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SPECTRAL MAPPING THEOREM FOR
APPROXIMATE SPECTRA AND

ITS APPLICATIONS

FUMIHIKO KIMURA

Abstract. In this paper, we show that the spectral mapping theorem
holds for the approximate point (or approximate defect) spectrum of a
bounded linear operator on a Banach space. Moreover, we analyze the
spectra of an elementary operator by means of those spectral mapping
theorems.

1. INTRODUCTION

Let ec be an infinite-dimensional complex Banach space and denote the algebra
of all bounded linear operators on $\mathfrak{X}$ by $\mathcal{L}(\mathfrak{X})$ . For $T\in \mathcal{L}(\mathfrak{X}),$ $\sigma(T)$ stands for the
spectrum of $T$ . The usual spectral mapping theorem for $T$ has been generalized to
theorems of the form

$\sigma_{i}(f(T))=f(\sigma_{i}(T))$ (1.1)

where $\sigma_{i}(T)$ is a certain subset of $\sigma(T)$ . Throughout this paper, $A(\sigma(T))$ denotes
the set of all complex-valued functions $f$ analytic on a neighborhood $\Omega_{f}$ of $\sigma(T)$ .
For $f\in A(\sigma(T)),$ $f(T)$ is the usual analytic functional calculus of $T$ . The first
aim of this paper is to show that the approximate point spectrum $\sigma_{\pi}$ and the
approximate defect spectrum $\sigma_{\delta}$ both satisfy (1.1).

Definition 1.1. For $T\in \mathcal{L}(\mathfrak{X})$ , the approximate point spectrum $\sigma_{\pi}(T)$ and the
approximate defect spectrum $\sigma_{\delta}(T)$ are defined by

$\sigma_{\pi}(T)$ $=$ { $\lambda\in \mathbb{C}|\lambda-T$ is not bounded below}
$=$ $\{\lambda\in \mathbb{C}|\inf_{||x||=1}||(\lambda-T)x||=0\})$

$\sigma\delta(T)$ $=$ { $\lambda\in \mathbb{C}|\lambda-T$ is not surjective}
where $\mathbb{C}$ denotes complex plane.

It is known that they are both compact subsets of $\sigma(T)$ and $\sigma(T)=\sigma_{\pi}(T)\cup$

$\sigma\delta(T)$ . Our result is as follows.

Theorem 1.2. For any $T\in \mathcal{L}(\mathfrak{X})$ and $f\in \mathcal{A}(\sigma(T))$ ,

$\sigma_{\pi}(f(T))=f(\sigma_{\pi}(T))$ (1.2)
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and

$\sigma_{\delta}(f(T))=f(\sigma_{\delta}(T))$ . (1.3)

These seem to be very humble spectral mapping theorems, but the author does
not know articles in which this result is stated explicitly with its proof. However,
concerning this topic, there are some results which are worth noticing. To begin
with, note that many mathematicians have shown (1.2) and (1.3) in the case where $f$

is a rational function with no poles in $\sigma(T)$ (for instance, [1, Theorem 2]). Moreover,
according to [13, p. 326], (1.2) holds whenever $f$ is not constant on each component
of its domain $\Omega_{f}$ . Further, we should introduce the following remarkable result of
V. Rako\v{c}evi\v{c}. Following [9], we define

$\sigma_{ab}(T)=\cap\{\sigma_{\pi}(T+K)|TK=KT,$ $K\in \mathcal{K}(\mathfrak{X})\}$

and call it Brouder’s essential approximate point spectrum of T. ( $\mathcal{K}(X)$ stands for
the algebra of all compact operators on $\mathfrak{X}.$ ) Rako\v{c}evi\v{c} [10, Theorem 3.4] showed
that (1.1) holds for $\sigma_{ab}$ . In this context, see also Schmoeger [12].

In this paper, we give a complete proof of Theorem 1.2 by a common technique
appearing in $[7],[10],[12]$ , and so on. Moreover, in the last section, we analyze the
spectra of an elementary operator on $\mathcal{L}(\mathfrak{X})$ by means of Theorem 1.2.

2. PROOF OF THEOREM 1.2

Lemma 2.1. For a complex number $\lambda$ , if there exists a sequence of unit vectors
$\{x_{k}\}$ such that $||(\lambda-T)x_{k}||\rightarrow 0$ , then $||(f(\lambda)-f(T))x_{k}||\rightarrow 0$ for any $f\in A(\sigma(T))$ .

Proof. We cite [5, Lemma 2] for convenience. $\square $

From Lemma 2.1, it follows that the one-way spectral mapping theorem holds
for $\sigma_{\pi}$ .

Lemma 2.2. $\sigma_{\pi}(p(T))=p(\sigma_{\pi}(T))$ holds for every polynomial $p$ .

Proof. If a polynomial $p$ is constant, $ p(z)\equiv\lambda$ , then

$\sigma_{\pi}(p(T))=\sigma_{\pi}(\lambda I)=\sigma(\lambda I)=\{\lambda\}=p(\sigma_{\pi}(T))$ .

(For concluding the last equality, we mention that $\sigma_{\pi}(T)\neq\emptyset$ for all $T.$ ) Since
we have only to show $\sigma_{\pi}(p(T))\subseteq p(\sigma_{\pi}(T))$ when $p$ is not constant. For any fixed
complex number $\lambda$ , let $q(z)=\lambda-p(z)$ and $q(z)=\alpha\prod_{j=1}^{k}(\mu_{j}-z)$ the factorization
of $q(z)$ . ( $\alpha$ is a nonzero complex number.) Then

$\lambda-p(T)=q(T)=\alpha\prod_{j=1}^{k}(\mu_{j}-T)$ .

Therefore, if $\mu_{j}-T$ is bounded below for all $j=1,$ $\ldots k$ , then $\lambda-p(T)$ is also
bounded below. Thus, if $\lambda\in\sigma_{\pi}(p(T))$ , then $\mu_{j}\in\sigma_{\pi}(T)$ for some $j$ and $\lambda=p(\mu_{j})\in$

$p(\sigma_{\pi}(T))$ . $\square $

Let Rat $(\sigma(T))$ be the set of all rational functions with no poles in $\sigma(T)$ .

Lemma 2.3. $\sigma_{\pi}(f(T))=f(\sigma_{\pi}(T))$ holds for every $f\in Rat(\sigma(T))$ .
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Proof. We have to show $\sigma_{\pi}(f(T))\subseteq f(\sigma_{\pi}(T))$ . Since $f$ belongs to Rat $(\sigma(T))$
}

$f(z)=p(z)/q(z)$ where $p,$ $q$ are polynomials and $q$ has no zeros in $\sigma(T)$ . Let
$\lambda\in\sigma_{\tau f}(f(T))$ . Then there exists a sequence of unit vectors $\{x_{k}\}$ such that

$||(\lambda-f(T))x_{k}||=||(\lambda-q(T)^{-1}p(T))x_{k}||\rightarrow 0$ .
Thus $||(\lambda q(T)-p(T))x_{k}||\rightarrow 0$ and this means $0\in\sigma_{\pi}(\lambda q(T)-p(T))=\sigma_{\pi}((\lambda q-$

$p)(T))$ . By Lemma 2.2, $\sigma_{\pi}((\lambda q-p)(T))=(\lambda q-p)(\sigma_{\pi}(T))$ and hence there exists
a $\mu\in\sigma_{\pi}(T)$ such that $\lambda q(\mu)-p(\mu)=0$ . $\lambda=p(\mu)/q(\mu)=f(\mu)\in f(\sigma_{\pi}(T))$ . $\square $

In order to show that (1.2) and (1.3) are valid for an arbitrary $f\in \mathcal{A}(\sigma(T)))$ we
introduce some definitions and lemmas about the continuity of set-valued functions.
Definition 2.4. For a sequence $\{\delta_{n}\}$ of compact subsets of $\mathbb{C}$ , $\lim\sup_{n\rightarrow\infty}\delta_{n}$ and
$\lim\inf_{n\rightarrow\infty}\delta_{n}$ are defined by

$\lim_{n\rightarrow}\sup_{\infty}\delta_{n}=\{\lambda\in \mathbb{C}|\lim_{n\rightarrow}\inf_{\infty}d(\lambda, \delta_{n})=0\}$

and
$\lim_{n\rightarrow}\inf_{\infty}\delta_{n}=\{\lambda\in \mathbb{C}|\lim_{n\rightarrow\infty}d(\lambda, \delta_{n})=0\}$ .

Observe that $\lim\inf_{n\rightarrow\infty}\delta_{n}\subseteq\lim\sup_{n\rightarrow\infty}\delta_{n}$ holds in general. If these two sets
coincide, then we say that $\{\delta_{n}\}$ converges and its limit set is given by $\lim_{n\rightarrow\infty}\delta_{n}=$

Iim $\sup_{n\rightarrow\infty}\delta_{n}=Iim\inf_{n\rightarrow\infty}\delta_{n}$ .

Deflnition 2.5. Let $\varphi$ : $\mathcal{L}(\mathfrak{X})\rightarrow$ { $compact$ subsets of $\mathbb{C}$ } be a set-valued function.
We say that $\varphi$ is upper semi-continuous at $T$ if $\lim\sup_{n\rightarrow\infty}\varphi(T_{n})\subseteq\varphi(T)$ whenever
$||T_{n}-T||\rightarrow 0$ . Also, we say that $\varphi$ is lower semi-continuous at $T$ if $\varphi(T)\subseteq$

$\lim\inf_{n\rightarrow\infty}\varphi(T_{n})$ whenever $||T_{n}-T||\rightarrow 0$ .

It is well-known that the spectrum $\sigma$ is upper semi-continuous at every $T\in \mathcal{L}(\mathfrak{X})$ .
The following two lemmas may also be known, but we will give proofs for the sake
of completeness.

Lemma 2.6. The approximate point spectrum $\sigma_{\pi}$ is upper semi-continuous at ev-
ery $T\in \mathcal{L}(\mathfrak{X})$ .

Proof. Suppose that $||T_{n}-T||\rightarrow 0$ and $\lambda\in\lim\sup_{n\rightarrow\infty}\sigma_{\pi}(T_{n})$ . It is to be shown
that $\lambda\in\sigma_{\pi}(T)$ . By assumption, we have $\lim\inf_{n\rightarrow\infty}d(\lambda, \sigma_{\pi}(T_{n}))=0$ and hence
there exist a subsequence $\{T_{n_{k}}.\}$ and $\lambda_{k}\in\sigma_{\pi}(T_{n_{k}})$ such that $|\lambda-\lambda_{k}|\rightarrow 0$ as $ k\rightarrow\infty$ .
Then

$||(\lambda-T)-(\lambda_{k}-T_{n_{k}}.)||\leq|\lambda-\lambda_{k}|+||T_{n_{k}}$. $-T||\rightarrow 0$ .
Since $\lambda_{k}-T_{n_{k}}$ is not bounded below for all $k,$ $\lambda-T$ also fails to be bounded below,
that is, $\lambda\in\sigma_{\pi}(T)$ . $\square $

Lemma 2.7. If $||T_{n}-T||\rightarrow 0$ and $T_{n}T=TT_{n}$ for all $n$ , then $\lim_{n\rightarrow\infty}\sigma_{\pi}(T_{n})=$

$\sigma_{\pi}(T)$ .

Proof. By Lemma 2.6, it suffices to show that $\sigma_{\pi}(T)\subseteq\lim\inf_{n\rightarrow\infty}\sigma_{\pi}(T_{n})$ . From [3,
Theorem 2], it follows that

$\sigma_{\pi}(T)\subseteq\sigma_{\pi}(T_{n})+\sigma_{\pi}(T-T_{n})$ .
(Here, $M+N$ denotes the set $\{m+n|m\in M,$ $n\in N\}$ for $M,$ $N\subseteq \mathbb{C}.$ ) Therefore
if $\lambda\in\sigma_{\pi}(T)$ , then $d(\lambda, \sigma_{\pi}(T_{n}))\leq||T-T_{n}||\rightarrow 0$ as $ n\rightarrow\infty$ . This means $\lambda\in$

$\lim\inf_{n\rightarrow\infty}\sigma_{\pi}(T_{n})$ $\square $
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The next lemma is known as Runge’s theorem. See [11, Chapter 13].

Lemma 2.8. Let $S^{2}$ be the Riemann sphere (the one-point compactification of $\mathbb{C}$)
and $\Omega$ an open subset of $\mathbb{C}$ , and suppose that $f$ is a complex-valued analytic function
on $\Omega$ . If $A$ is a subset of $S^{2}$ which has one point in each component of $ S^{2}\backslash \Omega$ , then
there exists a sequence of rationd functions $\{f_{n}\}$ , with poles only in $A$ , such that
$f_{n}$ converges uniformly to $f$ on compact subsets of $\Omega$ .

Suppose $T\in \mathcal{L}(\mathfrak{X})$ and $f\in A(\sigma(T))$ . Since $f$ is analytic on an open set $\Omega_{f}$

containing $\sigma(T)$ , there exists a sequence of rational functions $\{f_{\mathfrak{n}}\}$ with no poles
in $\Omega_{f}$ and $f_{n}$ converges uniformly to $f$ on compact subsets of $\Omega_{f}$ . The following
lemma guarantees that $f_{n}(T)$ converges to $f(T)$ in the norm topology of $\mathcal{L}(X)$ .

Lemma 2.9. Let $\Omega$ be an open subset of $\mathbb{C}$ containing $\sigma(T)$ . If $f_{n}(n=1,2, \ldots)$

and $f$ are analytic on $\Omega$ and $f_{n}$ converges uniformly to $f$ on compact subsets of $\Omega$ ,
then $||f_{n}(T)-f(T)||\rightarrow 0$ .

Proof. Choose a Cauchy domain $U$ such as $\sigma(T)\subset U\subset U\cup\Gamma\subset\Omega$ , where $\Gamma$ denotes
the boundary of $U$ . By hypothesis, $f_{n}$ converges uniformly to $f$ on $\Gamma$ . Thus,

$||f_{n}(T)-f(T)||$ $=$ $\frac{1}{2\pi i}\cdot\Vert\int_{\Gamma}[f_{n}(z)-f(z)](z-T)^{-1}dz\Vert$

$\leq$ $\frac{1}{2\pi i}\cdot M\cdot l(\Gamma)\cdot\sup_{z\in\Gamma}|f_{n}(z)-f(z)|$

$\rightarrow$ $0$

as $ n\rightarrow\infty$ . On the right-hand side of the inequality, $M=\sup_{z\in\Gamma}||(z-T)^{-1}||$ and
$l(\Gamma)$ stands for the length of $\Gamma$ . $\square $

Proof of Theorem 1.2. First, we deal with $\sigma_{\pi}$ . It suffices to show that $\sigma_{\pi}(f(T))\subseteq$

$f(\sigma_{\pi}(T))$ . By Lemmas 2.8, 2.9, there exists a sequence $\{f_{n}\}\subset Rat(\sigma(T))$ such that
$f_{\mathfrak{n}}$ converges uniformly to $f$ on $\sigma(T)$ and $||f_{\mathfrak{n}}(T)-f(T)||\rightarrow 0$ . By Lemmas 2.3, 2.7,
now we have only to check

$\lim_{n\rightarrow\infty}f_{n}(\sigma_{\pi}(T))\subseteq f(\sigma_{\pi}(T))$ .

Let $\lambda$ be in $\lim_{n\rightarrow\infty}f_{n}(\sigma_{\pi}(T))$ , that is, $\lim_{n\rightarrow\infty}d(\lambda, f_{n}(\sigma_{\pi}(T)))=0$ . Then there
exist a subsequence $\{f_{n_{k}}\}$ and $\lambda_{k}\in\sigma_{\pi}(T)$ such that $|\lambda-f_{n_{k}}(\lambda_{k})|\rightarrow 0$ as $ k\rightarrow$

$\infty$ . Since $\sigma_{\pi}(T)$ is compact, we may assume that there exists a $\mu\in\sigma_{\pi}(T)$ and
$\lim_{n\rightarrow\infty}\lambda_{k}=\mu$ . Then it follows that

$|\lambda-f(\mu)|$ $\leq$ $|\lambda-f_{n_{k}}(\lambda_{k})|+|f_{n_{k}}(\lambda_{k})-f(\lambda_{k})|+|f(\lambda_{k})-f(\mu)|$

$\rightarrow$ $0$

as $ k\rightarrow\infty$ . (The second term converges to $0$ since $f_{\mathfrak{n}_{k}}$ converges uniformly to $f$ on
$\sigma(T)$ , and the third term converges to $0$ since $f$ is continuous at $\mu.$ ) Therefore we
conclude that $\lambda=f(\mu)$ and hence $\lambda\in f(\sigma_{\pi}(T))$ .

From the remark in [3, \S 1],

$\sigma_{\delta}(f(T))$ $=$ $\sigma_{\pi}(f(T)^{t})=\sigma_{\pi}(f(T^{f}))$

$=$ $f(\sigma_{\pi}(T^{\uparrow}))=f(\sigma_{\delta}(T))$

and this completes the proof. ( $\tau\dagger$ denotes the Banach space adjoint operator of $T$

defined on the topological dual of $\mathfrak{X}.$ ) $\square $
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Remark 2.10. By Theorem 1.2, we can present another proof of the usual spectral
mapping theorem. Indeed, for any $T\in \mathcal{L}(X)$ and $f\in A(\sigma(T))$ ,

$\sigma(f(T))$ $=$ $\sigma_{\pi}(f(T))\cup\sigma_{\delta}(f(T))$

$=$ $f(\sigma_{\pi}(T))\cup f(\sigma_{\delta}(T))$

$=$ $f(\sigma_{\pi}(T)\cup\sigma_{\delta}(T))=f(\sigma(T))$ .

Remark 2.11. In the proofs of Oberai [7, Theorem 3] and Rako\v{c}evi\v{c} [10, Theo-
rem 3.4], both argued that there exists a sequence of polynomials $\{p_{n}\}$ converging
uniformly to $f$ on a neighborhood of $\sigma(T)$ and thus $p_{n}(T)$ converges to $f(T)$ . But
in general, that is an incorrect argument. For example, if $Ue_{n}=e_{n+1}$ is the bilat-
eral shift operator on a Hilbert space with its orthonormal basis $\{e_{n}\}_{n=-\infty}^{\infty}$ , then
$U^{-1}=U^{*}$ can not be approximated by polynomials of $U$ .

3. APPLICATIONS FOR ELEMENTARY OPERATORS

An elementary operator $\Phi_{A,B}$ on $\mathcal{L}(\mathfrak{X})$ is defined by $\Phi_{A,B}(X)=A_{1}XB_{1}+\cdots+$

$A_{n}XB_{n}$ for all $X\in \mathcal{L}(X)$ , where A $=(A_{1}, \ldots A_{n})$ and $B=(B_{1}, \ldots B_{n})$ are
both n-tuples of mutually commuting operators in $\mathcal{L}(\mathfrak{X})$ . $\Phi_{A,B}$ is a bounded linear
operator on $\mathcal{L}(\mathfrak{X})$ . In this section, we deal with analytic elementary operators on
$\mathcal{L}(\mathfrak{X})$ . Let $A$ and $B$ be in $\mathcal{L}(X)$ and let $f_{1},$

$\ldots$ , $f_{n}$ (resp. $g_{1},$ $\ldots g_{n}$ ) be in $\mathcal{A}(\sigma(A))$

(resp. $\mathcal{A}(\sigma(B))$ ). An analytic elementary operator $\Psi$ on $\mathcal{L}(\mathfrak{X})$ is defined by

$\Psi(X)=\sum_{j=1}^{n}f_{j}(A)Xg_{j}(B)(X\in \mathcal{L}(\mathfrak{X}))$ (3.1)

and we call $A$ and $B$ the generating operators of $\Psi$ .

Theorem LR ([6, Theorem 10]).

$\sigma(\Psi)=\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma(A),$ $\beta\in\sigma(B)\}$ . (3.2)

The formula (3.2) claims that the equation

$f_{1}(A)Xg_{1}(B)+\cdots+f_{n}(A)Xg_{n}(B)=Y$ (3.3)

has a unique solution $X$ for each $Y$ if and only if the complex-valued function $H$

of two variables of the form $H(z, w)=f_{1}(z)g_{1}(w)+\cdots+f_{n}(z)g_{n}(w)$ has no zeros
on the Cartesian product $\sigma(A)x\sigma(B)$ .

In [5], we obtained the following result for the approximate point and defect
spectra of $\Psi$ .

Theorem $K$ ([5, Theorem 1]).

$\sigma_{\pi}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\pi}(A))\beta\in\sigma_{\delta}(B)\}$ (3.4)

and

$\sigma_{\delta}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\delta}(A),\beta\in\sigma_{\pi}(B)\}$ . (3.5)
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In the view of the theory of operator equations, it is instructive to know the
condition for that $\sigma(\Psi)=\sigma_{\pi}(\Psi)$ or $\sigma(\Psi)=\sigma_{\delta}(\Psi)$ holds. First of this section, we
give an application of Theorem LR and Theorem $K$ to this problem. We consider
the situation where the generating operators $A$ and $B$ of $\Psi$ are both decomposable
operator in the sense of [2, p. 30].

Lemma 3.1. Let $T\in \mathcal{L}(\mathfrak{X})$ be a decomposable opemtor. Then
$\sigma(T)=\sigma_{\pi}(T)=\sigma_{\delta}(T)$ . (3.6)

Proof. Since $T$ is decomposable, $\sigma(T)=\sigma_{\pi}(T)$ holds. (See [2, Chapter 2, Corollary
1.4].) It is known that the decomposability and the 2-decomposability of $T$ is
equivalent ([8, Corollary 1]) and Frunza [4] showed that if $T$ is 2-decomposable
then the adjoint $\tau\dagger$ is also 2-decomposable. Thus, if $T$ is decomposable, then $\tau\dagger$ is
alsoa decomposable operator and hence $\sigma_{\delta}(T)=\sigma_{\pi}(T^{t})=\sigma(T\dagger)=\sigma(T)$ . $\square $

Theorem 3.2. If the generating operators $A$ and $B$ of $\Psi$ are both decomposable,
then

$\sigma(\Psi)=\sigma_{\pi}(\Psi)=\sigma_{\delta}(\Psi)$ . (3.7)

Proof. Direct consequence of Theorem LR, Theorem $K$ , and Lemma 3.1. $\square $

Corollary 3.3. If $A$ and $B$ are both decomposable, then, for the equation (3.3),
the following three conditions are mutually equivalent.

(i) There $e$ tzsts a unique solution $X$ to (3.3) for each $Y$ ,
(ii) There $e$ vists at least one solution $X$ to (3.3) for each $Y$ ,
(iii) There exists a positive number $c$ such that if $X_{1}$ (resp. $X_{2}$ ) is a solution to

(3.3) for $Y_{1}$ (resp. $Y_{2}$ ) then $||Y_{1}-Y_{2}||\geq c||X_{1}-X_{2}||$ .

Proof. (i) is equivalent to the condition that $0\not\in\sigma(\Psi)$ where $\Psi$ is the corresponding
analytic elementary operator to the equation (3.3). Similarly, (ii) (resp. (iii)) is
equivalent to the condition that $0\not\in\sigma_{\delta}(\Psi)$ (resp. $0\not\in\sigma_{\pi}(\Psi)$ ). $\square $

In [5, Remark 2], we presented the following two questions. Can the inclu-
sion (3.4) be replaced by $=?$ If ec is a Hilbert space, can the inclusion (3.5)
be replaced by ( $=’$ ? For an arbitrary elementary operator $\Phi_{A,B}$ , C. Davis and
P. Rosenthal showed the next result.

Theorem DR ([3, Theorem 3]).

$\sigma_{\pi}(\Phi_{A,B})\subseteq\{\sum_{j=1}^{n}\alpha_{j}\beta_{j}|\alpha_{j}\in\sigma_{n}(A_{j}))\beta_{j}\in\sigma_{\delta}(B_{j})\}$ . (3.8)

Moreover, if ec is a Hilbert space,

$\sigma_{\delta}(\Phi_{A,B})\subseteq\{\sum_{j=1}^{n}\alpha_{j}\beta_{j}|\alpha_{j}\in\sigma_{\delta}(A_{j}),\beta_{j}\in\sigma_{\pi}(B_{j})\}$ . (3.9)

By means of Theorem DR and Theorem 1.2, we can make a slight progress for
getting the condition for the equalities of (3.4) and (3.5).

Theorem 3.4.

$\sigma_{\pi}(\Psi)\subseteq\{\sum_{j=1}^{n}f_{j}(\alpha_{j})g_{j}(\beta_{j})|\alpha_{j}\in\sigma_{\pi}(A),\beta_{j}\in\sigma_{\delta}(B)\}$ . (3.10)
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Moreover, if ec is a Hilbert space,

$\sigma_{\delta}(\Psi)\subseteq\{\sum_{j=1}^{n}f_{j}(\alpha_{j})g_{j}(\beta_{j})|\alpha_{j}\in\sigma_{\delta}(A),$ $\beta_{j}\in\sigma_{\pi}(B)\}$ . (3.11)
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