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PINCHING THEOREMS OF
PSEUDO-UMBILICAL SUBMANIFOLDS

YAOWEN LI AND X1A0L1 CHAO*

ABSTRACT. In this paper, we obtain some pinching theorems for pseudo-umbilical
submanifolds.

§1. INTRODUCTION

Let M be an n-dimensional submanifold in M""P. One of the interesting ques-
tions in the geometry of submanifolds of M7 is to obtain conditions under which
they are totally geodesic. These conditions generally involve the pinching of sec-
tional curvatures, Ricci curvatures, or the scalar curvature. For the submanifolds
with parallel mean curvature in sphere, there are many results ([F][S]). Now, in this
paper, we will give a pinching condition for the norm of the second fundamental
form under which the submanifolds is totally geodesic.

Simon’s formula ([Si]) is a basic and useful tool in the study of some problems |
of global rigidity for submanifolds immersed in kind Riemannian manifolds. This
formula is related to a special sort of submanifolds, those that have parallel second
fundamental form, and allow us to characterize some submanifolds of this family

or totally geodesic submanifolds ((MRU][L]). Now, in this paper, we firstly obtain
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a modified version of Simons formula and then use it to deal with the pinching
problem for the submanifolds in MP.

Throughout this paper, we use the similar notations and formulas as those used
in [MRU]. Let M be an n-dimensional compact Riemannian manifold. We denote
by UM the unit tangent bundle over M and by UM, its fibre at p € M. For any

continuous funtion f: UM — R, we have

fdv = / / fdvpdp
UM M Jum,

where dp, dv, and dv stand for the canonical measures on M,UM, and UM re-
spectively.
If T is a k-covariant tensor on M and VT is covariant derivative, then we have

(1) ]
/UM{;(VT)(e,-,ei,v, e )} =0 (1.1)

where ej, - - - e, is an orthonormal basis of T,M,p € M.

Suppose now that M is isometrically immersed in an (n+p)-dimensional Rie-
mannian manifold "7, We denote by (,) the metric of M as well as that induced
on M. Let o be the second fundamental form of the isometrically immersion and
A¢ the Weingarten endomorphism for a normal vector &. If T,M and T;-M denote

the tangent and normal spaces to M at p, one can define
L:T,M - T,M and T:TyMxTyM =R
by the expresions

n .
Lv = Z Aswenei and T(&n) =traceA¢A,
=1
where eq, - ey, is an orthonormal basis of T,M. Then L is a self-adjoint linear
map and T a symmetric bilinear map.
There are many submanifolds satisfying T = k <,>. Obviously, hypersurfaces

represent a trivial case. In CP™?(c), a Kaehler submanifold of order {ki, k2}



for some natural numbers k; and ks is one submanifold of this type ([R3]). In

this paper, we have a pinching theorem for this kind of submanifolds in M as

following:
Theorem 3.1. For each compact isometric immersion M™ — M with T =
k(,), we have, for all positive constant z ,

2n+2) n+8
2 2 e

n(n?+8n+8), H2o|° n2+12n+40, 4
6z | T3 o]
P npzr

(

<[z(n+2)+

Theorem 3.3. Let M™ — M7 be a pseudo-umbilic immersion. Suppose that

T=k(). If 1
2

T c3 (n)

|o| (pe1(n) — ca(n))H?,

then M is totally geodesic.

§2. SOME LEMMAS

Lemma 2.1. Let M be an n-dimensional compact submanifold isometrically im-

. . . . “n+p
mersed in a Riemannian manifold M ' ~. Then we have

2 2
> Lv, A d
/UM,:.IAt’(v’v)vl dp 2 n+2 /UMP<' v Aau)?)dp

1
/ <Aa(e,-,e.-)'U, A,,(,,,U)'v)dvp . (2.1)
UM,

+n+2

Proof. Let A denote the Laplace operator on S™~!. Then, for the function f :
UM, — T,M defined by f(v) = Ay(v,v)v, we have

(Af)(v) = -3(n+ l)A;,(v,,,)v +4Lv + 2Aa(ei,ei)v'

Since UM, is a (n — 1)-dimensional sphere, the first eigenvalue of —A = Vy, ¢, —

Ve, Ve, isn — 1. Then

—/ (Af, fdvp 2 (n—l)/ || vy
UM, UM,



and the lemma follows. O

Let a be a 1-form on UM, defined by

av(e) = (Aa(v,v)ea Aa(v,v)v)

where v € UM, and e € T,UM,. If e;,---,ep—1 is an orthonormal basis of
T,UM,, then the codifferential of « is

n
(ba) = Zei - oy (€5)
i=1 .
=—(n+4) |A(,(,,,,,)'v|2 + 2(Lv, Ag(v,v)V)

+ T(o(v,v),0(v,v)) +2 Z(Aa(v,v)ei, As(v,en) V)

=1

where e),--- ,e,_1,€, = v is an orthonormal basis of T, M. Now integrating the

above equality over UM, and using divergence theorem, we have

n
2/ {Z(Aa('u,v)eia Aa(v,ei)v)}d'vp

r 31=1

=(n+ 4)/ |Aa(v,v)'U|2d'Up - 2/ (Lv,Aa(v,v)v)dvp
UM, UM,

~ [ T v o 0)du, (2.2)

14

. . . . n+p
Lemma 2.2. For any Riemannian immersion M™ — M ", we have

i 2 n+4 2
2 ZIA"(”’ei)v| dvp—/UMp{ 5 If(v)l

UM, ;1

~ (Anzrv, S @) + 3T(0(0,0), 0(v,0)) }avy - (23)

Proof. For the 1-form o defined by

av(e) = <Aa(v,e)v, Aa(v,v)”)a



we have
- 2
(6@)(’0) = Z{2|Aa(v,ei)v| + (Aa(v,ei)va Aa('v,v)ei>
=1

2
+<A0'(8i,ei)v’ Aa(v,v)v>} —(n+ 4)lf(’U)| + (L, f(v)).
Integrating this and using (2.2), we get (2.3). O

Since

2 Z(Aa(v,ei)va Aa('v,'v)ei>

=1

n 1 n
< bZIAa(v,e,-)Ulz + - Z|Aa(v,v)ei|2
; =1

=1
'l;n . 1
=6 _|4owet|” +3T(0(,0),0(v,0)), (24)
=1
where b(> 0) is a constant. By (2.2),(2.3) and (2.4), we have , for Vb > 0,

[t a= 2D ) - 2k, )

-1+ Z + %)T(a(v,v),a(v,v))}dv <0. (2.5)

-+ . . .
Lemma 2.3. Let M™ — M " '* be a compact Riemannian immersion. Then we

have
1) |
[+ 2, £o))dv,
UM,

= / {2 Z(AHei, Ao(v,e)V) + T(H,0(v,v))}dvp .
UM,

=1
(2) fUM,, (Anv, Lv)dv, = fUM,, Yi=1{Anes, Ao(v,e)v)dvp -
(3)
1 n
= - i’L 1
/U Mp(AHv,Lv)dvp - /U > (Anei, Le;)duy

Mp j—1
1

= ;LMP(H,§>dUp s



where £ = 3~ | o(e;, Le;).
(4) fUM,, T(H,o(v,v))dvp, = fUM,, T(H, H)dv, .

(5)
/ (n + 2)T(o (v, v), o(v, v))dv
UM,
= /I;M {nT(H,o(v,v)) +2§T(a('v y€i),0(v,e;))}dup .
(6)

/U ZT(U v, ), 0 (v, :))dv,

Mp i—q

/U 3 T(o(enes), olesse;))dv |

P‘I.J 1

(7) fUMp<AH’l),f('U))d'l)p = fUM {n+2T(H H) + m(H €>}d’0p ,
(8)

/U . T 00,0y = /

2 n
+ migl T(o(ei,ej),0(es, e5))}duy

+2

(9)
/ - 20D (o) Pa,
UM,

< [, (0 T4 T 0),0(,0) = 1+ Dn(Amv, SE)}dv,
for each b.

Proof. By taking some proper 1-form on U M,, respectively, we can obtain (1) ~ (6)
and then (7) and (8) as their corollaries. Using lemma 2.1, (2.5) implies (9). O

Remark. When b(> 0) is small, (9) gives a estimation of the upper bound of

£ ()]°.



§3. MAIN THEOREMS AND THEIR PROOFS

From Lemma 2.3, we can prove

Theorem 3.1. For each compact isometric immersion M™ — M with T =

k(,), we have, for all positive constant z ,

2(n+2)+n+8

s n 2z )(H, )
24 8n+8), H2o|° n?+12n+40
Proof. For Vx > 0, by (2) and (3) of Lemma 2.3, we have
2 n
AMP E(H’ f)dvp =/ : 2;<AHeiaAa(v,ei)v)dvp
< Apge; As(v,e: d
—/UMP{“’Z:, He, + - }:l ( )'Ul }dvp
2 1 n-+4
-/ Mp{xguge,w F)f
= 3 Anrv, £(0)) + $T(0(0,0),0(0,0)) oy
(3.2)
Substituting Lemma 2.3(9) with b = -2 into (3.2), we have
2 b
fon 20 < [ T m 4 +3]
T(o(,0),0(0,)) T [2a 2 (14 o)+ snl(Amv, £(0) vy
(3.3)
Since T' = k(,) = J-(LPL(,), we get
T(H,H) = la_|jH2 i T(o(es ej),0(ei,e;)) = l_al: (3.4)
) p ) I/ DR 'y ©~7 p

1,y=1



Substituting (7) and (8) of Lemma 2.3 and (3.4) into (3.3), we obtain

2n+2) n+8
[ + 258, €y,

n
2
n(n? + 8n + 8). H?|o]|
< z(n+2)+
O
n?2+12n+40, 4
Srps |a| }duy,. (3.5)

Because, at point p € M, H,¢ and |0|2 in (3.5) are constants, we have (3.1) and
the proof is finished. O

Remark. In the proof of this Theorem, we haven’t used the modified Simons for-
mula ([LC]) as in [MRU]. Here £ = 3., o(e;, Le;) is also called the third mean
curvature vector or B.Y.Chen’s vector. '

Corollary 3.2. Let M™ — H’H'p(p > %) be a compact Riemannian immersion.

Suppose that M is pseudo-umbilical and T = k({,) . If

2 —
n2 + 12n + 40

H? (3.6)

then M is totally geodesic.
Proof. Since (H,§) = H2|a'2, by (3.1) with z = n, we have

4n+2)+(n+8) 17n*+40n+38

( n2+12n+8
2n 16p

2
JH? < S 2. (3.7)

o

Ifp> %, then

» 3n?+24n — 8

. 2
left hand side of (3.7) > 2 H*.

From these, the proof is finished. O

Remark. Corollary 3.2 removes the condition that M is Einstein and have parallel

mean curvature vector, but unfortunatly, it requirs that p is large enough.



Now, we define a map ¢! : UM,, — T, M by
9'(v) = Agmyv — Lu.
By a direct computation, we have
(—Agh)(w) =3(n+1)f(v) — (n + 3)Lv — 2nAgw.

Here A is the Laplacian of UM,,. Since Ju M, g'(v)dv, = 0, we get

L (ade.dw) 2 - [ i)
UM, UM,
Then the above relation gives

| iGn+ 9|50 - @n+ 8)(Lv, 7o)
UM,

— 2n(f (v), Agv) + 4|Lv|” + 2n(Lv, Agv) }dv, > 0. (3.8)
In a similar way, for the 1-form g?(v) = f(v) + Lv, we have

[ t@n+ 9@ - 2n(0, 70)
UM,

— 2n{f (v), Agv) — 4| Lv|* — 2n(Lv, Agv)}dv, > 0. (3.9)

By (3.8) and (3.9) we get

/ {@n+ )| F(0)[° = (2kn + 4k + 4)(Lo, £(v))
UM,

P

— 2n(f (v), Agv) + 4k|Lv|* — 2nk(Lv, Agv)}du, > 0. (3.10)
Choosing k = — 72, and using (2Lv + f(v),2Lv + f(v)) > 0, (3.10) gives

/U Ot 1—1{—4” FO) 2 /U ,, (), A + %W’ Anv)}du,.

On the other hand, by Lemma 2.3(9) with b = —%-, we have

Lo ls@lPans [ (04 g+ ST, 00,0)

2
n+4

)n{Agv, f(v))}dup.

~(1+



So, from these, we get

1 n+4
1+ + T , V), ,v))d
Jon O i T )00,

2n(n + 4)
= /,]Mp{[(2n+4)(n+4) +2

4n
(n+4)(2n + 4) + 2 (Axv, f(v)) }dvp.

+ (L ——)al(f(v), Amo)

+

From (3),(7) and (8) of Lemma 2.3, we have

ci(n)(H,&) < 62(n)izl——|i+c;;(n)l-gpl—4, (3.11)
where
cl(")=((2n+24()n(:f)4)+2+(1+ni4))'niz+(n+4)(2i+4)+2
calm) = (14 i4+nz4).nz2
_((2n32§?n++4i)+2 (1+ 14)) niz
03(n)=(1+ni4+n14)-n:2 (3.12)

It is easy to see that ci(n) ~ 2,ca(n) ~ %,c3(n) ~ 2. If the immersion is

pseudo-umbilic, we have

o] >
( )
So, by (3.10) and Lemma 2.1, we get

(pcy(n) — c2(n))H?.

Theorem 3.3. Let M™ — M be a pseudo-umbilic immersion. Suppose that

T =k{). If

2

|lo|” < (pe1(n) — c2(n))H?,

( )
then M 1is totally geodesic.

Remark. When n is large enough, the pinching constant is about (4p — %Z)H 2 In
this case, the result of Theorem 3.3 is better than that of corollary 3.2 .
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