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Nonlinear perturbations of a class of integrated semigroups
on non-convex domains

Toshitaka MATSUMOTO* and Koichi SHITAOKA?

AsTrACT. Nonlinear continuous perturbations of integrated semi-
groups are treated from the point of view of the theory of semigroups of
nonlinear operators on nonconvex domains. Given an integrated semi-
group W (t) with generator A in a Banach space X, a general class of
nonlinear perturbations on nonconvex domains is introduced by means
of a lower semicontinuous functional . Generation and characterization
of nonlinear semigroups are discussed in terms of semilinear stability
condition and subtangential condition. The local Lipschitz continuity
and growth condition for the nonlinear semigroups are restricted by ¢
on a Banach space X under consideration. In the case where both ¢
and the domains of perturbing operators are convex, a Hille-Yosida type
theorem is obtained.

1. Introduction

Of concern in this paper are the semilinear problems in a Banach space (X, |- |) of
the form

(SP) u'(t) = (A + B)u(t); t > 0; u(0) = v.

Here A is assumed to be the generator of an integrated semigroup {W(t) : t > 0}
in X and B a possibly nonlinear operator from a subset D of Y = D(A) into
X. It is assumed that B is continuous on bounded sets with respect to a lower
semicontinuous functional ¢ on X such that D C D(p) = {v € X;p(v) < oco}. The
functional ¢ is also employed to restrict the growth of mild solutions to (SP). The
objective of this paper is to discuss generation and characterization of a nonlinear
semigroup on D which provides mild solutions to (SP) in the case that the nonlinear
operator B is not necessarily quasidissipative. The generation theorem is established
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under combination of a subtangential condition, a growth condition and a semilinear
stability condition. One of the main points of our argument is to deal with the case
in which D and ¢ are not necessarily convex and also D(A) is not necessarily dense
in X.

Semilinear problems of the form (SP) arise in various fields of mathematical anal-
ysis and have been studied by many authors. Iwamiya [4] discussed time-dependent
nonlinear perturbations of Cp-semigroups. He showed the generation theorem of
nonlinear evolution operators under an explicit subtangential condition and the as-
sumption that B(t) is “quasidissipative” in a generalized sense. Thieme [13] treated
the time-dependent Lipschitz perturbations of integrated semigroups under the as-
sumption that the domain C of nonlinear operators {B(t)} is convex. Instead of
quasidissipativity condition for a nonlinear operator B, Georgescu and Oharu [3]
employed a semilinear stability condition and explicit subtangential condition and
they gave a generation theorem in the case that the linear operator A is densely
defined.

On the other hand Oharu and Takahashi [9] discussed locally Lipschitz perturba-
tions of Cy-semigroups under the convexity condition for the domain of the nonlinear
operator B. They established the semilinear Hille-Yosida theorem in general Ba-
nach spaces. Their results were extended in Oharu and Takahashi [10], Matsumoto
et al. [7) and Matsumoto [8] to the case in which the nonlinear operator B is locally
quasidissipative and A is not necessarily densely defined.

- In this paper we study the case where the linear operator A is not necessarily
densely defined and establish a characterization theorem of nonlinear semigroups
which provide mild solutions to (SP). This result is an extension of [3, Theorem 1].

This paper is organized as follows: In Section 2 a class of integrated semigroups
is introduced and the basic results are outlined. In Section 3 our main results are
stated along with some comments. Section 4 deals with the so-called local uni-
formity of the subtangential condition. In Section 5 the relationship between the
semilinear stability condition and quasidissipativity condition is discussed . More-
over, a uniqueness theorem for the mild solution to (SP) is established. Section 6
is devoted to the construction of approximate solutions to (SP) through a precise
discrete scheme consistent with (SP). Finally, the main results are verified in Sec-
tion 7.

2. Integrated semigroups

In this section we introduce a class of integrated semigroups and state some basic
facts on such integrated semigroups. In what follows, (X*,| - |) denotes the dual
space of X. For v € X and f € X* the value of f at v is written as (v, f). The
duality mapping of X is denoted by . For v, w € X the symbols (v, w); and
(v, w), stand for the infimum and the supremum of the set {{v, f) : f € F(w)},
respectively. In (SP) the operator A is assumed to be a closed linear operator in X
whose domain is not necessarily dense in X. We write A* for the dual operator of
A. If A is densely defined in X, then A* is defined as a closed linear operator in
X*. If the domain D(A) is not dense in X, then A* is multi-valued and the identity
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(Av, f) = (v, g) holds for v € D(A), f € D(A*) and g € A* f; hence the value (v, g)
does not depend upon the choice of g € A*f. It follows that (v, g) does not depend
upon the choice of g € A*f provided that v € Y, where Y is the closure of D(A):

Y = D(A).

Hence for w € Y and f € D(A*) it is justified and convenient to introduce the
notation to represent the common value (w, g), g € A*f;

(w, A" f) = (w,9), ge€AYS
We first give the definition of once integrated semigroup.

DEFINITION 2.1. A one-parameter family W = {W(t) : ¢ > 0} of bounded
linear operators is said to be a once integrated semigroup on X if it has the following
two properties (w.1) and (w.2):

(w.1) W(0)=0 and W()ve C([0,00);X) forveX.

(w.2) W(s)W(t)v = /OS[W(T +t)v — W(r)vldr for s,t >0andv e X.

We say that W is non-degenerate if W (t)v = 0 for all ¢ > 0 implies v = 0. If there
exist constants M > 1 and w > 0 such that |W(t)| < Me“t for all ¢ > 0, the once
integrated semigroup W is said to be exponentially bounded.

In what follows, by an integrated semigroup is meant a non-degenerate exponen-
tially bounded once integrated semigroup unless otherwise stated.

As shown in Thieme [12], given a once integrated semigroup W = {W(t)} there
exists a closed linear operator A in X such that v € D(A) and w = Av are charac-
terized by the property that the function W(-)v is continuously differentiable and
satisfies

%W(t)v =v+ W(t)w for t > 0.

The operator A is called the generator of W and an integrated semigroup is uniquely
determined by its generator. Two basic properties of the generator A are stated
below Arendt [1, Proposition 3.3]:

PROPOSITION 2.1. Let W be an integrated semigroup and A the generator of
W. Then the following are valid:

(a) W(t)v € D(A) and AW (t)v = W (t)Av for v € D(A) and t > 0,
(b) fg W (r)vdr € D(A) and W(t)v= A fot W (r)vdr +tv forve X andt > 0.
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In the subsequent discussions, we are mainly concerned with closed linear oper-
ator A in X satisfying the following condition:

(H1) For each A > 0 the resolvent (I — AA)~! exists and satisfies
(I -X24) <1

The class of integrated semigroups treated in this paper is that of once integrated
semigroups whose generators satisfy the above mentioned condition (H1). From
condition (H1) we see that the part Ay of A in the smaller Banach space Y = D(A)
has a dense domain in Y and generates a semigroup 7y = {Ty(t) : t > 0} of class
(Co) on Y by the Hille-Yosida Theorem. Also, it has been shown in [11] that a
closed linear operator A satisfying (H1) is the generator of an integrated semigroup
W = {W(t)v : t > 0} on X. The following structure theorem holds for any
integrated semigroup W.

THEOREM 2.1.  (Structure Theorem) Let A be a closed linear operator in X
satisfying (H1) and Ty the semigroup of class (Co) on' Y = D(A) generated by the
part Ay of A in'Y. Then the integrated semigroup W generated by A is represented
as

t
(2.1) W(t)v = liﬁ)l/ Ty(s)(I — AA)"vds  fort >0 andv € X.
0

The above structure theorem is contained in [13] as a characteristic property
of locally Lipschitz once integrated semigroups. We also refer to [7] and [8]. By
Definition 2.1 we have the following relation.

(2.2) Ty(s)W(t)v=W(s+tjv—W(s)v for veX.

We often use the relation (2.2) in the subsequent sections. For further properties of
integrated semigroups we refer to (1}, (2], [6], [11], [12], [13].

3. Basic assumptions and a main result

In this section we introduce a class of semilinear operators in X and formulate
the associated semilinear problems of the form (SP). In what follows we assume
condition (H1) stated in the preceding section.

Let B be a possibly nonlinear operator in X which is defined on a subset D of
the closed linear subspace Y = D(A). If D(A)N D # 0, then the sum A+ B defines
a semilinear operator in D(A + B) = D(A) N D. Throughout this paper we call it
a'semilinear operator in X determined by A and B.

In order to impose the continuity and quasidissipativity conditions in a local
sense for B, we employ a lower semicontinuous functional ¢ : X — [0, oo] such that
D Cc D(p) = {v e X : p(v) < oo}. We make the following assumption on B:

(H2) For each a > 0 the level set D, = {v € D : p(v) < a} is closed in X and
the operator B is continuous on D,,.
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The continuity condition (H2) on the level sets {D, : @ > 0} is much weaker
than the continuity on the whole domain D in general and considerably useful for
concrete applications to partial differential equations.

DEFINITION 3.1. Let v € D. A continuous function u(-) : [0,00) — X is said
to be a mild solution to (SP), if u(t) € D for t > 0, Bu(-) € C([0,00); X) and u(-)
satisfies the equation

(3.1) u(t) = Ty (t)v + lﬁf)l /Ot Ty(t — s)(I — MA)"'Bu(s)ds fort>0.

Since (H2) is a local condition, (SP) may admit only local mild solutions. In
order to obtain global existence of mild solutions to (SP), we employ a growth
condition in terms of the real-valued function ¢(u(-)), namely,

(EG) o(u(t)) < e®[p(v) + bt], t20,

where a and b are nonnegative constants. This type of growth condition may be
called the exzponential growth condition.

A one-parameter family S = {S(¢) : t > 0} of possibly nonlinear operators from
D into itself is called a semigroup on D, if it has two properties below:

(S1) S(0)v =v and S(t)S(s)v=S(t+s)vfors,t >0and v € D.
(S2) For each v € D, S(-)v € C([0, 00); X).

If in particular a nonlinear semigroup S on D provides mild solutions of (SP) in
the sense that for each v € D the function u(-;v) defined by

(3.2) u(t;v) = S(t)v fort >0

is a mild solution to (SP) on [0,00), then we say that S is associated with the
semilinear evolution problem (SP).

We say that a semigroup S on D is locally equi-Lipschitz continuous with respect
to ¢, if for each a > 0 and 7 > 0 there is a number w(a, 7) such that

IS(t)v — S(t)w| < ey — w) for t € [0,7] and v,w € D,.

We are now in a position to state our main theorem.

THEOREM 3.1. Let a, b > 0. Assume that A and B satisfy conditions (H1) and
(H2). Then the following (I) and () are equivalent:

(I) There erists a nonlinear semigroup S = {S(t) : t > 0} on D such that
t
(L.a) S(t)v = Ty (t)v + lﬂg/ Ty (t — s)(I — AA)™' BS(s)vds,
0

(Lb)  ©(S(t)v) < e*[p(v) + bt], for eacht >0 and v € D.
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(I.c) For each a > 0 and T > 0, there erists w = w(a, T) € R such that
|S(t)v — S(t)w| < et|v — w|

forv, we€ D, and t € [0,7].

() For each v € D there ezists a null sequence {h,} of positive numbers and a
sequence {vn,} in D such that

(La)  Lim ATy (ha)v + W(ha)Bv — v,| = 0,

(Lb)  Emh p(vn) — p(v)] < ap(v) +.

(IL.c) For a > 0 there is wy € R such that
limh~[|Ty (k) (v — w) + W(h)(Bv — Bw)| — v — w]] < wal|v — w|
h10

‘ forv, w e D,.

In addition to this assumptions, if the subset D and the functional ¢ are both
convex and if B is locally Lipschitz continuous in the sense that
B (H3) for each a > 0 there exists w, > 0 such that

|Bv — Bw| < walv —w| for v,w € D,,

! then the following result is established in [7].

THEOREM 3.2. Let a, b > 0 and D, ¢ are both convex. Assume that A and B
satisfy conditions (H1) through (H3). then the statements (1) and (II) are equivalent
to any one of () and (IV) below:

(I) D(A)N D is dense in D; for o > 0 there exists Ay = Ao(a) > O such that
to each v € D, and each A € (0, ) there corresponds an element vy € D(A) N D

satisfying
1 (Il.a) vy — A(A + B)vy = v,
(IL.b) P(a) < (1 - aX) " [ip(v) + bA].

(IV) For each v € D there exists a null sequence {h,} of positive numbers and a
sequence {v,} in D(A) N D such that

(IV.a) lim h;'|v, — ho(A + B)v, —v| =0,
(IV.b) lim sup b [(va) — 9(v)] < ap(v) +b,
(IV.c) lim |v, —v|=0.
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Clearly, condition (H3) implies semilinear stability condition (II.c). The equiva-
lence between (I) through (IV) under (H3) and the convexity condition for D and ¢
follows from [7, Theorem 3.1]. It is straightforward to prove the implication (I) =
(I). In fact, by Theorem 2.4 in [7], limpo(h~?)|S(h)v — Ty (h)v — W(h)Bv| = 0 for
v € D. This together with (L.b) implies that (I.a) and (I.b) hold for vx = S(h)v.
On the other hand,

R | Ty (h)(v — w) + W (h)(Bv — Bw)| — |v — wl]
< W Y| Ty (h)v + W(h)Bv — S(h)v| + |Ty (h)w + W(h)Bw — S(h)w|]
+ h7|S(h)v — S(h)w| — |v — w]].
Letting A | 0, we obtain

lhilma.h_lllTy(h)(v ~w) + W(h)(Bv — Bw)| — |v — w|]
< imh~*[|S(h)v — S(h)w| — Jv — wl]
hi0

< w(a,1)|v —w|

for v, w € D,. This shows that (Il.c) holds. Therefore it remains to show the
implication (I) = (I), which may be called a generation theorem.

4. Local uniformity of the subtangential condition

In this section we discuss the local uniformity of condition (I.a). The following two
lemmas are straightforward generalizations of Lemmas 5.1 and 5.2 in [4].

LEMMA 4.1. Let {s,}n>0 be a nondecreasing sequence and {wy,}n>o0 a sequence
in D. Then the following identity holds:

n-—1
(4.1) wp, — Ty (sp — So)wo — ZTY(S" — Sk41)W(Sk41 — sk)Bwy
k=0
n—1
= Ty(sn = skr)[Wks1 — Ty (ske1 — sk)wr — W (skr1 — se) Bwn]
k=0
n—1 n—1
= Z Ty (8n— Sk+1)[Wi+1— Ty (Sk+1— Sk)wr| — Z[W(Sn —58k) =W (sn— 8k+1)| Bw.

The identity stated in the above Lemma is obtained by applying (2.2).
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LEMMA 4.2. Lete > 0 and M > 0. Let {sp}n>0 be a nondecreasing sequence
and {v,}n>0 @ sequence in D satisfying |Bv,| < M and

(4.2) [Vnt1 — Ty (Sn+1 — Sn)Un — W(Sns1 — $n) BUn| < (Sn41 — Sn)E

forn>0. If s, T s asn — oo, then the sequence {v,}n>0 is Cauchy in X.

Proor. Let 0 < k < n. It follows from Lemma 4.1 that

n-1

Un — Ty(sn - sk)vk - ZTY(S" - Sj+1)W(Sj+1 - Sj)B’Uj
Jj=k
n—1
= Ty(sn — sj41)[vjs1 — Tr(sis1 — 85)v; — W(sju1 — s7)Bus].
j=k

This together with (4.2) implies that

[vn — Ty (S — sk)vr
n—1
< Y 1Ty (sn — 850101 — Ty (841 — 85)v; — W(sja1 — 55) Buj]|
=k
n—1
+ Z | Ty (8 — 85+1)W (sj11 — ;) By,
=k
< (Sn - sk)(M + E).
Using this estimate for m, n > k, we have
[Vm — vl
< |vm = Ty (Sm — 8k)Vk| + |Vn — Ty (80 — i)k
+ Ty (Sm — Sk)Uk — Ty (Sn — k) Uk

< (8m + 8p — 28k)(M +€) + | Ty (sm — sk)vk — Ty (Sn — Sk )vk|-

Letting m, n — oo, we see that lim, n—o|Vm — vn| < 2(s—5x)(M +¢). Since sg — s
as k — 00, it is proved that {v,} is a Cauchy sequence in X. O

The next result shows that subtangential condition (Il.a) holds uniformly in a
neighborhood of each v € D.
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PROPOSITION 4.1. Suppose that conditions (H1), (H2), (I.a) and (I.b) hold.
Letv e D,e € (0,1), B> p(v) and let r = (v, 5,€) be chosen such that

(4.3) |Bv — Bw| < ¢/4 forw € DgNU(v,T)
where U(v,7) = {w;|w —v| < r}. We then choose M > 0 satisfying
(4.4) |Bw| < M for each w € DgNU(v,r),

and define a positive number h(v, 8,€) by the supremum of the numbers h € (0,7]
satisfying

(4.5) h(M+1)+ sup [Ty(s)v—v|<r and e**(pw)+ (b+¢)h) <P
8€[0,h]

Let h € [0, h(v,B,€)) and w € D, and assume that
(4.6) lw — Ty (h)v| < h(M + 1) and p(w) < e®*[p(v) + (b + €)h].
Then for each n > 0 with h +n < h(v, 3,€) there exists z € DgNU(v,r) such that

(4.7) Ntz = Ty(n)w — W(n)Bw| < € and ¢(2) < e”[p(w) + (b+€)7].

ProoF. Let h € [0,h(v,B,¢)) and w € D and assume that (4.6) holds. We
then find the desired elements z by constructing a sequence {sn}, -, in [0, 7] and the
associated sequence {vn}, >, in D such that

(i) s0=0,v9=w,0< 581 <8p <M
(ii) JLIEO Sp =1, r}g{)lo Up = 2;
(iii) |vn — Ty (8n — Sp1)Vn-1 — W(8n — Sn—1)BUn_1| < (€/4)(5n — Sn-1);
(iv) |vp — Ty(sn + h)v| < (sn + h)(M + 1)
(V) p(un) < eXon ™ Dip(vn_1) + (b + €/4)(8n — Sn-1)];
(vi)  p(va) < e**[io(vo) + (b + €/4)sn];
(vii) v, € DgnNU(v,7)

for n > 0. Here, (i) is considered for n > 1 and inequalities (iii) and (v) are not
formulated for n = 0.

The proof is given by an induction argument. First, vp satisfies (iv) by the first
inequality in (4.6). Estimate (vi) is trivial for n = 0. From (4.5) and (4.6) one
obtains

(4.8) |lw—=v] < h(M + 1)+ |Ty(h)v —v| < r and p(w) < 6.

Hence (iv), (vi) and (vii) are satisfied for n = 0. Finally, inequalities (iii) and (v) are
not considered for n = 0. The first step of the induction argument is now completed.
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Suppose now that {s,}._, and {v,})_, have been constructed in such a way
that (i) and (iii) through (vii) hold for 0 < n < N. We first note that, by (vii),
|Buy| < M. Then by (I.a) and (I.b) one finds £ € (0,n) and vy € D such that
sy+& <mnand

(4.9) ¢ one — Ty (§)vw — W(E)Bun| < €/4,

p(une) < e*[p(vn) + (b+e/4)E].
Let hy be the supremum of such numbers &; hence hy > 0. We then choose an
appropriate number hy € (hy/2, hy) and set sy = sy +hy. Also, we define vy, ;
to be an element vy ¢ which is obtained for £ = hy by (4.9). It should be noted that
sn+1 and vy, are constructed without properties (iv), (vi) and (vii) with n = N.
It is seen from the construction that (iii) and (v) hold for n = N + 1. Also, applying
(iii), we have
luv+1 — Ty (sv41 — sn)on| < Jowvsr — Ty (sn41 — sw)vnv — W(sni1 — sv) Bun|
+ |W(sn41 — sn)Bun|
< (sv+1— sn)(e/4) + (sn+1 — sn)| Bon|
< (sn+1 = sn)(M +1).
Condition (iv) with n = N then implies
luns1 — Ty (sn+1 + h)V| < Junsr — Ty(sn+1 — sw)ow|
+ Ty (sv+1 — sv)vw — Ty (sn41 + h)v]
< (snv41 = sn)(M +1) + |lun — Ty (sn + h)v|
< (sv+1+h)(M +1),
which shows that (iv) is valid for n = N + 1. Moreover, the above estimate implies
lun41 — | < |ungr — Ty (snar + h)v| + [Ty (sn1 + h)v — v
< (SN+1 + h)(M + 1) + ITy(SN+1 + h)'v —_ 'Ul

and so

(4.10) loNpr —v| < (+A)Y(M+1)+ sup |Ty(s)v—v| <7
s€(0,n+h)

Since (v) holds for n = N + 1, we have

(4.11) e ** 1 p(Un41) < €7¥"p(vp) + €77 (b + £/4)(Spy1 — Sp) for 0 < n < N.
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Summing up the inequalities in (4.11) with respect ton =0,--- , N gives

N
(412)  plowsn) < €M p(vo) + D e @ n=0(b + €/4) (skpr — 55)
k=0

< e*N+p(vg) + (b +€/4)sNt1),

which implies the desired estimate (vi) for n = N + 1. Finally, combining (4.6) and
(vi) for n = N + 1 we see that

Pons1) < V() + (b -+ €) (w41 + h)].

This together with (4.5) implies that ¢(vy41) < B and, since |uy41 —v| < 7 and
that vy, satisfies (vii) for n = N + 1. Thus we may extend the sequences {s,}X_,
and {v,})_, up to N + 1. By induction, it is concluded that we can construct a
sequence {s, }n>o0 in [0, 7] and {v, }n>0 in D with the properties (i) and (iii) through
(vii).

It now remains to prove that (ii) holds for the sequences {sn}n>0 and {vn}n>0
constructed above. We verify (ii) by contradiction. In view of the construction of
the sequence {s,}n>0, We see that s, converges to some s < 7. Hence, by Lemma
4.2 the sequence {vn}n>0 in Dpg is convergent in X to some z and z € Dg by the
closedness of Dg.

Suppose then that s < 7. Then we may apply (I.a) and (II.b) to find a number
6 € (0,7 — s) and an element zs € D such that

(4.13) YTy (8)z+ W(8)Bz — 25| < /5
and
(4.14) p(25) < e*[ip(2) + (b +¢/5)é)].

Let N be an integer such that s —s, < §/2forn > N. Let n > N and let h,. be
the supremum of A > 0 such that s, +h < n and (4.9) holds for NV replaced by n and
€ replaced by h, as it was considered earlier. In the construction of the sequences
{3n}n>0 and {v,}n>0 we have chosen h,, € (h,/2,h,) and set s,41 = s, + h, and
Up+1 = Unp With n = N and h = h,,. Hence 0 < h, < 2h, < 2(s —s,) <6 <n—s,
and 50 s, + 6 < s, + 7 —s < 7. By the maximality of A,, this means that we
must have §71|z5; — Ty (8)v, — W(6)Bu,| > €/4, or p(z5) > e*®[p(v,) + (b + €/4)6]
for infinitely many n > N. Passing here to the limit as n — oo, we get §7!|z5 —
Ty (6)z — W (8)Bz| > €/4 or ¢(z5) > e**[p(z) + (b+€/4)6], which contradicts (4.14)
or (4.13).

Thus it is concluded that lim, .. S, = 7. Finally, we demonstrate that the
element z satisfies (4.7). Using Lemma 4.1, we obtain

Uy — Ty (8p)w — W (s,)Bw

n—1

= ZTY(sn — Sk41)[Vk+1 — Ty (Sk+1 — Sk)Vk — W (Sk41 — Sk) Buk]
k=0
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n-1
+ ZTy(sn — Sk41)W (k41 — sk) Buy — W(s,)Bw.
k=0

In view of (2.2) the second term on the right-hand side is rewritten as

n-1 n—1

ZTy(sn — Sk41)W(Sk41 — Sk)[Bur — Bv] + Z[W(sn — 5k) — W(sp — Sk41)|Bv
k=0 k=0 ‘

n—1

= ZTY(Sn — 8k41)W (Sk41 — 8k)[Bur — Bv] + W(s,) Bv — W(0) Bu.
k=0

Since W(0) = 0, we have
U — Ty (sp)w — W(s,,) Bw

n—1
= > "Ty(sn — sk41)[vrss — Tr(ske1 — sk)ve — W(sky1 — sx) Bui]
k=0
n—1
+ ZTy(Sn — Sk41)W(Sk41 — Sk )[Bux — Bv] + W(s,)[Bv — Bw).
k=0
So, by (iii), (vii), (4.3) and (4.8), we have
(4.15) |V =Ty (8n)w — W (s,)Buw|
n—1
< z |vk+1 — Ty (Sk+1 — Sk)vk — W (Sk41 — sk) Bug|
k=0
n—1
+ Z(skﬂ — 8x)|Bvg — Bv| + sp|Bv — Bw|
k=0

n-1 n—1
< Z(3k+1 —sk)e/4+ Z(3k+l — Sk)e/4 + sne/4 = sne.
k=0 - k=0

In view of (4.5) and the fact that s, < 7 for all n, we see that s, —sg41 < h(v, 8,¢€) <
r(v,0,€) for 0 <k <n—1andn > 1. Letting n — oo in (4.15), we obtain

n Yz — Ty(n)w — W(n)Bw| < ¢.
Also, it is seen from (vi) that
©(z) < e*p(w) + (b+&/4)n).

Thus it is concluded that z is the desired element. The proof of Proposition 4.1 is
now complete. 0
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REMARK 4.1. If h = 0 and w = v in Proposition 4.1, then the above assertion
states that for every n € (0, h(v, 3, €)] there exists 2 € Dg N U (v, ) such that

Nz = Ty(nv — W(n)Bv| <&, ¢(z) < eip(v) + (b+€)n].
5. The semilinear stability condition

In this section we present there results related to semilinear stability condition (I.c).
First we give a sufficient condition for (I.c) which is weaker than (H3) stated in our
main theorem.

THEOREM 5.1. Suppose (H1), (H2) and
(H4) For each o > 0 there exists w, € R such that

(1 — hwa)|v — w| < |(v = W(h)Buv) — (w — W(h) Bw)|

for h >0 and v, w € D,,.

Then semilinear explicit subtangential condition (IL.a) and growth condition (I.b)
together imply semilinear stability condition (IL.c).

PROOF. Let a > 0, v, w € D,, > a and € > 0. Then, as mentioned in Remark
4.1, for each h € (0, €] one finds v,, wy € Dy satisfying

(5.1) ATy (h)v+ W(h)Bu — vs| < &, ATy (R)w + W (h)Bw — wy| < ¢,
(5.2) |Bv — Buy| < e, |Bw— Buy| <,
(5:3)  @(va) < e[p(v) + (b+£)h], p(wa) < eMp(w) + (b+&)h).
Hence we obtain
(5.4) R (| Ty (h)(v — w) + W (h)(Bv — Bw)| — |v — w])

| < hY(|Ty (h)v + W(h) Bv — vy| + | Ty (h)w + W (h) Bw — wy))

+h7 (Jon — wa| — v — w|) < 26 + A7 (v — wh| — v — w]).

By (H4), there exists ws € R such that
(5.5) lvn — wn] < (1 — hwg) ™! |(vn — wa) — W(h)(Bus — Buwy)|.
Writing v, — wn — W (h)(Bu — Bws) as (vn — Ty (h)v — W (k) Bv) — (wh — Ty (h)w —
W (h)Bw) — W (h)(Bu, — Bv) + W (h)(Bwy, — Bw) + Ty(h)(v — w) and applying
(5.1), (5.2), we obtain

[vn — wh — W(h)(Buy, — Bwy)| < 2he + 2he + v — w).
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We then apply (5.5) to get

(5.6) lun — wi| < (1 = hwg) ! (Jv — w| + 4he).

Combining (5.4) and (5.6) gives

(5.7) h= (| Ty (h) (v — w) + W (h)(Bv — Bw)| — v —w])
< 2¢ + wglv — w|/(1 — hwg) + 4e/(1 — hwpg).

Taking the limit inferior on both sides of (5.7) as h | 0, we have

limh ™! (|Ty (h) (v — w) + W(h)(Bv — Bw)| — |v — w|) < 6e + wplv — w).
hi0
Thus we obtain the desired result. O

The next result states that semilinear stability condition (I.c) implies the so-
called strong quasidissipativity of the part (A+ B))y in Y of A+ B.

THEOREM 5.2. Assume that (H1) and (H2) hold. If v, w € D N D(A) and
(A+ B, (A+ B)w €Y, then we have

l}i‘?g R Y| Ty (h) (v — w) + W(h)(Bv — Bw)| — |v — wl}|v — w|
=((A+ By — (A+ B)w,v —w),.

ProoFr. Let v, w € D(A)N D and fix any f € F(v — w). Since Ty(h)v —v =
W (h)Av, it holds that

A (| Ty (h)(v —w) + W(h)(Bv — Bw)| — |[v — wl)|v — w|
> (R YTy (h)v —v) + A 'W(h)Bv — A" (Ty (h)w — w) — h~'W(h)Bw, f)
= (h"'W(h)(A + B)v — h"'W(h)(A + B)w, f)
for h > 0. By Theorem 2.1 and condition that (A + B)v € Y, we have
(5.8) h'W(h)(A+ Bw=~h"! /h Ty(s)(A+ B)vds —» (A+B)v ash 0.
0

Hence

l_i%h'lllTY(h)(v —w) + W(h)(Bv — Bw)| — [v — wl]jv — w|

> ((A+ B)v — (A+ B)w, f).
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Since f € F(v — w) is arbitrary, we obtain

(5.9) I’iTrf)lh"IHTy(h)(v — w) + W(h)(Bv—Buw)| — |v — wl]|v — w]|

> [(A+ B — (A+ B)w,v — ul,.
Next, we prove the converse inequality. Using Young’s inequality, we have

I}—i;lngh“l [l(v —w) + W(h){(A+ B)v — (A+ B)w]| — |v — wl|] |v — w|

<Bmh™ [|(v = w) +h{(A+ B)v — (A + Bul| ~ Jv — wl] o ~ |
+ l_’ﬂﬁgh’l [[W(h)[(A+ B)v — (A+ B)w] — h{(A+ B)v — (A + B)w|] |v — w|
gglm;('zh)-l [I(v = w) + h[(A + B)v — (A + B)wl]? — v — w|?]

+Imh~ (IW(R)[(A+ Bv - (A+ B)u] - hl(A+ B)v — (A+ B)ulll v — wl.

Since the right-hand side converges to [(4 + B)v — (A + B)w, v — w], by (5.8), the
proof is now complete. O

We now demonstrate that semilinear stability condition (Il.c) guarantees the
uniqueness of mild solutions to the semilinear problem (SP).

‘THEOREM 5.3. Suppose that (H1), (H2) and (L.c) hold. Let o > 0. Let u(-)
and v(-) be mild solutions with initial data u(0), v(0) € D,, respectively. Then

lu(t) —v(B)] < €*|u(0) — v(0)]
forT>0, 8> e (a+br) andt € [0, 7).

PROOF. Let t € [0,7]. By the definition of mild solutions to (SP) and Theorem
2.1, we have

u(t + h) = Ty (h)u(t) + liﬁ)l [Hh Ty(t+ h — s)(I — MA) "' Bu(s)ds

=Ty (h)u(t) + W(h)Bu(t) + lg{)l /h Ty (s)(I — MA)"Y(Bu(t + h — s) — Bu(t))ds.
Since

limh™!
h—0

lgﬂ)l /Oh Ty(s)(I — AA)"%(Bu(t + h — s) — Bu(t)) ds

h
g’lszh;/ |Bu(t + b — s) — Bu()| ds = 0,
—vJo
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we have

(5.10) %r%h-luu(t 4 R) — v(t + )| — |ult) — v(8)])

Sl}%h‘l(lTy(h)(u(t) —v(t)) + W(h)(Bu(t) — Bu(1))] — |u(t) — v(¢)]).

The estimate (5.10) and (I.c) imply that
D, |u(t) — v(t)| < wplu(t) —v(t)],

where D, stands for the Dini-derivative. This implies the desired result. O

6. Construction of the approximate solutions

In this section we discuss the construction of approximate solutions to semilinear
problem (SP) in terms of method of discretization in time. First, we need the
following result for constructing local approximate solutions.

THEOREM 6.1. Suppose that conditions (H1), (H2), (I.a) and (I.b) are satisfied.
Letv € D, R> 0, 8 > ¢(v). Choose positive numbers M and T so that |Bw| < M
forw € DgNU(v,R). Let T > 0 be chosen so that

(M + 1)+ sup |Ty(t)v —v| £ R and e*"[p(v) + (b+ 1)7] < .
te[0,7]

Then for each € € (0,1] there erists a sequence {t;}{L, and a sequence {v;}}L, in
DgNU(v, R) such that

(i) t0=0: Vo =7, thT;
(ii) 0<ti+1—t,‘s€f0TOSiSN—1;
(iii) |vs — Ty (&:)v] < ti(M + 1) and o(v;) < e*p(v) + (b+€)ts] for 0 <i < N;
(iV) I'U,'+1 - Ty(t,'+1 - t;)v.- - W(t,’+1 - t,')B'Uil < (ti+1 - t,')E and
P(vig1) < e2EBW[p(y) + (b+€)(tia — )] for 0<i < N —1;
(V) € DgNU(v,R) for0<i< N;
(vi) For0<i < N —1 there isr; € (0,¢] such that |Bw — By;| < e/4
forw € U('Ui, 'l",')ﬂDﬁ and (ti+1 "—t,')(M-l' 1)+supte[0't'.+1_t‘.] |Ty(t)v,~ —"U,'I S Ts.

PROOF. Set to = 0 and vy = z. Suppose that {¢;}, and {v;}*, have been
constructed in such a way that conditions (i) through (vi) are fulfilled. We then
define

o =sup {r € (0,¢]; |Bw — Bv,| < €/4 for w € DgNU(vp,7)}

and
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(6.1) n, = sup{t > 0;t(M + 1) + sup |Ty(s)vn — va] < 7, and
s€(0,t)

e (p(va) + (b + E)t) < ﬁ}-

Following the proof of Proposition 4.1, we define h,, = min{r — t,, 7.} and t,; =
tn + hn. Applying Proposition 4.1 with h =0, n = hy,, v = w = v, and 7 = r,,, one
finds vnyy € DgNU(v,, ry) satisfying »

[vn1 = Ty (hn)vn — W(hp)Bun| < eh,, and p(va11) < € (0(v,) + (b + €)ha) .
By the induction hypothesis (i) through (vi), it is easily seen that
[vns1 = Ty (tnt1)v] <|vns1 — Ty (Bn)vn — W (hn) Buy|
+ [Ty (hn)[Un — Ty (ta)v]| + [W (hp) Bun| < tnyy (M +1)
thereby
Ung1 — V| Stpp(M +1) + [Ty (tasa)v — v

<T(M+1)+ sup |Ty(s)v—v| <R
s€l0,7]

P(vn+1) < g?(tn+1=tn) (p(vn) + (b + €)(tns1 — ta))
< €™+ (p(v) + (b + €)tnya) -
Thus we have constructed sequences {¢;}24} and {v;}2} satisfying (i) through (vi).
It now remains to show that 7 can be attained in some finite, say N, steps. Suppose
to the contrary that this is not the case. Then we would obtain two infinite sequences
{ti}i>o in [0,7) and {v;}iz0 in D N U(v, R). By Lemma 4.2, v; converges to some
z € DgNU(v, R). It should be noted here that ¢(2) < 3 by (iii).
Let 7 € (0,£/2) and k. > 1 be such that

(6.2) |Bw — Bz| <e/6 for each w € DgNU(z2,F)
and

(6.3) |Buk— Bz|<e/12 and |vx — 2| < min{e/12,7/16} for each k > ..

Then (6.3) implies that U(vk,7/2)NDg C U(z,7)NDg for k > k.. Hence, for k > k.
and w € Dg NU(vk, 7/2), we have

|Bw — Bug| < |Bw — Bz| + |Bu, — Bz| < /4

by (6.2) and (6.3). These estimates together show that rj > 7/2 for k > k..
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We next choose § = §(z,T) so that |T(s)z — z| < 7/8 for s € [0, §]. Byb the choice
of 7, there is § > 0 such that

(6.4) ™0 (p(v) + (b+€)(T +8)) < B.

In view of the construction of the sequence {t;}:>0, we see that ¢; converges to some
t < 7. In order to derive the contradiction, we put é; = 7 + 6 — t > 0 and define

(6.5) ¢ = min{F/4(M + 1),6,6,}.
First, it is seen that t; + & < 7+ 6 and

e*(p(vn) + (b+€)€) < ¥ ((v) + (b +€)(tn + £)) < B-
From (6.3), (6.4) and (6.5) we deduce

sup |T(s)vx — vi| < sup (IT(s)vx — T(s)2| + |T(s)z — z| + |2 — wl)

3€(0,£] s€[0,€]

< sup (2lux — z| + [T(s)z — 2|) < 7/4
s€(04]

for k > k.. These estimates together imply

&M +1)+ sup |T(s)vk — vi| < F/2 < 7%

s€(0

This means that n; > & for k > k.. We now recall that by = min{r — g, }. If
there is ko > k. such that m, > T — tx,, then hy, = 7 — ty,. This implies that
T = tgy + hgy = tio+1- This is a contradiction. If i < 7 — ¢, for k > k., then
hi = m > € for k > k.. This is again a contradiction. It is then concluded that 7
is attained by some ¢y, and the proof of Theorem 6.1 is complete. a

Using the finite sequences {t;}¥, in [0, 7] and {v;}}¥, in Ds N U(v, R) obtained
for v € D by Theorem 6.1, we may define an approximate solution u, : [0,7] — X
to (SP) by

Ty (t — t,')’U,; + W(t - ti)B‘U,' fort € [ti,ti+1), 0<i<N-1
(6.6) u(t) =

Ty(‘l‘ - tN—l)'UN—l + W(T - tN—l)B'UN—l fort=r.

In the next section we demonstrate that for any null sequence {e,} of positive
numbers the sequence of the corresponding approximate solutions {u.,} on [0, 7]
converges uniformly to a mild solution of (SP) satisfying the exponential growth
condition with respect to ¢. To this end, we need a method for estimating the
difference between approximate solutions.

In order to formulate the statement, we introduce four kinds of quantities which
depend upon the choice of base data v, o € D and error bounds ¢, € € (0,1/3). Let
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a and b be constants given in condition (I.b) and fix any pair v, ¥ € D and any pair
€, € € (0,1/3). First, we choose 3 so that

(6.7) B > max{p(v), p(9)}.

Next, by the continuity of B on Dg, one finds positive numbers r = r(v, 3, ¢€),
7 =1r(d,8,€), M(v,B,¢) and M(9, 3,€) such that

(6.8) |Bw — Bu| < /4 and |Bw| < M(v, B,¢) for w € DgNU(v,7),
(6.8) |Bw — Bt| < £/4 and |Bw| < M(9,5,€) for w € DgNU(9, 7).
Choose a positive number M so that

M > max{M (v, B,¢), M(9, B, €)}.
Then we define h(v, 83, ¢) by
(6.9) h(v,B,¢e) = sup{h > 0;h(M+1) + 21[(1)11] |Ty(s)v — v| < r and

e io(v) + (b+ e)h] < ﬂ}.

In view of (6.7), it is seen that A(v,3,€) > 0.
We are now in a position to state the following comparison theorem.

THEOREM 6.2. Suppose that conditions (H1), (H2) and (II) are satisfied. Let
v, U be any pair of base data in D and €, € a pair of error bounds in (0,1/3). Let
h € [0, h(v, B,€)), h € [0, h(5,8,8)) and w, W € D be chosen so that

(6.10a) lw — Ty (o] < R(M +1), p(w) < e p(v) + (b+€)h]
and
(6.10b) b — Ty (R)o] S AM +1), () < () + (b + )R,

Then for each 6 > 0 and each n > 0 satisfying h+n < h(v, 3,€) and h+n < h(v, B, €)
there exist z € DgNU(v,r) and 2 € Dg NU(9,+) such that

(6.11a) |2 = Ty(mw — W(n)Bw| < 2ne, ¢(2) < e*[p(w) + (b+ &),
~(6.11b) |2 — Ty (m)w — W(n)Buw| < 2n8, ¢(2) < e*[p() + (b + &)n),
and such that

(6.12) |2 — 2| < €7 w — W] + e (e + & + 6)

where Wg = max{wg, 0}.
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ProoF. First, we note that w € DgNU(v,r) and w € DgNU(9, ) since
lw—v| < |lw—=Ty(h)v| + |Ty(h)v —v| <K h(M + 1)+ |Ty(h)v —v| < r

by the definition of h(v, 8,€) and since the corresponding estimate holds for 9, w, h
and 7. Let 1 be a positive number satisfying h+n < h(v, 8,¢) and h+n < h(9, 5, €).

We then demonstrate that three sequences {sn}n>0, {Un}n>0 and {fn}n>0 can be
inductively constructed in such a way that

(1) so=0,v=w, 9 =w

(i1) 0 < sp-1 < 8, and l'_up Spn =1

(ili-a)  |vp — Ty (sn — s,,_l)';)n: — W(sn — 8n-1)BVpn-1| < (8p — Sn-1)¢

(iii-b)  |9n — Ty (Sn — Sp—1)Un—-1 — W(Sp — Sn—-1)Bn—1| < (Sn — Sp-1)€

(iv-a)  @(vn) < e*nen-[(vy_1) + (b + €)(8n — Sn-1)]

(iv-b)  p(n) < e2Cnon=D[p(D_1) + (b + €)(5n — 8n-1)]

(v) ewsn=3n-1)|Ty (8, — 8p—1)(Un-1 — Dn-1) + W (8 — $n_1)(Bvn_1 — Bi,_,)|
< |Un-1 = n-1| + (Sn — Sn-1)8

(vi-a)  |vn — Ty (8n)vo| < 8n(M +1)

(vi-b) |9 — Ty (sn)o| < sn(M +1)

(viia)  p(vn) < e Pp(v) + (b+€)(sn + b))

(vii-b)  @(n) < e tPp(D) + (b + €)(sn + h)]

(viii-a) v, € U(v,r)N Dg

(viii-b) 9, € U(%,#) N Dy

sequences {v,} and {?,} and the inequalities (iv-a) and (iv-b) lead us to the expo--
nential growth condition for mild solutions. The estimates (v) will be used to obtain
(6.12).

First, we infer from (6.10a) and (6.10b) that (vi-a) through (viii-b) are all valid
for n = 0. Estimates (iii-a) through (v) are not formulated for n = 0. In the same
way as in the proof of Proposition 4.1, the first step of the induction argument is
completed in this sense.

We then suppose that three finite sequences {s,})_,, {vn}X, and {9,})_, have
been constructed in such a way that (i), (iii-a) through (viii-b) are satisfied.

Let hx be the supremum of the positive numbers £ such that sy + & < 7 and

(613) e"‘"’5|Ty(§)(vN - 'ﬁN) + W(E)(B’UN - BQ’)N)I _<_ I'UN - f)N' + 66

We then fix any hy € (hn/2, hy) and put sy4; = sy +hy. We note that p(vy) < g
and ¢(9n) < B by (viii-a) and (viii-b). Hence we may apply Proposition 4.1 to find
UN+1, On+1 € D satisfying

hold for n > 0. The estimates (iii-a) and (iii-b) ensure the convergence of the

(6.14a) lunsr — Ty (sv+1 — sw)un — W(sni1 — sn)Bun| < (snvi1 — Sn)e,
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(614b) |6N+1 - Ty(SN.H - SN)’I./)N e W(SN—H - SN)B'&NI S (3N+1 — SN)é,

(6.15a) P(on+1) < eXN Mo uy) + (b+€)(sn41 — sn)],
(6.15b) @(dn41) < MM () + (b+ &) (sn41 — sn)]-

This shows that sy.1, vny41 and x4 are constructed without properties (v) through
(vii-b) with n = N + 1. Then, letting £ = hy in (6.13) we see that (v) is satisfied
for n = N + 1. Our next aim is to show that the constructed s N+1, Un+1 and Oy
satisfy (vi-a), (vii-a), (vi-b) and (vii-b) for n = N + 1. Applying (vi-a) withn = N
and (6.14a) we obtain

lvn+1 — Ty (sn41)vol
< lvvs1 — Ty (snt1 — sn)un — W(sn41 — sn)Bun|
+ Ty (sn+1)vo — Ty (sn+1 — sn)on| + W (sn41 — sn)Buy|
< (sv+1 = snv)e + luv — Ty (sn)vol + (sv1 — sv)M < sy (M +1)

and, [On41 — Ty(sn+1)D0] < Sn41(M + 1) in the same way. This proves that UN+1,
Un41 satisfy (vi-a) and (vi-b) for n = N + 1, respectively. To show that vy,; and
Un41 satisfy (vii-a) and (vii-b) for n = N + 1, respectively, we apply (6.15a) and the
induction hypothesis to obtain

P(vn41) < XM eON R (1) 4 (b+£)(sy + h)) + (b + €)(sn41 — 5n))]
< e¥NHH[(0) + (b + €)(sn41 + B)]
and
P(0N41) < N + (b+ &) (snsa + B)].

It now remains to show that lim,_,., s, = 1. Suppose to the contrary that s, — s <
n. Then, by Lemma 4.2, there would exist some elements z, 3 € D such that v, — z
and 9, — 2. It follows from the closedness of Ds that z, # € Ds. On the other
hand, by semilinear stability condition (II.c), there must exist some & € (0,7 — s)
such that

(6.16) e | Ty (§)(z — £) + W(E)(Bz — B2)| < |2 — 2| + (1/2)¢5,

where 6 is the number employed in the estimate (v). Choose N > 1so that s—s,, <
§/2 foreach n > N. Set & = s — s, +& Then s, + &, = s+ €& < nand
hn < 2hyn, < 2(s — s,) < &,. Hence it would follow from (6.13) that

e pén ITY(sn)(vn - 'Dn) + W(gn)(Bvﬂ - Bﬁ")l > |v" - ﬁnl +&né
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for n > N. Now letting n — 0o, we see that
e €| Ty (€)(z — 2) + W(€)(Bz — BE)| 2 |z — 2| + €6

This contradicts (6.16) and hence it is proved that lim, . s, = 7. We now show
that the limits z and 2 are the desired elements. First, using (iv-a) and recalling
v9 = w, we have

p(2) < e"[p(w) + (b+€)n]

and, in the same way,

0(3) < (@) + (b+E)nl.
Next, by Lemma 4.1, we see that v, — Ty (s,)w — W(s,,) Bw can be rewritten as

n—1

ZTY(sn — Sk41)[Vk+1 — Ty (Sk41 — Sk)Vk — W (Sk41 — Si) Bug]

k=0

n-1

+ ) Ty (sn — sk+1)W (k41 — ) [Buk — Buv] + W (s,)(Bv — Buw)

k=0
Hence, applying this equality, we have
[vn — Ty (sn)w — W (s,) Bw|

n—1 n—1

< Z(Sk.H — sk)e+ Z(skﬂ — 8x)|Bug — By| + s,|Bv — Bw| < (3¢/2)s,..
k=0 k=0

In the same way as above, we obtain the estimate
|0n — Ty (8p ) — Bw| < (3/2)s,,.
Passing to the limit as n — oo in the above estimates, we have
|2 = Ty(n)w — W(n)Bw| <2n and |2—Ty(n)d — W(n)Bw| < 2én.
These inequalities shows that (6.11a) and (6.11b) hold. |
Finally, we show that the elements z and 2 satisfy (6.12). From (iii-a) and (v)
one can deduce
[vk+1 — D41
< | Ty (sk+1 — 8k)(Vk — D) + W(sk41 — sk)(Bvg — Biy)]

+ |Vk+1 — Ty (Sk41 — Sk)Vk — W(Sk41 — Sk) Bug|

+ |Ok41 — Ty (Sk41 — Sk)0k — W (k41 — Sk) B
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< el — Bl (sky1 — 5)6] + (Ske1 — s8)(€ + £)

for 0 < k < n. Putting Ws = max{wp, 0} and summing up these inequalities side by
side, we obtain

(6.17) [Unt1 = Dng] < €90+ w — D) + 5,,1€787 (e + € + 6).

Passing to the limit as n — oo in (6.17) we conclude that (6.12) holds. The proof
of Theorem 6.2 is now complete. a

7. Global existence for mild solutions

In this section we construct a global mild solution to (SP). To this end, we mainly
employ Theorems 5.3 and 6.2. Theorem 5.3 gives a priori estimate concerning
the uniform continuity of mild solutions to (SP). Hence we may apply a standard
continuation argument for local mild solutions. We first establish a local existence
theorem.

‘THEOREM 7.1. Suppose that conditions (H1), (H2) and (I) are satisfied. Let
v €D, R>0, €6 €(0,1/3) and 8 > (). Let M > 0 and 7 > 0 be such
that [Bw| < M for w € DgNU(v,R), (M + 1) + sup,e(o, [Ty (tjv —v| < R
and e*"[p(v) + (b + £0)7] < B. Then there exists a unique mild solution u(-) to
(SP) on [0,7] satisfying the initial condition u(0) = v and the growth condition
p(u(t)) < e*[p(v) + bt].

REMARK 7.1. It is noted that conditions (6.7), (6.8) are satisfied for £, T,
M (v, B, €) replaced, respectively, by 5, R, M.

PROOF OF THEOREM 7.1. Let {€n}n>1 be any null sequence in (0,&q). For
each e, we apply the argument employed in the proof of Theorem 6.1 to construct
decreasing sequences {r7}%!, {n?}¥%1 in (0, €,], a sequence {t?}¥~ in [0, 7] and
a sequence {v]}% in D N U(v, R), such that (i) through (vi-a) listed in Theorem
6.1 are valid for € = ¢, and N = N, and such that the partition P, = {t2} N, of

[0, 7] is finer than the previous partition P,_; = {tr=1}»= of [0, 7]. First, one can
construct {r} }25, {n}} 5, {1}, in [0, 7] and {v}}Y, for € = ¢, in the same way

as in the proof of Theorem 6.1. Suppose that we have constructed sequences {t?} N

in [0,7] and {vP}¥n. We then construct {tr+1} 4t and {vp+1}4 by setting
he*! = min{nZ*! ¢2, , —7+'} and thi1 = tp T+ Rt provided that £ < 2! < .
It should be noted here that Af*! is defined by taking the minimum of net! and
tf, —ti ", instead of taking the minimum of 5**! and T — tx*! (as in Theorem 6.1).

In accordance with this construction we define a sequence of approximate solu-
tions un(-) : [0,7] = X by

(7.1)
Ty(t -t} + W(t —t7)Bop for t € 17,12,

Uy () = and 0<i< N, -1,

Ty(r =t} )vp _  + W(r — tN,-1)BvR, _y for t =1.
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Then, for t € [t},t},,), we obtain
|un(2) = v
STy (b — )0 — Ty (83 — 8007 + W (E — &) Buf — W(th,, — 1) Bv}|
+ v — Ty (83, — v — W(t, — 87) B}
STy (= 07 — 7| + (6 — OB + (6, — t)en
S =M +1) + Ty (], —t)vf — 7| <en

by (iv-a) and (vi-a) in Theorem 6.1 and (2.2). In particular, d(u,(t), Dg) < &, for
teo,7].

We then demonstrate that the sequence u,(-) is uniformly convergent on [0, 7].
We apply Theorem 6.2 to estimate the difference between two approximate solutions
Un(-) and up(-).

Let 1 <n<m,te€[0,7) and choose 0 <i< N, —1and 0 < j < N,, —1 such
that t € [t},t%,) N [t7,t7,,), or let t = 7. First, we introduce a new subdivision
{s,}’Jrl of [0,t] by s; =t for0<!<jands 43+1 =t We then apply Theorem 6.2
with § = €, to construct the sequences {z}{Z, and {%}{*) satisfying 2o = 3y = v
and (7.2) through (7.7) below. X

fsi=t, wepstv=v}, 9=, w=v,0=9,h=h=0,7=s4 —8
in Theorem 6.2 and construct 241 € Dg NU(vg,r}) and 24, € Dg N U, )
satisfying

(7.2) |2141 — Ty (8141 — s1)vp — W(si41 — s;)Bv;:| < 2(8141 — S1)€n,

12141 — Ty (8141 — s0)v* — W(s141 — s1) BU*| < 2(S141 — S1)€m,

(7.3) P(z141) < XD p(0F) + (b + €a) (5141 — 81)],

P(2141) < X1 [o(v) + (b + €m) (S141 — 1))
and
(7.4) 2101 = Z141| < €PN [|uf — 0| + (5141 — 51)(En + 26m)]-

If s; € (8§, t8,1), weput v = V¢, O = o*, w = 2z, W = 9, h = s — ¢}, h=0
and 7 = s;41 — s in Theorem 6.2 and infer that 2, € DgNU(vE,r7) and %4, €
DgnU (v, ) satisfy
(7.5) |zt41 — Ty (s141 — s1)z1 — W(s141 — s1) Bzi| < 2(s141.— S1)€En

1211 — Ty (s141 — SO — W(S141 — 81)BU*| < 2(S131 — 51)€m,

(7.6) p(z1r1) < e p(2) + (b + €a) (5141 — 81)]
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P(2141) < eV [o(0]) + (b + em) (5141 — 51)]
and
(7.7) 2141 = 2141 | < e2C7 0|z — | 4 (5141 — 81)(En + 26m)]-

It should be noted here that in (7.5), (7.6) and (7.7) the element z is employed
instead of the element v, and the time interval (t},t;,,) may contain several s;’s.
In order to apply Theorem 6.2 in the latter case, we show the estimates

(7.8) |zt — Ty (s; — tp)vp| < (s — ) (M + 1)
and
(7.9) o(z1) < e p(vg) + (b+ en)(s1 — t})] for each s; € (tf, thy1),

which correspond to the estimates in (6.10a).
Suppose that t = s;, and si,41 € (t},t5,;). Then (7.2) implies

|z10+1 — Ty (Sto+1 — t5)VE — W(sio+1 — t5) Bug| < 2(sio+1 — tx)en ,
and so
(7.10)  |z1g41 — Ty (1041 — t2)V| < (8141 — tE)(M + 2€5) < (S1041 — tE)(M + 1),
which implies that 2,41 € Dg NU(vg, %). Also, by (7.3), we have
(7.11) Platps1) < e Dp(07) + (b+ 0) (s1041 — )]

Next let s; € (t},t5,,) and I = lp + 2. Then by (7.5) with [ = Iy + 1, condition (6.8)
and the fact that z,_; € Dg(vg, ), we have

|zt — Ty (s1 — tg)vil
<la—Ty(si — s1-1)z-1 — W(s1 — s1-1) Bz | + | Ty (51 — s1-1) 2121 — Ty (81 — t;:)'UZI
+ (81 — s1-1)(|Bzi—-1 — Bug| + |Bvg])
< 2(s1 — si-1)en + |2121 = Ty (s1-1 — tR)vgl + (st — s1-1) (M + £, /4).
Hence we infer that (7.8) holds for I = [y + 2. Also, by (7.6) with I = ly+ 1, we have
p(z) < e -Vp(z1) + (b+€a) (st — 51-1)]
< XD p(uf) + (b -+ en) (s — ).
This shows that (7.9) is satisfied for | = ly + 2. The case for the next point s;4; €

(t%,tp,1) can be treated in the same way. Thus, we conclude that (7.8) and (7.9)
are valid for all s; in (tf,t%,,)-
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We now estimate the difference u,,(-) — u.(-) on [0, 7]. We write
(7.12) |tm (8) = un ()] < ftm (8) — Zj4a| + |2j01 — zja| + 2541 — ua ()],

and make an estimate of each term on the right-hand side of (7.12). We begin by
estimating the first term. We infer from the definition of u,,(t), (7.2) or (7.5) with
l = j that

(7.13) 12541 — Ty (t — t7)v;" — W(t — t7) Bu}| < 2(t — 7" )em.
We then make an estimate of the third term. If 7' is a common point of P, and
P, then (7.2) and the definition of u,(t) imply |zj31 — ua(t)| < 2(t — t?)e, for
¢t € [t7, ) N[ET,t74,). Next, we suppose that 7 is not a common point for P,
and P, and then estimate |zj41 — Ty (sj41 — t?)vP — W(s;jy1 — t7)Bv?| under the
assumption that s; € (t7,t7%,,). In Lemma 4.1, we put s;, = {7, wj, = V7, wy = 2
forl=jo+1,---, j. Then we have
Zj1 = Un(t) = zjy1 — Ty (sj41 — )0 — W(sj4a — ) Bo}
J
= Y Tr(sis1 — si1)[zes — Tyr(sin1 — st)z — W(si1 — s1) Bz
1=jo+1
+ Ty (sj41 — Sio+1)[2io+1 — Ty (Sios1 — tF)V] — W(sjo1 — £7) Bo}
J
+ ZTY(SJ'+1 — si41)W (s141 — s1)[Bz — Bufl].
=30
Applying (7.2), (7.5) and (6.8) to the above equality, we obtain
(7.14) |01 — un(t)] < 3(sj41 — 7 )en.

We next make an estimate of the second term on the right-hand side of (7.12).
For this purpose we apply (7.2) or (7.5) and the property (iv-a) in Theorem 6.1 to
obtain the estimate

(7.15) 120 — v"| < |& — Ty (st — s1-1)vi2y — W(s1 — s1-1) By, |
+ 1" — Ty (st — 81-1)v%y — W (st — s1-1) By, |
< 3(st — Si-1)€m-
Suppose that [tF, 13, ;] = [si,, s1,]) for k=0, -, j — 1. Then, we have
(7.16) |z, — Vel < la, — Ty (s, — si1,)vg — W (si, — s1,) Bu|

+ |vgp — Ty (s, — si,)vx — W (s, — s1,) Bug|.
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The second term on the right-hand side of (7.16) is estimated by Theorem 6.1 as
[V — Ty (s, = s1,)vg — W(si, — s1o) Bug| < (t},, — t2)en. It is seen from Lemma
4.1 that the first term is written as

2y — TY(sll - 'Slo)v;c1 - W(sh - slo)BU;:

I1—-1

= Y Ty(sy, — sts1) 241 — Ty (3141 — s1)2 — W (5141 — 1) Bi]

I=lp+1
+ TY(311—810+1)[210+1 - TY(310+1 - t;cl)vl’: - W(slo+1 - t;cl)B'Ul?]

l1-1

+ Z Ty (s, — s141)W(s141 — s1)[Bz1 — Bup].

I=lg
Using this identity, (7.2), (7.5) and (6.8), we have
|21, =Ty (s, — s10)vg — W (s1, — 1) Bug|

l1-1

< Z 12131 — Ty (S141 — s1)z1 — W(s131 — 1) Bz
l=lp+1

+ |21041 — Ty (1041 — tR)vE — W(sio+1 — t5) Boi|

11—‘1
+ Z(SHI — 81)|Bzy — Bug| < 3(tg,; — th)en.

I=lo

Hence, it holds that
(7.17) oty — 0Bl < Aty — t)en for k=10,--- ,j — 1.

Finally, we estimate the second term on the right-hand side of (7.12). If s; is a
common point t} of P, and P, then we apply (7.4) to have

(7.18) |zi41 — 21| < e [[of — 21| + |2 — 2| + |2 — V]| + (s141 — 51)(En + 26mm)]
<e“s[A(ty — th_1)en + |2 — 21| + 3(st — s121)Em + (8141 — 51)(En + 26m)).
If s; is not a common point of P, and P,,, then we use (7.7) to obtain
(7.19) 12001 — Zi41] < €8]z — | + |2 — 2| + (S141 — 81)(En + 26m)]
< "l — 2]+ 3(s1 — 81-1)€m + (S141 — 1) (En + 26m)].

Summing up the inequalities (7.18) and (7.19) with respect to [ = 1, ..., j and
using the inequality

|21 — 21] < €“f(s1 — S0)(En + 26m),
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which follows from (7.4), we obtain

J J
(720) |Zj+1 - 2j+l| S Z ewﬂt(SH.l - S[)(en + 2€m) + 32 e“"’t(s, - Sl—l)em
=0 =1

[
+4) e th — t7_1)en < €PHt(en + 26m) + Bemt] + dent]].
k=1

This gives the desired estimate for the second term on the right-hand side of (7.12).
Combining (7.13), (7.14) and (7.20), we deduce

(7.21) |um () — un(t)] < 26m(t —27') + 3en(t — £7)

+ €°8%[(€n + 26m)t + BemtT + dent]] < 5TEPT (€, + £m).

This means that the sequence {u,(-)} of the approximate solutions converges uni-
formly on [0, 7] to some X-valued function «(-) on [0, 7]. Since d(u,h(t), Ds) < €, as
mentioned after the definition of u,(-), it follows that u(t) € Dg for each t € [0, 7].

The limit function u(:) so obtained on [0, 7] gives the desired mild solution to
(SP) on [0, 7]. To verify this we define a step function v,(-) by

e fort € [t},t3,),0<i< N, -1
(7.22) (t) =

’
N,y fort=r

and an X-valued function w,(t) by
t
(723) wa(t) = Ty(t)o +lim / Ty (¢ — 8)(I = M)~ Bun(ya(s))ds for ¢ € [0,7].
0

In view of the definition of u,(-) and 7.(-), it is seen that the function wy(-) is
strongly continuous on [0, 7}. Suppose t € [t?,t},,) for i =1,2,... , N, — 1. Since

tﬂ
lim [ Ty (= (I = M) Bof dn = W(t — ) Bu} — W(t — 81,,) Bef,
e
we may write the difference u,(t) — w,(t) as
(7.24)

Un(t) — wa(t) = Ty (t — 1)} — Ty (t)v + W(t — &) B}

i—-1 2., t
— Zlim/ " Ty(t —n)(I — MA)"1Buvldn — lim/ Ty(t —n)(I — AA)"1Bul dp
£ 20 Jin MO Jy

i—1
=) Tr(t — ) opn — Tr(thya — tR)vp — W(Eh,, — t8) Bug).
k=0
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Now the norm of the right-hand side is bounded above by Zi;lo(t}; 11— tR)En = tlen.
Thus |un(t) —wn(t)| < te,. It is also shown in the same way that the above estimate
holds for t = 7. Therefore the function w,(-) converges uniformly on [0, 7] to u(-) and
it follows that u(-) is strongly continuous on [0, 7]. Since y,(t) converges uniformly
to t and u,(ya(t)), u(t) € Dg for t € [0, 7], the continuity of B on Dg asserts that

Bup(vn(t)) — Bu(t) asn — oo uniformly on|0, 7].

One can now pass to the limit as n — oo in (7.23) to conclude that
14

u(t) =Ty (t)v + 1/\1{101/ Ty (t — s)(I — MA)"'Bu(s)ds
0

holds for t € [0, 7]. Also, we have

@(un(n(t)) = p(vi) < e [‘P(v) + (b+ 5n)t?]a

for t € [t},t},),1=0, ..., N, —1 and for t = 7. Letting n — oo in the above
estimate and applying the lower semicontinuity of ¢, we have

p(u(t)) < Im P(un(1n(t))) < e*[p(v) +bt) for ¢ € [0, 7].

This concludes that the limit function u(-) gives a unique mild solution to (SP) on
[0, 7]. The proof of Theorem 7.1 is complete. O

Theorem 7.1 together with the standard continuation argument gives the follow-
ing global existence result.

THEOREM 7.2. Suppose that a semilinear operator A + B satisfies conditions
(H1), (H2) and (II). Then for each v in D there ezists a unique global mild solution
u(-) = u(-;v) to (SP) on [0, 00).

In view of Theorem 7.2, we may demonstrate that condition (I) implies the
- assertion (I) in our main result, Theorem 3.1. Let v € D and let u(:;v) be the
associated mild solution to (SP) on [0,00) given by Theorem 7.2. For any ¢t > 0,
we define an operator S(t) from D into itself by S(t)v = u(t;v), v € D. Then it is
seen that the family S = {S(¢);t > 0} forms a semigroup on D satisfying conditions
(I.a), (I.b) and (I.c). This shows that (II) implies (I). Consequently, the proof of
Theorem 3.1 in the non-convex case is now complete.
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