*=QP-PQ=-(PQ-QP)=-T$, we have $T$ is normal. If $P$ and
$Q$ have the forms in (6), then by Lemma 3(4), we have

$\Vert PQ-QP\Vert$ $=$ $\Vert\left(\begin{array}{llllll}0 & & & & & \\ & 0 & & & & \\ & & 0 & & & \\ & & & 0 & & \\ & & & & 0 & Q_{1}^{\frac{1}{12}}DQ_{2}^{\frac{1}{22}}\\ & & & & -Q_{2}^{\frac{1}{22}}D^{*}Q_{1}^{\frac{1}{12}} & 0\end{array}\right)\Vert$

$\Vert Q_{1}^{\frac{1}{12}}DQ_{2}^{\frac{1}{22}}\Vert=\Vert Q_{1}^{\frac{1}{12}}DQ_{22}D^{*}Q_{1}^{\frac{1}{12}}\Vert^{\frac{1}{2}}$

$=$
$\Vert Q_{1}^{\frac{1}{12}}(1-Q_{11})Q_{1}^{\frac{1}{12}}\Vert^{\frac{1}{2}}$ by $Q_{22}=D^{*}(1-Q_{11})D$

$=$ $\Vert Q_{11}(1-Q_{11})\Vert^{\frac{1}{2}}$ .

Since $Q_{11}$ is a positive operator, applying functional calculus, we have $\Vert Q_{11}(1-$

$Q_{11})\Vert\leq\sup\{|\lambda(1-\lambda)| : \lambda\in\sigma(Q_{11})\}\leq\frac{1}{4}$ . Hence $\Vert T\Vert\leq\frac{1}{2}$

(2) Noting that $(iT)^{*}=-iT^{*}=iT$, then $\sigma(T)\subseteq$ { $ib:b\in \mathbb{R}$ and $|b|\leq 1/2$ }.
(3) Let $U=2P-1$ . Then $U^{*}=U$ and $UU=1$ . Hence $U$ is a self-adjoint unitary

operator. Meanwhile $UT+TU=0$ , thus $\tau*=-T=UTU$.
The proof is completed.

Theorem 5. $T$ is a commutator of a pair of orthogonal projections if and only
if $\tau*=-T,$ $\Vert T\Vert\leq\frac{1}{2}$ and $T$ is unitarily equivalent to $\tau*$ .

Proof. Necessity. By the proof of Lemma 4, it is clear.
Sufficiency. By the assumption, we have $\sigma(T)\subseteq$ { $ib$ : $b\in \mathbb{R}$ and $|b|\leq 1/2$ }.

Let $E$ be the spectral measure of $T$ , and let $C_{1}=\{ib : b\in \mathbb{R}^{+}-\{0\}\}$ , $C_{2}=$

$\{ib : b\in \mathbb{R}^{-}-\{0\}\}$ . Then $\mathcal{H}=E(C_{1})\mathcal{H}\oplus E(C_{2})\mathcal{H}\oplus E(0)\mathcal{H}$ . Put $A=\int_{C_{1}}\lambda dE_{\lambda}$ ,
$B=\int_{C_{2}}\lambda dE_{\lambda}$ . Then both $A$ and $B$ are injective operators. By assumption, there
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is a unitary operator $U$ such that $\tau*=$ UTU*. Then according to this spatial
decomposition we have

$T=\left(\begin{array}{lll}A & & \\ & B & 0\end{array}\right)$ , $T^{*}=\left(\begin{array}{lll}-A & & \\ & -B & 0\end{array}\right)$

and

$\left(\begin{array}{lll}U_{11} & U_{12} & U_{13}\\U_{21} & U_{22} & U_{23}\\U_{31} & U_{32} & U_{33}\end{array}\right)\left(\begin{array}{lll}A & & \\ & B & 0\end{array}\right)=\left(\begin{array}{lll}-A & & \\ & -B & 0\end{array}\right)\left(\begin{array}{lll}U_{11} & U_{12} & U_{13}\\U_{21} & U_{22} & U_{23}\\U_{31} & U_{32} & U_{33}\end{array}\right)\cdot(7)$

Since both $A$ and $B$ are injective, it follows that all of $U_{31},$ $U_{32},$ $U_{13}$ and $U_{23}$ are $0$ .
We next prove that both $U_{11}$ and $U_{22}$ are also $0$ .

If $0$ is an isolated point of $\sigma(T)$ , then both $A$ and $B$ are invertible operators. So
by $U_{11}A=-AU_{11},$ $U_{22}B=-BU_{22}$ , we have $U_{11}=U_{22}=0$ .

Otherwise, if $0$ is not an isolated point of $\sigma(T)$ . Put $C_{11}^{n}=\{ib:b\in[1/n, \infty)\}$ ,
$C_{12}^{n}=\{ib : b\in(0,1/n)\},$ $C_{21}^{n}=\{ib : b\in(-\infty, -1/n]\}$ and $C_{22}^{n}=\{ib$ : $ b\in$

$(-1/n, 0)\}$ . Let $A_{n}=\int_{C_{11}^{n}}\lambda dE_{\lambda},$ $B_{n}=\int_{C_{21}^{n}}\lambda dE_{\lambda}$ and $C_{n}=\int_{C_{12}^{n}\cup\{0\}\cup C_{22}^{n}}\lambda dE_{\lambda}$ . Then
$\mathcal{H}=E(C_{11}^{n})\mathcal{H}\oplus E(C_{21}^{n})\mathcal{H}\oplus E(C_{12}^{n}\cup\{0\}\cup C_{22}^{n})\mathcal{H}$ , and

$\left(\begin{array}{lll}U_{11}^{n} & U_{12}^{n} & U_{13}^{n}\\U_{21}^{n} & U_{22}^{n} & U_{23}^{n}\\U_{31}^{n} & U_{32}^{n} & U_{33}^{n}\end{array}\right)\left(\begin{array}{lll}A_{n} & & \\ & B_{n} & C_{n}\end{array}\right)=\left(\begin{array}{lll}- A_{n} & & \\ & - B_{n} & - C_{n}\end{array}\right)\left(\begin{array}{lll}U_{11}^{n} & U_{12}^{n} & U_{13}^{n}\\U_{21}^{n} & U_{22}^{n} & U_{23}^{n}\\U_{31}^{n} & U_{32}^{n} & U_{33}^{n}\end{array}\right)$ .

Since both $A_{n}$ and $B_{n}$ are invertible, by the proceeding analysis, $U_{11}^{n}=U_{22}^{n}=0$ for
each $n\in N$ . Meanwhile, $E(C_{12}^{n})\rightarrow 0$ (SOT) as $ n\rightarrow\infty$ and $U_{11}=E(C_{11}^{n})U_{11}E(C_{11}^{n})+$

$E(C_{11}^{n})U_{11}E(C_{12}^{n})+E(C_{12}^{n})U_{11}(n\in N)$ . Since $U_{11}^{n}=0$ for each $n\in N,$ $E(C_{11}^{n})U_{11}E(C_{11}^{n})=$

$0$ . Then for each $x\in E(C_{1})\mathcal{H}$ ,

$\Vert U_{11}x\Vert\leq\Vert E(C_{11}^{n})U_{11}E(C_{12}^{n})x\Vert+\Vert E(C_{12}^{n})U_{11}x\Vert\rightarrow 0$ as $(n\rightarrow\infty)$ .

Hence $U_{11}=0$ . Similarly, we also have $U_{22}=0$ .
It now follows that $U_{12}$ is unitary and that $B$ is unitarily equivalent to $A^{*}$ . Hence

without loss of generality, we may assume that

$T=\left(\begin{array}{lll}A & & \\ & A^{*} & 0\end{array}\right)=\left(\begin{array}{lll}A & & \\ & -A & 0\end{array}\right)$ .

Define $B=\int_{C_{1}}(\frac{1}{4}+\lambda^{2})^{\frac{1}{2}}dE_{\lambda}$ . Since $\sigma(T)\subseteq\{ib : |b|\leq 1/2\}$ , we have $\frac{1}{4}+\lambda^{2}\geq 0$ .
Then $B^{*}=B$ . Note that

$\left(\begin{array}{ll}A & 0\\0 & -A\end{array}\right)\left(\begin{array}{ll}I & I\\I & -I\end{array}\right)=\left(\begin{array}{ll}I & I\\I & -I\end{array}\right)\left(\begin{array}{ll}0 & A\\A & 0\end{array}\right)$ .
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So it suffices to prove that $\left(\begin{array}{ll}0 & A\\A & 0\end{array}\right)$ is the commutator of a pair of orthogonal

projections. Define $P=\left(\begin{array}{ll}I & 0\\0 & 0\end{array}\right)$ and $Q=($ $\frac{1}{2}I-B-A$
$\frac{1}{2}I+BA$ ). It is clear that

$P$ and $Q$ both are self-adjoint. By direct calculus, we have they are also idempotents

and PQ–QP $=\left(\begin{array}{ll}0 & A\\A & 0\end{array}\right)$ . It easily follows that $T$ is also a commutator of

projections. The proof is completed.

Lemma 6. $(P, Q)$ is a pair of generic projections if and only if PQ–QP is
injective.

Proof. If $(P, Q)$ is a pair of generic projections, then by the forms in (2) we
have

PQ–QP $=($ $-Q_{2}^{\frac{1}{22}}D^{*}Q_{1}^{\frac{1}{12}}0$

$Q_{1}^{\frac{1}{12}}DQ_{2}^{\frac{1}{22}}0$ ).
Hence $N(PQ-QP)=\{0\}$ , since $N(Q^{\frac{1}{i12}})=0(i=1,2)$ by Lemma 3(2).

If PQ-QP is injective, then $\mathcal{H}_{1}\oplus \mathcal{H}_{2}\oplus \mathcal{H}_{3}\oplus \mathcal{H}_{4}=\{0\}$ . So $P=P_{0}$ and $Q=Q_{0}$

in the forms (6). Thus $(P, Q)$ is a generic pair. The proof is completed.

Corollary 7. $T$ is commutator of a pair of generic projections if and only if
$\tau*=-T,$ $\Vert T\Vert\leq\frac{1}{2}N(T)=\{0\}$ and $T$ is unitarily equivalent to $\tau*$ .

Proof. It is clear by Theorem 4 and Lemma 5.

Remark. If $P=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)$ and $Q=($ $\frac{}{2}\frac{1}{\int}$ $\frac{}{2}\frac{1}{\int}$ ) , then 1 $PQ-QP\Vert=\frac{1}{2}$ Hence

the equation $||T||=\frac{1}{2}$ may hold.

Proposition 8. Let $P$ and $Q$ be the orthogonal projections. Then the norm
equation $\Vert PQ-QP\Vert=\frac{1}{2}$ holds if and only if $\frac{1}{2}\in\sigma(PQP)$ .

Proof. Sufficiency. Let $T=PQ-QP$. Then by the proof of Lemma 4, we have
$||(PQ-QP)\Vert=\Vert Q_{11}(1-Q_{11})\Vert^{\frac{1}{2}}$ . By functional calculus of positive operators and
$1/2\in\sigma(PQP)$ , we have $\Vert Q_{11}(1-Q_{11})\Vert=1/4$ . So 1 $PQ-QP\Vert=1/2$ .

Necessity. By the proceeding analysis, if $\Vert PQ-QP\Vert=1/2$ , we have $\Vert Q_{11}(1-$

$Q_{11})$ Il $=1/4$ . So there exists a $\lambda\in\sigma(Q_{11})$ such that $|\lambda(1-\lambda)|=1/4$ . Then $\lambda=1/2$ .
Hence $1/2\in\sigma(PQP)$ . The proof is completed.
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