An Example of Non-Reducing Eigenspace of a Paranormal Operator

Atsushi Uchiyama

Abstract

In this paper, we show an example of paranormal operator which has non-reducing eigenspace belonging to non-zero eigenvalue.

Introduction. A bounded linear operator T on a complex Hilbert space \mathcal{H} is called p-hyponormal, class A, p-quasihyponormal and paranormal iff $(T^*T)^p \geq (TT^*)^p$, $|T^2| \geq |T|^2$, $T^*\{(T^*T)^p - (TT^*)^p\}T \geq 0$ and $||Tx||^2 \leq ||T^2x|| ||x||$ for arbitrary $x \in \mathcal{H}$ respectively. It is well-known that the classes of all p-hyponormal, class A and p-quasihyponormal operators for 0 are subclasses of paranormal operators and that any eigenspace belonging to non-zero eigenvalue of a <math>p-hyponormal, class A or p-quasihyponormal operator T is always a reducing subspace of T. Also there is an example of quasihyponormal (hence it is class A), of which kernel is not a reducing subspace. So, it is interesting whether any eigenspace belonging to non-zero eigenvalue of a paranormal operator T is a reducing subspace of T or not.

In this paper, we show an example of paranormal operator which has a non-reducing eigenspace belonging to non-zero eigenvalue.

Definition. For arbitrary vectors x and y in a complex separable Hilbert space \mathcal{H} , we define the operator $x \otimes y$ on \mathcal{H} by

$$(x \otimes y)z = \langle z, y \rangle x$$
 for all $z \in \mathcal{H}$.

This operator $x \otimes y$ is called Schatten form and satisfies the followings.

- 1) $T(x \otimes y) = Tx \otimes y$, $(x \otimes y)T = x \otimes T^*y$ for $T \in \mathcal{B}(\mathcal{H})$.
- $2) (x \otimes y)^* = y \otimes x$

The next theorem shows that for a paranormal operator T and eigenvalue λ of T, $\ker(T-\lambda)$ is not necessarily a reducing subspace of T even if $\lambda \neq 0$.

Theorem. Let $\{e_n\}_{n\geq 1}$ be the canonical base for $\ell^2(\mathbb{N})$, $\mathcal{H}=\mathbb{C}e_1\oplus \ell^2(\mathbb{N})$, $\alpha>0$ and U the unilateral shift on $\ell^2(\mathbb{N})$ defined by

$$Ue_n = e_{n+1}$$
 for $n \ge 1$.

Then the operator T on \mathcal{H} defined by

$$T = \begin{pmatrix} 1 & \alpha e_1 \otimes e_1 \\ 0 & U+1 \end{pmatrix}, \text{ on } \mathcal{H} = \mathbb{C}e_1 \oplus \ell^2(\mathbb{N})$$
 (1)

is paranormal for sufficiently small $\alpha > 0$. In fact, it is enough $\alpha \leq \frac{1}{4}$. Also $\ker(T-1) = \mathbb{C}e_1 \oplus \{0\}$ does not reduce T.

Proof. By Ando's characterization of paranormal operator [1], it suffices to show that

$$T^{*2}T^2 - 2kT^*T + k^2 > 0$$
 for all $k > 0$.

Since,
$$T^2 = \begin{pmatrix} 1 & 2\alpha e_1 \otimes e_1 \\ 0 & (U+1)^2 \end{pmatrix}$$
, we have
$$T^{*2}T^2 - 2kT^*T + k^2$$

$$= \begin{pmatrix} 1 & 2\alpha e_1 \otimes e_1 \\ 2\alpha e_1 \otimes e_1 & 4\alpha^2 e_1 \otimes e_1 + (U+1)^{*2}(U+1)^2 \end{pmatrix}$$

$$-2k \begin{pmatrix} 1 & \alpha e_1 \otimes e_1 \\ \alpha e_1 \otimes e_1 & \alpha^2 e_1 \otimes e_1 + (U+1)^*(U+1) \end{pmatrix} + k^2$$

$$= \begin{pmatrix} (k-1)^2 & 2(1-k)\alpha e_1 \otimes e_1 \\ 2(1-k)\alpha e_1 \otimes e_1 & 4\alpha^2 e_1 \otimes e_1 - 2k\alpha^2 e_1 \otimes e_1 + (U+1)^{*2}(U+1)^2 - 2k(U+1)^*(U+1) + k^2 \end{pmatrix}.$$

If k = 1, then

$$T^{*2}T^2 - 2T^*T + 1 = 0 \oplus (2\alpha^2e_1 \otimes e_1 + (U+1)^{*2}(U+1)^2 - 2(U+1)^*(U+1) + 1) \ge 0$$

because U+1 is hyponormal(hence it is paranormal) and $e_1\otimes e_1$ is the orthogonal projection onto $\mathbb{C}e_1$.

For $k \neq 1$, we have only to prove that

$$(U+1)^{*2}(U+1)^2 - 2k(U+1)^*(U+1) + k^2 - 2k\alpha^2 e_1 \otimes e_1 \geq 0,$$

because if this holds, then

$$T^{*2}T^{2} - 2kT^{*}T + k^{2} \geq \begin{pmatrix} (k-1)^{2} & 2(1-k)\alpha e_{1} \otimes e_{1} \\ 2(1-k)\alpha e_{1} \otimes e_{1} & 4\alpha^{2}e_{1} \otimes e_{1} \end{pmatrix}$$

$$= \begin{pmatrix} 1-k & 0 \\ 0 & 2\alpha e_{1} \otimes e_{1} \end{pmatrix} \begin{pmatrix} 1 & e_{1} \otimes e_{1} \\ e_{1} \otimes e_{1} & 1 \end{pmatrix} \begin{pmatrix} 1-k & 0 \\ 0 & 2\alpha e_{1} \otimes e_{1} \end{pmatrix}$$

$$> 0.$$

Put $S = (U+1)^*(U+1)$. Then $0 \le S \le 4$,

$$(U+1)^{*2}(U+1)^2 = (U+1)^*\{(U+1)(U+1)^* + e_1 \otimes e_1\}(U+1) = S^2 + e_1 \otimes e_1,$$

and hence

$$(U+1)^{*2}(U+1)^2 - 2k(U+1)^*(U+1) + k^2 - 2k\alpha^2 e_1 \otimes e_1 = (S-k)^2 + (1-2k\alpha^2)e_1 \otimes e_1.$$
 (2)

Let $\alpha \leq \frac{1}{4}$. Then $1 - 2k\alpha^2 \geq 0$ if $k \leq 8$, hence (2) is positive. If $k \geq 8$, then $k - S \geq k - 4 > 0$ and $(k - S)^2 \geq (k - 4)^2$, so we have

(2)
$$\geq (k-4)^2 - 2k\alpha^2 e_1 \otimes e_1$$

 $\geq (k-4)^2 - 2k = (k-2)(k-8) \geq 0 \text{ for } k \geq 8.$

References

- [1] T. Ando, Operators with a norm condition, Acta. Sci. Math. (Szeged), 33 (1972) 169-178.
- [2] K. TANAHASHI AND A. UCHIYAMA, Isolated point of spectrum of p-quasihyponormal operators, Linear Algebras and Its Applications, 341 (2002), 345-350.
- [3] A. UCHIYAMA AND K. TANAHASHI, On the Riesz idempotent of class A operators, Mathematical Inequalities & Applications, 5 (2002), 291-298.

Atsushi Uchiyama Sendai National College of Technology Sendai, 989-3128 JAPAN emailaddress: uchiyama@cc.sendai-ct.ac.jp

Received August 25, 2003 Revised September 5, 2003