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On extension of representations of so(n+1,1)
to representations of so(n+1,2)

Kiyotaka II

Abstract

In the present paper, we construct representations of the Lie algebra
so(n+1,2) on C*°(S™) by extending a representation of the Lie algebra
so(n+1,1) on C*(S™) which arises from the action of Lorentz group
S0O(n+1,1) on S™ as conformal transformations.

1 Introduction and statement of the result

Let R™*! be (n+1)-dimensional Euclidean space with cartesian coordinates z1,...,Zpy1.
Forz = (21,...,%n41) € R™, the norm of z is defined by ||z|| = \/(3:1)2 + o (Ta)?
Let S™ = {z € R™! | ||z|| = 1} be the unit sphere in R"*'. Let C*(S™) denote the
linear space of complex-valued C* functions on S™. The special orthogonal group

SO(n+1) acts on S™ as an isometry group. This action induces a representation
of the Lie algebra so(n+1) on C*°(S™). Let SO(n+1,1) denote the Lorentz group
with its Lie algebra so(n+1,1). It is well-known that the action of SO(n+1) on
S™ can be extended to an action of SO(n+1,1) on S™. This action induces an ir-
reducible representation of the Lie algebra so(n+1,1) on C’°°(S”) We denote this
representation by Rep,(so(n+1,1)).
Let us now consider the Lie algebra so(n+1,2) of the Lie group SO(n+1,2). Let
E;; denote the (n+3)x(n+3) matrix with the (4, j)-component 1 and the others are
0. The following are basis of so(n+1,2).

Ei; ~E; (1<i<j<ntl),

Ejniz2 + Ent2; (1 <j < ntl),

Ejnis+ Enya; (1<5<ntl),

En+2,n+3 - En+3,n+2-
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Note that the following hold.

(1) [Eij—Eji, E—Ew) = 65 (Ea— Ei)+6a(Ejk— Exj) — 6i( Bk — Exi) — b (Eji— Eyj),
(2) [Eij ~ Ejiy Ex o + Entox] = 6k (Einy2 + Eny2i) — 6i(Ejnt2 + Eni2,j),

(3) [Eij — Eji, Exnts + Entax] = 6jk(Einys + Enysi) — 6ik(Ejnis + Fryaj),

(4) [Eij — Eji, Eni2nt3 — Entani2) =0,

(5) [Eint2 + Ent24, Ejmia + Enyajl = Eij — Eji,

(6) [Ein+z + Eni24, Ejn+a + Eni3,5] = 6ij(Ensanis — Eniania),

(7) [Ejni2 + Eny2,js Ent2nt3 — Enysns2) = Ejnia + Enysj,

(8) [Ein+3 + Eniziy Ejnis + Enyaj ] = Eij — Eji,

(9) [Ejn+3 + Eny3jy Entonts — Enyznt2]l = —(Ejnt2 + Eni2j)-

{Eij —Eji| 1 <i< j < n+1} generate a Lie subalgebra isomorphic to so(n+1). We
identify this subalgebra with so(n+1). {E;j — Eji |1 <i < j < n+1}U{Ejni2 +
Eni25 | 1 < j < n+1} generate a Lie subalgebra isomorphic to so(n+1,1). We
identify this subalgebra with so(n+1,1). The Lie algebra so(n+1,2) is generated
by so(n+1,1) and E, 2 n+3 — Eni3n+2, since, by (7)
Ejni3+ Eny3j = [Ejni2 + Enyajy Eni2nes — Enyanqal-

The vector field 3/8z; on R™! is denoted by X;. The function (z1,...,Zn1) — Z;
on R™! is denoted by z;. The restriction to S™ of vector fields and functions on

R"*! are written by the same letter. Let &; be a vector field defined by
n+l

&= (6ix —ziz)Xx (1 <j<n+l).
k=1
We note that (z:X; — z;X;)(]|z||?) = 0 and &;(||z||*) = 0. The representation

Repy(so(n+1,1)) is given by

Ey— Ej z:X; — 2;X; (1<i<j<n+l),

Ejnt2+ Eny25— & (1 <j < ntl),
where z;X; — z;X; and §; represents tangent vector fields to S™.
Let ®; : C°(S™) — C*°(S™) be an operator defined by

n+1
®; =&+ puzj = Y (5 — zzk) Xy + pz; (1< j < ntl),
k=1
where p is a complex number. Then it is easily proved that,for each u, the corre-

spondence given by

Ei;—Ejir— z;X; —z;X; (1<i<j<ntl),

Ejnt2+ Eni2;j—®; (1<j<n+l)
is a representation of so(n+1,1) on C*(S™) (See Section 4). We denote this repre-
sentation by Rep,(so(n+1,1)).
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The problem we consider in this paper is the possiblity to extend the representation
Rep,(so(n+1,1)) of so(n+1,1) on C*(S™) to a representation of so(n+1,2) on
C>(S™). The result we have obtained is the following:

Main Theorem The representation Rep,(so(n+1,1)) of so(n+1,1) on C*(S™)

can be extended to a representation of so(n+1,2) on C®(S™) if and only if p =
ntl

Furthermore, in this case, the representation is given by
Eij—Eji—z,X; —2;X; (1<i<j<n+l),
Ejnta + Eny25— ®; (1 <j <n+l),
Ejnts + Epyz = [®5,A] (1 <5 < n+l),
Enion+3 — Enyaniz — A,

where A is an operator defined by
A:C®(S™) — Co(S™), A=+yv=T\/A+ (”';1)2.

Remark 1 A:(C*(S") — C*(S™) denotes the Laplace-Beltrami operator on S™.

—1)2
The eigenvalues of A are m(m+n—1) (m=0,1,2,...). /A + (n 1 ) : C®(S™) —
C*(S™) denotes the operator on S™ with the same eigenfunctions as A, and with

2ﬁ4g-"—‘—l(m=0,1,2,...).

Remark 2 Representation of the Lie group SO(n;i-l, 2) and the Lie algebra so(n+1, 2)
has been studied by several authors in connection with geometric quantization of

the corresponding eigenvalues

the Kepler problem. (See References.)

The author wishes to thank S. Watanabe for many useful conversations on represen-

tation.
2 Harmonic functions H;, .., on R"*!
" For each positive integer m, and 4,,...,%, € {1,...,n+1}, H;, ., denotes the
function on R™*! — {0} defined by
_ ()" o=l
T (n=1)(n+1) - - - (2m4n—3) Oz, -+ - Ox;,
If m = 0, we put Hy,..;,, = ||z||'"™. Note that H;,..;, is invariant under each
n+1
permutation of ii,...,%,y,, and that Z H;, ... kx = 0 for each non-negative integer
k=1 '
m.
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Lemma 1 For each non-negative integer m, we have
(1) X;Hi,..s,, = —(2m+4n—1)H;, .i.j,

1 m
(2) ZiHiy iy = |E]* Hiy i + Do Y biiH, oo

a=1
2
"~ (2m+n—1)(2m+n—3) lSa<Zb em biain 5 fims?
n+1
(3) E kakHir--im = —-(m+n—1)H¢1...,~m,
k=1

(4) (z:X; — 2 X:)Hiy.in —E( 0] .1...{;....,,,. 6iaiH.'1...E;...,~mj);

m+n—1 =
(5) &iHiy i = {(mAn—=1)||z|* — (2m+n—1)}Hi, ...,; + Ce— aizjl biaify,..5 i

2(m+n—1
- (2m+n(-—1-;(2m-3-n—3) . S(bi e biai iy 53 ims

Proof We prove (2) by induction on m. If m = 0, (2) holds. Now, assume that (2)
holds for some m. Differentiating (2) with respect to z;,,,,, we have

—(2m+n—1)z;H;, ipims1 + Cimi1iHiyeim
=2z, H;.irj — Cm+n+1)||z||2Hiy cipmimyrj
- EZ—IZ—? ‘; i°jH‘1"'€;"“mim+l + 2m-fn—1 15¢:<Zb5m 6"'"’H 1-+%a ip - imim 415’

Transposing 6;,,,,Hi,..i,, to the right-hand side, and then dividing by —(2m+n-1),
we have

2 2m+n+1
Tl imimin = ~ 5 Timga Hirim min=1l® | Hi, - imims
1 2m+n—3

+ 2m+n—16‘m+‘jHi1""m * oo 1)2 (2m4n—1)2 & E taj 11"';;"-1mlm+1

2
~ o1\ biainH, 2.2 1-1

Rewriting j to im+1, and %;,41 to j, we have

2 2m+n+1
Tippy1 Hiyoimj = —mlefi,....-mim+l + ﬁ——” ||2 Hiy i
1 2m+n-3
+ -—————2m+n_16im+1sz'1...im + —_—(2m+n_1)2 az:::l 6i“iM+1Hi1---i:---imj
2
- (2m+n_1)2 15¢;<Zb5m 6ia‘bHi1...g‘:...f;...imim+1j- (1-2) |
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Eliminating x;,,,, H;,...,.; from (1-1) and (1-2), we have

1 m-+1
TiHiy iy = (21 Hiyoignyng + py—— Y SiiH, o

a=1
2
- bigi
(2m+n+1)(2m+n-1) |, 2 o

<b<m+1

H -~ ~

i1ty b1

This completes the proof of (2). The rest are easily obtained. q.ed.

3 Spherical harmonics h;;..;,

We denote by h;;,...;,, the restriction of Hj,...;, onto S™. It is well-known that h;,...;,,
are eigenfunctions of the Laplace-Beltrami operator A on S™ corresponding to the
eigenvalue m(m+n—1). H,,(S™) denotes the linear subspace of C*°(S™) spanned by
Riyeig (1, .,0m € {1,2,...,n+1}).

The following lemma is obtained easily from Lemma 1.

Lemma 2 For each non-negative integer m, we have

1 m
(1) Ijhil---im = hi'l---imj + m agl 5{0_7"7,1.1,__{;".1."‘
2
- 6inh, =~ =~ . .
(2m+n—1)(2m+n—3) 1s(§5m ath Vit eip i

(2) (xiXJ' - iji)hir"im = Z(aiajhil---i:---imi - 6’iaih,;1...{;...imj);
a=1

m+n—1 &
(3) &ihizipn = =Gy i + D e— ; GiagPiy iy i,
2(m+n-1)
Z 6iaibhi1...{;...g;...imj'

~ (2m+n—1)(2m+n—3) 1<

a<b<m

4 Representation Rep,(so(n+1,1)) of so(n+1,1)
Let ®; : C*°(S™) — C°°(S™) be the operator defined in Section 1.

Lemma 3 We have
(1) [2:iX; — = X,z X1 — 21 Xk]

= bie(z:iXi — 1. X;) + bu(z; X — 21 X;) — Sj(xi Xk — 21 Xi) — Oar(z; X1 — 21 X),
(2) [2:X; — z; Xi, Pi) = 66 Pi — 6P, '
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(3) [@z, QJ] = SE,'XJ' - $jX,'.

It is easily proved from this lemma that the correspondence given by
Ej; —FEji—z,X; —z2;Xi (1<i<j<n+l),
Ejnt2 + Eny25— ®; (1 <j<n+l)
is a representation of so(n+1,1) on C*(S™) for each p.
We denote this representation by Rep,(so(n+1,1)). The following lemma follows
easily from (1) and (3) of Lemma 2.

Lemma 4 For each non-negative integer m, we have

min—1+p &
thil-"im = -—(m—u)h,-l...,-m_,- + - Z (5,“ il""a"'im
2m+n—1

o~

t1--tq -ty ¥mJ "’

2(m+n—1+u)
(2m+n—1)(2m+n—3) KZ Biaish

<a<b<m

5 Representation of so(n+1,2)

We will consider the problem whether the representation Rep,(so(n+1,1)) can be
extended to a representation of so(n+1,2). Choose a linear operator A : C*°(S") —
C>(S™), and define an operator ¥; : C*°(S™) — C*(S™) by ¥; = [®;, A]. Through-
out this section, we will assume that the correspondence given by

Eijj —Eji— z;X; —2;X; (1<1i<j<n+l),

Ejni2+ Eni25— ®; (1 <j <n+l),

Ejnts+ Eni3j—¥; (1<3j<n+l),

En+2,n+3 - En+3,n+2 — A
is a representation of so(n+1, 2).

Lemma 5 There erist complex numbers A, (m € {0,1,2,...}) such that
Ahiy i, = by,
for each iy,...,im € {1,2,...,n+1}.

Proof This follows from [z;X; — z;X;, A] = 0. q.ed.
Let us define complex numbers ¢, (m € {0,1,2,...}) by co = Ao, and ¢ = Ay —

Am—1 (m > 1). The following lemma is obtained easily from the definition of ¥},

Lemma 4 and Lemma 5.
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Lemma 6 For each non-negative integer m, we have

em(m+n—1+p) &
2m—+n—1 Z&“Jh“"'

—~

1@"'14"&

iRy iy, = Cmir(M—p) iy iy +

2¢m(m4n—1+4p) Y s R

"~ (2m4n—1)(2m+n—3) 1<Siem bath iy g ipeim]

The following lemma is obtained easily from Lemma 5 and Lemma 6.

Lemma 7 For each non-negative integer m, we have

(em)?(m4+n—1+p) &
2m+n—1 Z‘Sw i1-ta i

(W), Alhiyciy = —(Cmt1)2(M—p)hiy iy +

_2(em) (mAn—1+p) S Gk -
(2m+n—1)(2m+n_3) 1< tats V4 g i i

a<b<m

The following lemma is obtained by direct calculation using Lemma 4 and Lemma
6.

Lemma 8 For each non-negative integer m, we have
[, Uslhisim = (Emi2 — Cmy1)(m—pp) (MmA1—p) iy i

2¢m11(m—p) (m+n+u)
2m+n+1

Cmy1(m—p)(m+n+p)(2m+n—3) — cp(m—1—p)(m+n—1+u)(2m+n+1)
(2m+n+1)(2m+n—1)

m m 2 m
X { agl 6i“ih‘l'1""{;"'imj + QZ:I 6‘i°jhi1-"€;'"imi - m a%6iaibhi1...{;...{;...imij}

(em — em—1)(m+n—1+p)(m+n—2+p)
(2m+n—1)(2m+n—3)?2

{(2m+n—3) Z 5,“,6,th'1_“;;m;;__,1 Z bijbicishy . 5,
a#b a#b

+

6«,’jh,‘1...,‘m

+

+

— E b, ~ E 8: bi:ih., ~ ~ ~
tat ‘lbtc iyt ,b ,c imi 1ajYpic t1°%q " tp  te " bmt

a,b,c# a,b,c#

1 m
 Imins , o, i 5 iy
a, 7c,

- m
Remark Z implies to sum over all ordered 3-tuples (a, b, ¢) consisting of mutu-
a,b,c#£
ally different a,b,c € {1,2,...,m}.
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Lemma 9 For each positive integer m, we have
(em)® = —1.

Proof Since [¥;, A] = —®;, we have [¥;, Alh,...i,, + P®jh;,..i,, = 0 for each non-
negative integer m and j,4,...,im € {1,2,...,n+1}. Then, using Lemma 7 and
Lemma 4, we have

{(cm)® + 1} (m+n—1+p) &
- 2m+n_1 Z 6iajh"1...i:...im

{(cm+1)? + 1LHm—p)hiy.ipn;

a=1
2{(cm)® + 1}(m+n—1+p) _
+ (2m+n_1)(2m+n_3) 1$a§—<-m 6‘“'5”’1’1"“0""6""‘1’!]‘ - 0.

Putting m = 0, we have {(c;)?+1}u = 0. Putting m = 1, we have {(cz)?+1}(1—p) =
0 and {(¢;)? + 1}(n+u) = 0. From {(c;)? + 1}p = 0 and {(c;)? + 1}(n+u) = 0, we

have (¢;)? = —1. If m > 2, putting ¢; = i3 = --- = i, = 1 and j = 2, we have
{(cm+1)? + 1}(m—p) = 0 and {(cm)? + 1}(m+n—1+u) = 0. From these, we have
(cm)? = —1 for each positive integer m. q.ed.

Lemma 10 We have
n—1 nt+1

o =——¢, cn=c(m>1) and p=-— 5

where ¢ = /1.

Proof Since [®;, ¥,| = é;;A, we have [®;, ¥,]h;,..i,, — 6ijAh;,..i,, = 0 for each non-
negative integer m and 1, j,41,...,tm € {1,2,...,n+1}. Then, using Lemma 8 and
Lemma 5, we have

(em+2 — Cmy1)(m—p)(MA1—p) Ry i

n <2Cm+1(m—ﬂ)(m+n+“) _ M) 5¢jhi1---im>

2m+n+1
Cm+1(m—p)(m+n+p)(2m+n—3) — e (m—1—p)(m+n—1+p)(2m+n+1)

+ @mint1)(2min—1)
m m 2 m
X { agl 6iaih,'1...{;...,'mj + agl 6i¢jh.'1...§;...,'m,' - 2m+n—3 cg6iaibhil....’:...§;....'mij}

(6m = Emor) (Mtn—T4p5) (me+n—2-+1)
(2m+n—1)(2m+n—3)>2

m m
X {(2m+n—3) > biaibipiPy, i — > 6iibiais iy i
a#b a#b

+



m m

= 2 Siibiichy poprii ™ O Giaibiich p i i
a,b,c£ a,b,c#

1 m
+ mtn—5 a,lg# 61::;1'!:6ic’idhil...é;...{;...',:...a...imij} =0.
Since Hpny2(S™), Hm(S™) and H,,—2(S™) are linearly independent, we have
(mi2 — Cmar)(Mm—p)(MA1—p)hi; ipnij = 0,
2¢m 1 (m—p)(m+n+p)
- Am 6‘ijh'l.1"'im
2m+n+1
em+1(m—p)(m+n+p)(2m+n—3) — cp(m—1—p)(m+n—1+u)(2m+n+1)
(2m+n+1)(2m+n—1)

m m 9 m
X { GZ:; &aih,’l...{;...imj + az=:1 (5iajh,g1...{;...imi - 2m+n—3 azﬂ,éiaibhil...{;...;;...gmgj =0,

+

and
(em — em—1)(m+n—1+p)(m+n—2+p)
(2m+n—1)(2m+n—3)2

i1-+Gq -+ ip m b+

m m
X {(2m+n—3) Y biaibisihy, i, — O Giibiaihy o
aZb aZb ¢

m m

- E: 5iu'i6ibichil...{;...{;...{;...gmj - § : 5iaj6ibichil...{;...{;...{;...imi
a,b,c# a,b,c#

+ %ﬁ_—s a,b,zc,;i;é 5ia‘i55ici¢h,'l...{;...{;...{;...a...imi_j} =0.
From the first equation, we have
 (Cmiz2 = Cmp1)(m—p)(m+1—p) =0 (m > 0). (10-1)
Putting i = j =4, = --- = 4,, = 1 in the third equation, we have
(em — em-1)(M+n—14p)(m+n—2+pu) =0 (m > 2). (10-2)
From (10-1) and (10-2), we have ¢; = ¢; = ¢3 = - - -. Define c by ¢ = ¢;. Then, from
Lemma 9, we have ¢ = —1. Putting m = 0 in the second equation, we have
2c1(—p) (ntp)
n+1
Furthermore, putting m =1, ¢ = j = 1, and 7; = 2 in the second equation, we have
2c2(1—p)(1+n+p)
n+3
Since Ao = ¢y, A1 = ¢c1 + ¢ = ¢+ ¢, and ¢; = ¢c; = ¢, we have, from (10-3) and
(10-4),

— X =0. (10-3)

AL =0. (10-4)
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_n-—1
©=73

Substituting this into (10-3), we have
(2p +n+1)(2p + n—1)c =0.

Since ¢ # 0, we have

+1
p= —n—2—. g.e.d.

C.

Lemma 11 We have

A=4yTTyfay D

4

.

—1)2
Proof A+ (—E—) is an operator with

2m+n—
4

2
5 1) as its eigenvalues and H,,(S™)

_1)2
as the corresponding eigenspaces (m € {0,1,2,...}). 1/A+ (n—1) represents a

4
2 -1
linear operator with ﬁzﬁ— as its eigenvalues and H,,(S™) as the corresponding

eigenspaces. 0 .
From Lemma 10, we have \,, = c-ﬂ_;n—_ (¢ = £v—1). Lemma 5 shows that A is
an operator with A, as its eigenvalues and H,,,(S™) as the corresponding eigenspaces.
(n—1)°

Hence, A coincides with c{/A + 1

q.ed.

6 Conclusion

We have proved in Section 5 that if the correspondence given by
Eij—-Eji— z;X; —z;X; (1<i<j<n+l),
Ejnia+ Eny2— ®; (1 <j <n+l),

Ejnt3+ Eny3j— [@5,A] (1 <5 <ntl),
Eni2n+3 — Eniania — A

is a representation of so(n+1,2), then

—1\2
u=—n§1 and A ==++v-1 A+(n41).

The converse can be easily proved. Hence, we obtain Main Theorem.
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