On extension of representations of so(n+1, 1) to representations of so(n+1, 2)

Kiyotaka II

Abstract

In the present paper, we construct representations of the Lie algebra so(n+1,2) on $C^{\infty}(S^n)$ by extending a representation of the Lie algebra so(n+1,1) on $C^{\infty}(S^n)$ which arises from the action of Lorentz group SO(n+1,1) on S^n as conformal transformations.

1 Introduction and statement of the result

Let \mathbf{R}^{n+1} be (n+1)-dimensional Euclidean space with cartesian coordinates x_1,\ldots,x_{n+1} . For $x=(x_1,\ldots,x_{n+1})\in\mathbf{R}^{n+1}$, the norm of x is defined by $||x||=\sqrt{(x_1)^2+\cdots+(x_{n+1})^2}$. Let $S^n=\{x\in\mathbf{R}^{n+1}\mid ||x||=1\}$ be the unit sphere in \mathbf{R}^{n+1} . Let $C^\infty(S^n)$ denote the linear space of complex-valued C^∞ functions on S^n . The special orthogonal group SO(n+1) acts on S^n as an isometry group. This action induces a representation of the Lie algebra so(n+1) on $C^\infty(S^n)$. Let SO(n+1,1) denote the Lorentz group with its Lie algebra so(n+1,1). It is well-known that the action of SO(n+1) on S^n can be extended to an action of SO(n+1,1) on S^n . This action induces an irreducible representation of the Lie algebra so(n+1,1) on $C^\infty(S^n)$. We denote this representation by $\operatorname{Rep}_0(so(n+1,1))$.

Let us now consider the Lie algebra so(n+1,2) of the Lie group SO(n+1,2). Let E_{ij} denote the $(n+3)\times(n+3)$ matrix with the (i,j)-component 1 and the others are 0. The following are basis of so(n+1,2).

$$\begin{split} E_{ij} - E_{ji} &\quad (1 \leq i < j \leq n+1), \\ E_{j,n+2} + E_{n+2,j} &\quad (1 \leq j \leq n+1), \\ E_{j,n+3} + E_{n+3,j} &\quad (1 \leq j \leq n+1), \\ E_{n+2,n+3} - E_{n+3,n+2}. \end{split}$$

Note that the following hold.

$$(1) [E_{ij} - E_{ji}, E_{kl} - E_{lk}] = \delta_{jk}(E_{il} - E_{li}) + \delta_{il}(E_{jk} - E_{kj}) - \delta_{jl}(E_{ik} - E_{ki}) - \delta_{ik}(E_{jl} - E_{lj}),$$

(2)
$$[E_{ij} - E_{ji}, E_{k,n+2} + E_{n+2,k}] = \delta_{jk}(E_{i,n+2} + E_{n+2,i}) - \delta_{ik}(E_{j,n+2} + E_{n+2,j}),$$

(3)
$$[E_{ij} - E_{ji}, E_{k,n+3} + E_{n+3,k}] = \delta_{jk}(E_{i,n+3} + E_{n+3,i}) - \delta_{ik}(E_{j,n+3} + E_{n+3,j}),$$

(4)
$$[E_{ij} - E_{ji}, E_{n+2,n+3} - E_{n+3,n+2}] = 0$$
,

(5)
$$[E_{i,n+2} + E_{n+2,i}, E_{j,n+2} + E_{n+2,j}] = E_{ij} - E_{ji}$$

(6)
$$[E_{i,n+2} + E_{n+2,i}, E_{j,n+3} + E_{n+3,j}] = \delta_{ij}(E_{n+2,n+3} - E_{n+3,n+2}),$$

(7)
$$[E_{j,n+2} + E_{n+2,j}, E_{n+2,n+3} - E_{n+3,n+2}] = E_{j,n+3} + E_{n+3,j}$$

(8)
$$[E_{i,n+3} + E_{n+3,i}, E_{j,n+3} + E_{n+3,j}] = E_{ij} - E_{ji}$$

(9)
$$[E_{j,n+3} + E_{n+3,j}, E_{n+2,n+3} - E_{n+3,n+2}] = -(E_{j,n+2} + E_{n+2,j}).$$

 $\{E_{ij}-E_{ji}\mid 1\leq i< j\leq n+1\}$ generate a Lie subalgebra isomorphic to so(n+1). We identify this subalgebra with so(n+1). $\{E_{ij}-E_{ji}\mid 1\leq i< j\leq n+1\}\cup \{E_{j,n+2}+E_{n+2,j}\mid 1\leq j\leq n+1\}$ generate a Lie subalgebra isomorphic to so(n+1,1). We identify this subalgebra with so(n+1,1). The Lie algebra so(n+1,2) is generated by so(n+1,1) and $E_{n+2,n+3}-E_{n+3,n+2}$, since, by (7)

$$E_{j,n+3} + E_{n+3,j} = [E_{j,n+2} + E_{n+2,j}, E_{n+2,n+3} - E_{n+3,n+2}].$$

The vector field $\partial/\partial x_j$ on \mathbf{R}^{n+1} is denoted by X_j . The function $(x_1, \ldots, x_{n+1}) \mapsto x_j$ on \mathbf{R}^{n+1} is denoted by x_j . The restriction to S^n of vector fields and functions on \mathbf{R}^{n+1} are written by the same letter. Let ξ_j be a vector field defined by

$$\xi_j = \sum_{k=1}^{n+1} (\delta_{jk} - x_j x_k) X_k \quad (1 \le j \le n+1).$$

We note that $(x_iX_j - x_jX_i)(\|x\|^2) = 0$ and $\xi_j(\|x\|^2) = 0$. The representation $\text{Rep}_0(so(n+1,1))$ is given by

$$E_{ij} - E_{ji} \mapsto x_i X_j - x_j X_i \quad (1 \le i < j \le n+1),$$

$$E_{j,n+2} + E_{n+2,j} \mapsto \xi_j \quad (1 \le j \le n+1),$$

where $x_iX_j - x_jX_i$ and ξ_j represents tangent vector fields to S^n .

Let $\Phi_j: C^{\infty}(S^n) \to C^{\infty}(S^n)$ be an operator defined by

$$\Phi_j = \xi_j + \mu x_j = \sum_{k=1}^{n+1} (\delta_{jk} - x_j x_k) X_k + \mu x_j \quad (1 \le j \le n+1),$$

where μ is a complex number. Then it is easily proved that, for each μ , the correspondence given by

$$E_{ij} - E_{ji} \mapsto x_i X_j - x_j X_i \quad (1 \le i < j \le n+1),$$

 $E_{j,n+2} + E_{n+2,j} \mapsto \Phi_j \quad (1 \le j \le n+1)$

is a representation of so(n+1,1) on $C^{\infty}(S^n)$ (See Section 4). We denote this representation by $\operatorname{Rep}_{\mu}(so(n+1,1))$.

The problem we consider in this paper is the possiblity to extend the representation $\operatorname{Rep}_{\mu}(so(n+1,1))$ of so(n+1,1) on $C^{\infty}(S^n)$ to a representation of so(n+1,2) on $C^{\infty}(S^n)$. The result we have obtained is the following:

Main Theorem The representation $\operatorname{Rep}_{\mu}(so(n+1,1))$ of so(n+1,1) on $C^{\infty}(S^n)$ can be extended to a representation of so(n+1,2) on $C^{\infty}(S^n)$ if and only if $\mu = -\frac{n\pm 1}{2}$.

Furthermore, in this case, the representation is given by

$$E_{ij} - E_{ji} \mapsto x_i X_j - x_j X_i \quad (1 \le i < j \le n+1),$$

$$E_{j,n+2} + E_{n+2,j} \mapsto \Phi_j \quad (1 \le j \le n+1),$$

$$E_{j,n+3} + E_{n+3,j} \mapsto [\Phi_j, \Lambda] \quad (1 \le j \le n+1),$$

$$E_{n+2,n+3} - E_{n+3,n+2} \mapsto \Lambda,$$

where Λ is an operator defined by

$$\Lambda: C^{\infty}(S^n) \to C^{\infty}(S^n), \quad \Lambda = \pm \sqrt{-1} \sqrt{\Delta + \frac{(n-1)^2}{4}}.$$

Remark 1 $\Delta: C^{\infty}(S^n) \to C^{\infty}(S^n)$ denotes the Laplace-Beltrami operator on S^n . The eigenvalues of Δ are m(m+n-1) $(m=0,1,2,\ldots)$. $\sqrt{\Delta+\frac{(n-1)^2}{4}}:C^{\infty}(S^n)\to C^{\infty}(S^n)$ denotes the operator on S^n with the same eigenfunctions as Δ , and with the corresponding eigenvalues $\frac{2m+n-1}{2}$ $(m=0,1,2,\ldots)$.

Remark 2 Representation of the Lie group SO(n+1,2) and the Lie algebra so(n+1,2) has been studied by several authors in connection with geometric quantization of the Kepler problem. (See References.)

The author wishes to thank S. Watanabe for many useful conversations on representation.

2 Harmonic functions $H_{i_1\cdots i_m}$ on \mathbb{R}^{n+1}

For each positive integer m, and $i_1, \ldots, i_m \in \{1, \ldots, n+1\}$, $H_{i_1 \cdots i_m}$ denotes the function on $\mathbb{R}^{n+1} - \{0\}$ defined by

$$H_{i_1\cdots i_m} = \frac{(-1)^m}{(n-1)(n+1)\cdots(2m+n-3)} \cdot \frac{\partial^m(||x||^{1-n})}{\partial x_{i_1}\cdots\partial x_{i_m}}.$$

If m=0, we put $H_{i_1\cdots i_m}=\|x\|^{1-n}$. Note that $H_{i_1\cdots i_m}$ is invariant under each permutation of i_1,\ldots,i_m , and that $\sum_{k=1}^{n+1}H_{i_1\cdots i_mkk}=0$ for each non-negative integer m.

Lemma 1 For each non-negative integer m, we have

$$(1) X_j H_{i_1 \cdots i_m} = -(2m+n-1)H_{i_1 \cdots i_m j},$$

$$(2) x_{j}H_{i_{1}\cdots i_{m}} = ||x||^{2}H_{i_{1}\cdots i_{m}j} + \frac{1}{2m+n-1}\sum_{a=1}^{m} \delta_{i_{a}j}H_{i_{1}\cdots \widehat{i_{a}}\cdots i_{m}} - \frac{2}{(2m+n-1)(2m+n-3)}\sum_{1\leq a\leq b\leq m} \delta_{i_{a}i_{b}}H_{i_{1}\cdots \widehat{i_{a}}\cdots \widehat{i_{b}}\cdots i_{m}j},$$

(3)
$$\sum_{k=1}^{n+1} x_k X_k H_{i_1 \cdots i_m} = -(m+n-1) H_{i_1 \cdots i_m},$$

$$(4) (x_i X_j - x_j X_i) H_{i_1 \cdots i_m} = \sum_{a=1}^m (\delta_{i_a j} H_{i_1 \cdots \widehat{i_a} \cdots i_m i} - \delta_{i_a i} H_{i_1 \cdots \widehat{i_a} \cdots i_m j}),$$

$$(5) \xi_{j} H_{i_{1} \cdots i_{m}} = \{(m+n-1) ||x||^{2} - (2m+n-1)\} H_{i_{1} \cdots i_{m}j} + \frac{m+n-1}{2m+n-1} \sum_{a=1}^{m} \delta_{i_{a}j} H_{i_{1} \cdots \widehat{i_{a}} \cdots i_{m}} - \frac{2(m+n-1)}{(2m+n-1)(2m+n-3)} \sum_{1 \leq a < b \leq m} \delta_{i_{a}i_{b}} H_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots i_{m}j}.$$

Proof We prove (2) by induction on m. If m = 0, (2) holds. Now, assume that (2) holds for some m. Differentiating (2) with respect to $x_{i_{m+1}}$, we have

$$\begin{split} &-(2m+n-1)x_{j}H_{i_{1}\cdots i_{m}i_{m+1}}+\delta_{i_{m+1}j}H_{i_{1}\cdots i_{m}}\\ &=2x_{i_{m+1}}H_{i_{1}\cdots i_{m}j}-(2m+n+1)\|x\|^{2}H_{i_{1}\cdots i_{m}i_{m+1}j}\\ &-\frac{2m+n-3}{2m+n-1}\sum_{a=1}^{m}\delta_{i_{a}j}H_{i_{1}\cdots\widehat{i_{a}}\cdots i_{m}i_{m+1}}+\frac{2}{2m+n-1}\sum_{1\leq a< b\leq m}\delta_{i_{a}i_{b}}H_{i_{1}\cdots\widehat{i_{a}}\cdots\widehat{i_{b}}\cdots i_{m}i_{m+1}j}. \end{split}$$

Transposing $\delta_{i_{m+1}j}H_{i_1\cdots i_m}$ to the right-hand side, and then dividing by -(2m+n-1), we have

$$x_{j}H_{i_{1}\cdots i_{m}i_{m+1}} = -\frac{2}{2m+n-1}x_{i_{m+1}}H_{i_{1}\cdots i_{m}j} + \frac{2m+n+1}{2m+n-1}\|x\|^{2}H_{i_{1}\cdots i_{m}i_{m+1}j} + \frac{1}{2m+n-1}\delta_{i_{m+1}j}H_{i_{1}\cdots i_{m}} + \frac{2m+n-3}{(2m+n-1)^{2}}\sum_{a=1}^{m}\delta_{i_{a}j}H_{i_{1}\cdots \widehat{i_{a}}\cdots i_{m}i_{m+1}} - \frac{2}{(2m+n-1)^{2}}\sum_{1\leq a\leq b\leq m}\delta_{i_{a}i_{b}}H_{i_{1}\cdots \widehat{i_{a}}\cdots \widehat{i_{b}}\cdots i_{m}i_{m+1}j}.$$

$$(1-1)$$

Rewriting j to i_{m+1} , and i_{m+1} to j, we have

$$x_{i_{m+1}}H_{i_{1}\cdots i_{m}j} = -\frac{2}{2m+n-1}x_{j}H_{i_{1}\cdots i_{m}i_{m+1}} + \frac{2m+n+1}{2m+n-1}\|x\|^{2}H_{i_{1}\cdots i_{m}i_{m+1}j} + \frac{1}{2m+n-1}\delta_{i_{m+1}j}H_{i_{1}\cdots i_{m}} + \frac{2m+n-3}{(2m+n-1)^{2}}\sum_{a=1}^{m}\delta_{i_{a}i_{m+1}}H_{i_{1}\cdots \widehat{i_{a}}\cdots i_{m}j} - \frac{2}{(2m+n-1)^{2}}\sum_{1\leq a\leq b\leq m}\delta_{i_{a}i_{b}}H_{i_{1}\cdots \widehat{i_{a}}\cdots \widehat{i_{b}}\cdots i_{m}i_{m+1}j}.$$

$$(1-2)$$

Eliminating $x_{i_{m+1}}H_{i_1\cdots i_m j}$ from (1-1) and (1-2), we have

$$x_{j}H_{i_{1}\cdots i_{m+1}} = \|x\|^{2}H_{i_{1}\cdots i_{m+1}j} + \frac{1}{2m+n+1} \sum_{a=1}^{m+1} \delta_{i_{a}j}H_{i_{1}\cdots \widehat{i_{a}}\cdots i_{m+1}} - \frac{2}{(2m+n+1)(2m+n-1)} \sum_{1 \leq a \leq b \leq m+1} \delta_{i_{a}i_{b}}H_{i_{1}\cdots \widehat{i_{a}}\cdots \widehat{i_{b}}\cdots i_{m+1}j}.$$

This completes the proof of (2). The rest are easily obtained.

q.e.d.

3 Spherical harmonics $h_{i_1\cdots i_m}$

We denote by $h_{i_1\cdots i_m}$ the restriction of $H_{i_1\cdots i_m}$ onto S^n . It is well-known that $h_{i_1\cdots i_m}$ are eigenfunctions of the Laplace-Beltrami operator Δ on S^n corresponding to the eigenvalue m(m+n-1). $\mathcal{H}_m(S^n)$ denotes the linear subspace of $C^{\infty}(S^n)$ spanned by $h_{i_1\cdots i_m}$ $(i_1,\ldots,i_m\in\{1,2,\ldots,n+1\})$.

The following lemma is obtained easily from Lemma 1.

Lemma 2 For each non-negative integer m, we have

$$(1) x_{j}h_{i_{1}\cdots i_{m}} = h_{i_{1}\cdots i_{m}j} + \frac{1}{2m+n-1} \sum_{a=1}^{m} \delta_{i_{a}j}h_{i_{1}\cdots \widehat{i_{a}}\cdots i_{m}} - \frac{2}{(2m+n-1)(2m+n-3)} \sum_{1 \leq a < b \leq m} \delta_{i_{a}i_{b}}h_{i_{1}\cdots \widehat{i_{a}}\cdots \widehat{i_{b}}\cdots i_{m}j},$$

$$(2) (x_i X_j - x_j X_i) h_{i_1 \cdots i_m} = \sum_{a=1}^m (\delta_{i_a j} h_{i_1 \cdots \widehat{i_a} \cdots i_m i} - \delta_{i_a i} h_{i_1 \cdots \widehat{i_a} \cdots i_m j}),$$

$$(3) \xi_{j} h_{i_{1} \cdots i_{m}} = -m h_{i_{1} \cdots i_{m} j} + \frac{m + n - 1}{2m + n - 1} \sum_{a=1}^{m} \delta_{i_{a} j} h_{i_{1} \cdots \widehat{i_{a}} \cdots i_{m}}$$

$$- \frac{2(m + n - 1)}{(2m + n - 1)(2m + n - 3)} \sum_{1 < a < b < m} \delta_{i_{a} i_{b}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots i_{m} j}.$$

4 Representation $\operatorname{Rep}_{\mu}(so(n+1,1))$ of so(n+1,1)

Let $\Phi_j: C^{\infty}(S^n) \to C^{\infty}(S^n)$ be the operator defined in Section 1.

Lemma 3 We have

(1)
$$[x_{i}X_{j} - x_{j}X_{i}, x_{k}X_{l} - x_{l}X_{k}]$$

 $= \delta_{jk}(x_{i}X_{l} - x_{l}X_{i}) + \delta_{il}(x_{j}X_{k} - x_{k}X_{j}) - \delta_{jl}(x_{i}X_{k} - x_{k}X_{i}) - \delta_{ik}(x_{j}X_{l} - x_{l}X_{j}),$
(2) $[x_{i}X_{j} - x_{j}X_{i}, \Phi_{k}] = \delta_{jk}\Phi_{i} - \delta_{ik}\Phi_{j},$

$$(3) [\Phi_i, \Phi_j] = x_i X_j - x_j X_i.$$

It is easily proved from this lemma that the correspondence given by

$$E_{ij} - E_{ji} \mapsto x_i X_j - x_j X_i \quad (1 \le i < j \le n+1),$$

 $E_{j,n+2} + E_{n+2,j} \mapsto \Phi_j \quad (1 \le j \le n+1)$

is a representation of so(n+1,1) on $C^{\infty}(S^n)$ for each μ .

We denote this representation by $\operatorname{Rep}_{\mu}(so(n+1,1))$. The following lemma follows easily from (1) and (3) of Lemma 2.

Lemma 4 For each non-negative integer m, we have

$$\begin{split} \Phi_{j}h_{i_{1}\cdots i_{m}} &= -(m-\mu)h_{i_{1}\cdots i_{m}j} + \frac{m+n-1+\mu}{2m+n-1}\sum_{a=1}^{m}\delta_{i_{a}j}h_{i_{1}\cdots \widehat{i_{a}}\cdots i_{m}} \\ &- \frac{2(m+n-1+\mu)}{(2m+n-1)(2m+n-3)}\sum_{1\leq a\leq b\leq m}\delta_{i_{a}i_{b}}h_{i_{1}\cdots \widehat{i_{a}}\cdots \widehat{i_{b}}\cdots i_{m}j}. \end{split}$$

5 Representation of so(n+1,2)

We will consider the problem whether the representation $\operatorname{Rep}_{\mu}(so(n+1,1))$ can be extended to a representation of so(n+1,2). Choose a linear operator $\Lambda: C^{\infty}(S^n) \to C^{\infty}(S^n)$, and define an operator $\Psi_j: C^{\infty}(S^n) \to C^{\infty}(S^n)$ by $\Psi_j = [\Phi_j, \Lambda]$. Throughout this section, we will assume that the correspondence given by

$$E_{ij} - E_{ji} \mapsto x_i X_j - x_j X_i \quad (1 \le i < j \le n+1),$$

$$E_{j,n+2} + E_{n+2,j} \mapsto \Phi_j \quad (1 \le j \le n+1),$$

$$E_{j,n+3} + E_{n+3,j} \mapsto \Psi_j \quad (1 \le j \le n+1),$$

$$E_{n+2,n+3} - E_{n+3,n+2} \mapsto \Lambda$$

is a representation of so(n+1,2).

Lemma 5 There exist complex numbers λ_m $(m \in \{0, 1, 2, ...\})$ such that

$$\Lambda h_{i_1\cdots i_m} = \lambda_m h_{i_1\cdots i_m}$$
 for each $i_1,\ldots,i_m\in\{1,2,\ldots,n{+}1\}.$

Proof This follows from $[x_iX_j - x_jX_i, \Lambda] = 0$.

q.e.d.

Let us define complex numbers c_m $(m \in \{0, 1, 2, ...\})$ by $c_0 = \lambda_0$, and $c_m = \lambda_m - \lambda_{m-1}$ $(m \ge 1)$. The following lemma is obtained easily from the definition of Ψ_j , Lemma 4 and Lemma 5.

Lemma 6 For each non-negative integer m, we have

$$\begin{split} \Psi_{j}h_{i_{1}\cdots i_{m}} &= c_{m+1}(m-\mu)h_{i_{1}\cdots i_{m}j} + \frac{c_{m}(m+n-1+\mu)}{2m+n-1}\sum_{a=1}^{m}\delta_{i_{a}j}h_{i_{1}\cdots\widehat{i_{a}}\cdots i_{m}} \\ &- \frac{2c_{m}(m+n-1+\mu)}{(2m+n-3)}\sum_{1\leq a< b\leq m}\delta_{i_{a}i_{b}}h_{i_{1}\cdots\widehat{i_{a}}\cdots\widehat{i_{b}}\cdots i_{m}j}. \end{split}$$

The following lemma is obtained easily from Lemma 5 and Lemma 6.

Lemma 7 For each non-negative integer m, we have

$$\begin{split} [\Psi_{j}, \Lambda] h_{i_{1} \cdots i_{m}} &= -(c_{m+1})^{2} (m - \mu) h_{i_{1} \cdots i_{m} j} + \frac{(c_{m})^{2} (m + n - 1 + \mu)}{2m + n - 1} \sum_{a=1}^{m} \delta_{i_{a} j} h_{i_{1} \cdots \widehat{i_{a}} \cdots i_{m}} \\ &- \frac{2(c_{m})^{2} (m + n - 1 + \mu)}{(2m + n - 1)(2m + n - 3)} \sum_{1 \leq a \leq b \leq m} \delta_{i_{a} i_{b}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots i_{m} j}. \end{split}$$

The following lemma is obtained by direct calculation using Lemma 4 and Lemma 6.

Lemma 8 For each non-negative integer m, we have

$$\begin{split} & \left[\Phi_{i}, \Psi_{j} \right] h_{i_{1} \cdots i_{m}} = (c_{m+2} - c_{m+1}) (m - \mu) (m + 1 - \mu) h_{i_{1} \cdots i_{m} ij} \\ & + \frac{2 c_{m+1} (m - \mu) (m + n + \mu)}{2 m + n + 1} \delta_{ij} h_{i_{1} \cdots i_{m}} \\ & + \frac{c_{m+1} (m - \mu) (m + n + \mu) (2 m + n - 3) - c_{m} (m - 1 - \mu) (m + n - 1 + \mu) (2 m + n + 1)}{(2 m + n + 1) (2 m + n - 1)} \\ & \times \left\{ \sum_{a=1}^{m} \delta_{i_{a}i} h_{i_{1} \cdots \widehat{i_{a}} \cdots i_{m}j} + \sum_{a=1}^{m} \delta_{i_{a}j} h_{i_{1} \cdots \widehat{i_{a}} \cdots i_{m}i} - \frac{2}{2 m + n - 3} \sum_{a \neq b}^{m} \delta_{i_{a}i_{b}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots i_{m}j} \right\} \\ & + \frac{(c_{m} - c_{m-1}) (m + n - 1 + \mu) (m + n - 2 + \mu)}{(2 m + n - 1) (2 m + n - 3)^{2}} \\ & \times \left\{ (2 m + n - 3) \sum_{a \neq b}^{m} \delta_{i_{a}i} \delta_{i_{b}j} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots i_{m}} - \sum_{a \neq b}^{m} \delta_{i_{j}j} \delta_{i_{a}i_{b}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots i_{m}} \right. \\ & - \sum_{a,b,c \neq}^{m} \delta_{i_{a}i} \delta_{i_{b}i_{c}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots \widehat{i_{c}} \cdots i_{m}j} - \sum_{a,b,c \neq}^{m} \delta_{i_{a}j} \delta_{i_{b}i_{c}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots \widehat{i_{c}} \cdots i_{m}i} \\ & + \frac{1}{2 m + n - 5} \sum_{a,b,c,d \neq}^{m} \delta_{i_{a}i_{b}} \delta_{i_{c}i_{d}} h_{i_{1} \cdots \widehat{i_{a}} \cdots \widehat{i_{b}} \cdots \widehat{i_{c}} \cdots \widehat{i_{d}} \cdots$$

Remark $\sum_{a,b,c\neq}^{m}$ implies to sum over all ordered 3-tuples (a,b,c) consisting of mutually different $a,b,c\in\{1,2,\ldots,m\}$.

Lemma 9 For each positive integer m, we have $(c_m)^2 = -1$.

Proof Since $[\Psi_j, \Lambda] = -\Phi_j$, we have $[\Psi_j, \Lambda] h_{i_1 \cdots i_m} + \Phi_j h_{i_1 \cdots i_m} = 0$ for each nonnegative integer m and $j, i_1, \ldots, i_m \in \{1, 2, \ldots, n+1\}$. Then, using Lemma 7 and Lemma 4, we have

$$\begin{split} \{(c_{m+1})^2+1\}(m-\mu)h_{i_1\cdots i_m j} - \frac{\{(c_m)^2+1\}(m+n-1+\mu)}{2m+n-1} \sum_{a=1}^m \delta_{i_a j} h_{i_1\cdots \widehat{i_a}\cdots i_m} \\ + \frac{2\{(c_m)^2+1\}(m+n-1+\mu)}{(2m+n-1)(2m+n-3)} \sum_{1 \leq a \leq b \leq m} \delta_{i_a i_b} h_{i_1\cdots \widehat{i_a}\cdots \widehat{i_b}\cdots i_m j} = 0. \end{split}$$

Putting m = 0, we have $\{(c_1)^2 + 1\}\mu = 0$. Putting m = 1, we have $\{(c_2)^2 + 1\}(1 - \mu) = 0$ and $\{(c_1)^2 + 1\}(n + \mu) = 0$. From $\{(c_1)^2 + 1\}\mu = 0$ and $\{(c_1)^2 + 1\}(n + \mu) = 0$, we have $(c_1)^2 = -1$. If $m \ge 2$, putting $i_1 = i_2 = \cdots = i_m = 1$ and j = 2, we have $\{(c_{m+1})^2 + 1\}(m - \mu) = 0$ and $\{(c_m)^2 + 1\}(m + n - 1 + \mu) = 0$. From these, we have $(c_m)^2 = -1$ for each positive integer m.

Lemma 10 We have

$$c_0=rac{n-1}{2}c, \ \ c_m=c\ (m\geq 1) \ \ and \ \ \mu=-rac{n\pm 1}{2},$$
 where $c=\pm \sqrt{-1}.$

Proof Since $[\Phi_i, \Psi_j] = \delta_{ij}\Lambda$, we have $[\Phi_i, \Psi_j]h_{i_1\cdots i_m} - \delta_{ij}\Lambda h_{i_1\cdots i_m} = 0$ for each non-negative integer m and $i, j, i_1, \ldots, i_m \in \{1, 2, \ldots, n+1\}$. Then, using Lemma 8 and Lemma 5, we have

$$\begin{split} &(c_{m+2}-c_{m+1})(m-\mu)(m+1-\mu)h_{i_1\cdots i_m ij} \\ &+ \left(\frac{2c_{m+1}(m-\mu)(m+n+\mu)}{2m+n+1} - \lambda_m\right)\delta_{ij}h_{i_1\cdots i_m} \\ &+ \frac{c_{m+1}(m-\mu)(m+n+\mu)(2m+n-3) - c_m(m-1-\mu)(m+n-1+\mu)(2m+n+1)}{(2m+n+1)(2m+n-1)} \\ &\quad \times \left\{\sum_{a=1}^m \delta_{i_a i}h_{i_1\cdots \widehat{i_a}\cdots i_m j} + \sum_{a=1}^m \delta_{i_a j}h_{i_1\cdots \widehat{i_a}\cdots i_m i} - \frac{2}{2m+n-3}\sum_{a\neq b}^m \delta_{i_a i_b}h_{i_1\cdots \widehat{i_a}\cdots \widehat{i_b}\cdots i_m ij}\right\} \\ &+ \frac{(c_m-c_{m-1})(m+n-1+\mu)(m+n-2+\mu)}{(2m+n-1)(2m+n-3)^2} \\ &\quad \times \left\{(2m+n-3)\sum_{a\neq b}^m \delta_{i_a i}\delta_{i_b j}h_{i_1\cdots \widehat{i_a}\cdots \widehat{i_b}\cdots i_m} - \sum_{a\neq b}^m \delta_{ij}\delta_{i_a i_b}h_{i_1\cdots \widehat{i_a}\cdots \widehat{i_b}\cdots i_m}\right. \end{split}$$

$$\begin{split} &-\sum_{a,b,c\neq}^{m}\delta_{i_{a}i}\delta_{i_{b}i_{c}}h_{i_{1}\cdots\widehat{i_{a}}\cdots\widehat{i_{b}}\cdots\widehat{i_{c}}\cdots i_{m}j}-\sum_{a,b,c\neq}^{m}\delta_{i_{a}j}\delta_{i_{b}i_{c}}h_{i_{1}\cdots\widehat{i_{a}}\cdots\widehat{i_{b}}\cdots\widehat{i_{c}}\cdots i_{m}i}\\ &+\frac{1}{2m+n-5}\sum_{a,b,c,d\neq}^{m}\delta_{i_{a}i_{b}}\delta_{i_{c}i_{d}}h_{i_{1}\cdots\widehat{i_{a}}\cdots\widehat{i_{b}}\cdots\widehat{i_{c}}\cdots\widehat{i_{d}}\cdots i_{m}ij}\bigg\}=0. \end{split}$$

Since $\mathcal{H}_{m+2}(S^n)$, $\mathcal{H}_m(S^n)$ and $\mathcal{H}_{m-2}(S^n)$ are linearly independent, we have $(c_{m+2}-c_{m+1})(m-\mu)(m+1-\mu)h_{i_1\cdots i_m i_j}=0$,

$$\left(\frac{2c_{m+1}(m-\mu)(m+n+\mu)}{2m+n+1} - \lambda_m \right) \delta_{ij} h_{i_1 \cdots i_m}$$

$$+ \frac{c_{m+1}(m-\mu)(m+n+\mu)(2m+n-3) - c_m(m-1-\mu)(m+n-1+\mu)(2m+n+1)}{(2m+n+1)(2m+n-1)}$$

$$\times \left\{ \sum_{a=1}^m \delta_{i_a i} h_{i_1 \cdots \widehat{i_a} \cdots i_m j} + \sum_{a=1}^m \delta_{i_a j} h_{i_1 \cdots \widehat{i_a} \cdots i_m i} - \frac{2}{2m+n-3} \sum_{a \neq b}^m \delta_{i_a i_b} h_{i_1 \cdots \widehat{i_a} \cdots \widehat{i_b} \cdots i_m i j} \right\} = 0,$$

and

$$\begin{split} &\frac{(c_m-c_{m-1})(m+n-1+\mu)(m+n-2+\mu)}{(2m+n-1)(2m+n-3)^2} \\ &\times \left\{ (2m+n-3) \sum_{a\neq b}^m \delta_{i_ai} \delta_{i_bj} h_{i_1 \dots \widehat{i_a} \dots \widehat{i_b} \dots i_m} - \sum_{a\neq b}^m \delta_{ij} \delta_{i_ai_b} h_{i_1 \dots \widehat{i_a} \dots \widehat{i_b} \dots i_m} \right. \\ &\quad \left. - \sum_{a,b,c\neq}^m \delta_{i_ai} \delta_{i_bi_c} h_{i_1 \dots \widehat{i_a} \dots \widehat{i_b} \dots \widehat{i_c} \dots i_m j} - \sum_{a,b,c\neq}^m \delta_{i_aj} \delta_{i_bi_c} h_{i_1 \dots \widehat{i_a} \dots \widehat{i_b} \dots \widehat{i_c} \dots i_m i} \right. \\ &\quad \left. + \frac{1}{2m+n-5} \sum_{a,b,c,d\neq}^m \delta_{i_ai_b} \delta_{i_ci_d} h_{i_1 \dots \widehat{i_a} \dots \widehat{i_b} \dots \widehat{i_c} \dots \widehat{i_d} \dots i_m ij} \right\} = 0. \end{split}$$

From the first equation, we have

$$(c_{m+2} - c_{m+1})(m-\mu)(m+1-\mu) = 0 \quad (m \ge 0). \tag{10-1}$$

Putting $i = j = i_1 = \cdots = i_m = 1$ in the third equation, we have

$$(c_m - c_{m-1})(m+n-1+\mu)(m+n-2+\mu) = 0 \quad (m \ge 2). \tag{10-2}$$

From (10-1) and (10-2), we have $c_1 = c_2 = c_3 = \cdots$. Define c by $c = c_1$. Then, from Lemma 9, we have $c^2 = -1$. Putting m = 0 in the second equation, we have

$$\frac{2c_1(-\mu)(n+\mu)}{n+1} - \lambda_0 = 0. \tag{10-3}$$

Furthermore, putting m=1, i=j=1, and $i_1=2$ in the second equation, we have

$$\frac{2c_2(1-\mu)(1+n+\mu)}{n+3} - \lambda_1 = 0. \tag{10-4}$$

Since $\lambda_0 = c_0$, $\lambda_1 = c_1 + c_0 = c + c_0$, and $c_1 = c_2 = c$, we have, from (10-3) and (10-4),

$$c_0 = \frac{n-1}{2}c.$$

Substituting this into (10-3), we have

$$(2\mu + n+1)(2\mu + n-1)c = 0.$$

Since $c \neq 0$, we have

$$\mu = -\frac{n\pm 1}{2}.$$
 q.e.d.

Lemma 11 We have

$$\Lambda = \pm \sqrt{-1} \sqrt{\Delta + \frac{(n-1)^2}{4}}.$$

Proof $\Delta + \frac{(n-1)^2}{4}$ is an operator with $\left(\frac{2m+n-1}{2}\right)^2$ as its eigenvalues and $\mathcal{H}_m(S^n)$ as the corresponding eigenspaces $(m \in \{0,1,2,\ldots\})$. $\sqrt{\Delta + \frac{(n-1)^2}{4}}$ represents a linear operator with $\frac{2m+n-1}{2}$ as its eigenvalues and $\mathcal{H}_m(S^n)$ as the corresponding eigenspaces. From Lemma 10, we have $\lambda_m = c\frac{2m+n-1}{2}$ $(c = \pm \sqrt{-1})$. Lemma 5 shows that Λ is an operator with λ_m as its eigenvalues and $\mathcal{H}_m(S^n)$ as the corresponding eigenspaces. Hence, Λ coincides with $c\sqrt{\Delta + \frac{(n-1)^2}{4}}$.

6 Conclusion

We have proved in Section 5 that if the correspondence given by

$$\begin{split} E_{ij} - E_{ji} &\mapsto x_i X_j - x_j X_i & (1 \leq i < j \leq n+1), \\ E_{j,n+2} + E_{n+2,j} &\mapsto \Phi_j & (1 \leq j \leq n+1), \\ E_{j,n+3} + E_{n+3,j} &\mapsto [\Phi_j, \Lambda] & (1 \leq j \leq n+1), \\ E_{n+2,n+3} - E_{n+3,n+2} &\mapsto \Lambda \end{split}$$

is a representation of so(n+1,2), then

$$\mu = -\frac{n\pm 1}{2}$$
 and $\Lambda = \pm \sqrt{-1}\sqrt{\Delta + \frac{(n-1)^2}{4}}$.

The converse can be easily proved. Hence, we obtain Main Theorem.

References

- [1] B. Cordani, The Kepler Problem, Group Theoretical Aspects, Regularization and Quantization, with Application to the Study of Perturbations, Progress in Mathematical Physics 29 (2003), Birkhäuser Verlag.
- [2] K. Ii, Fourier-like transformation and a representation of the Lie algebra so(n+1,2), Hiroshima Math. J. 12 (1982), 421-433.
- [3] E. Onofri, SO(n, 2)-singular orbits and their quantization, Proceedings of the Conference on Symplectic Manifolds and Mathematical Physics, Colloques Internationaux C.N.R.S. 237 (1974), 155-161.
- [4] E. Onofri, V. Fock, 40 years latar, Differential Geometrical Methods in Mathematical Physics, Springer Lecture Notes in Math. 570 (1975), 72-75.
- [5] E. Onofri, Dynamical quantization of the Kepler manifold, J. Math. Phys. 17 (1976), 401-408.
- [6] J. A. Wolf, Conformal group, quantization, and the Kepler problem, Group Theoretical Methods in Physics, Springer Lecture Notes in Phys. 50 (1975), 217-222.
- [7] J. A. Wolf, Representation associated to minimal co-adjoint orbits, Springer Lecture Notes in Math. 676 (1978), 327-349.

Department of Mathematical Sciences
Fuculty of Science
Yamagata University
Yamagata 990-8560, Japan
E-mail address ii@sci.kj.yamagata-u.ac.jp

Received March 20, 2003