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Asymptotic Behavior of Solutions for a Delay
Reaction-Diffusion Equation of Neutral Type*

. B SHI

Abstract: In this paper, we consider a delay reaction-diffusion equation of neu-
tral type of the form:

(7]
7 (Ut 2) + pu(t - 7,2)) + q(t, 2)u(t - 0, 2) = a*Au(t, z) (*)
for (t,z) € R* x @ with homogeneous Neumann boundary condition:

%u(t,z) =0 for (t,z) € R x 8Q (+x)
and initial condition:
u(t,z) = ¢(t,z) for (t,z) € [-A,0] x Q, (% * %)

where 7 > 0,0 € R*,p,a € R, A = max{7,0},q(t,z) >0 for (t,z) € R* xQ,Q
is a bounded open region in R™,80 is the boundary of §2, which is piecewise
smooth, n is the exterior normal direction to 992 and A is the Laplacian
operator. We study various cases of p in the neutral term and obtain that
if p > 1 then every nonoscillatory solution of Initial and Boundary Value
Problem (*)-(***) tends uniformly in z € @ to zero as t — oo; if p = —1
then every solution of Initial and Boundary Value Problem (*)-(***) oscillates
and if p < —1 then every nonoscillatory solution of Initial and Boundary Value
Problem (*)-(***) goes uniformly in z €  to infinity or minus infinity under
some hypotheses.
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type, oscillation
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1 Introduction

Consider the delay reaction-diffusion equation of neutral type of the form:

2 (0(t,2) + put = 7,2)) + a(t,D)ult - 0,2) = a*Au(t, ) 1)
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for (t,z) € R x Q with homogeneous Neumann boundary condition:

—é%u(t, z) =0 for (t,z) € RT x o0 (2)
and initial condition:
u(t,z) = ¢(t,z) for (t,z) € [-1,0] x 2, (3)

where 7 > 0,0 € R*,p,a € R,\ = max{7,0},q(t,z) >0 for (t,z) Rt xQ,Q is
a bounded open region in R™, 952 is the boundary of 2, which is piecewise smooth,
n is the exterior normal direction to 2 and A = Y1, 5"’;2; is the Laplacian
operator. ’

If we do not consider the diffusive term in Equation (1), then it reduces to a delay
differential equation of neutral type of the form:

ad; (z(t) + pz(t — 7)) + q(t)z(t — o) =0 for t € RT. | (4)

The asymptotic behavior and oscillation of solutions of Equation (4) have been
extentively investigated (see for instance [1-5,7,10-16)).

In this paper, we shall apply the idea developed in the above literature to study
the asymptotic behavior and oscillaton of Initial and Boundary Value Problem (1)-
(3) and discuss various cases for p > —1, p = —1 and p < —1. One may refer
the authors [8] for the study on Volterra reaction-diffusion equations of neutral type
and Wu [9] for the general theory on delay reaction-diffusion equations. The method
developed in this paper may be applicable to the investigation of delay reaction-
diffusion equations of neutral type.

By a regular or classical solution of Initial and Boundary Value Problem (1)-
(3) we mean a function u(t,z), which is defined for ¢t > —) and z € Q; satisfies
Equation (1) for (t,z) € Rt x (), satisfies homogeneous Neumann boundary condition
(2) for (t,z) € R* x 0 and satisfies initial condition (3) for (¢,z) € [-),0] x Q.

For the existence, uniqueness and regularity of solutions of Initial and Boundary
Value Problem (1)-(3), one is refered to Wu [9].

A solution u(t,z) of Initial and Boundary Value Problem (1)-(3) is said to be
eventually positive or negative if there exists a t* € R* such that u(t,z) >0 or
u(t,z) <0 for t > t* and z € Q.

A solution wu(t,z) of Initial and Boundary Value Problem (1)-(3) is said to be
oscillatory if it is neither eventually positive nor eventually negative.

2 The Case: p> —1

THEOREM 1. Assume that for any infinite sequence of disjoint open intervals I; C
Rt for i =1,2,--- with supl; & oo as i — oo and any sequence of open
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subregions ; CQ for i=1,2,--- such that for any ig > 1

oo

Z / q(t, z)dzdt = oo. (5)

=01 % Q;

Let u(t,z) be a nonoscillatory solution of Initial and Boundary Value Problem (1)-
(3) with p > —1. Then

tl_l_glo u(t,z) =0 uniformly in z € Q. : (6)
PRroOOF. Without loss of generality, we let u(t,z) be an eventually positive solution
of Initial and Boundary Value Problem (1)-(3). So, there exists a ¢; € Rt such
that u(t,z) >0 for ¢t > ¢; and z € Q. This follows that u(t —7,2) > 0 and

u(t—o,z) >0 for t >ty:=t; + )\ and z € Q. Let
v(t,z) = u(t,z) + pu(t — 7,z) for (¢,z) € Rt x Q. (7)

Then, we have from Equation (1)

%v(t, z) = —q(t,z)u(t — o,z) + a?Au(t,z) for (t,z) € RY x Q. (8)

Integrating the both sides of (8) over 2, we have that

ditV(t) = — /q(t’, z)u(t — o, z)dz + a? /Au(t,x)d:c for (t,z) € Rt x Q, 9)
(9] Q

where V(t) = [v(t,z)dz for ¢t € R*. »
By virtue of the Green’s first identity (see for instance Protter and Weinberger
[6]) and homogeneous Neumann boundary condition (2), we know that

/Au(t, z)dz = / %u(t, z)dz =0 for t € Rt.
Q a0

Therefore, we obtain from (9)

%V(t) = —h/q(t, z)u(t — o,x)dz for (t,z) € Rt x Q. (10)

In the sequel, we shall consider two cases: (I). p € Rt and (II). -1 <p<0.

Case I. p e RT '

(From (7) and (10), we know that v(¢,z) >0 and %V(t) <0 for t >ty and
z € ). In what follows, we want to show that (6) holds. If it is not the case, then
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there exists a sequence of points (t(i),z(i)) €RT xQ for i =1,2,--- such that
Hm u (t(i) -0, x(i)) = § = const. > 0.

1—00

We may let {t()} be an increasing sequence. Hence, we can select an 4; > 1
such that ¢ > t, for ¢ > 4; and u(t(i) -0, x(i)) > % for 7 > i;. From the
continuity of the solution wu(t,z), there must exist an infinite sequence of disjoint
intervals I; C Rt with the property: infl;, > ta,supl; & 00 as ¢ — oo and a
sequence of open regions ; C 2 such that (t(i);x(i)) €Il; xQ; for 1 >14; and

u(t — o,z) > -g— for (t,z) € I; x Q;,1 > 1. (11)

For any t > 5, there exists an i3 > 4; such that supl;, <t < suplj,+;. This
follows from (10) and (11) by noting that V'(t) is nonincreasing

V(supl;) - V(inf ;) < —g / q(t, z)dzdt,

I." Xﬂ,‘l

. \ )
V (sup I;;+1) = V (inf I;; 1) < -3 / q(t, z)dzdt,

Ly 1 %9441

......

V(t) = V (infI;,) < V (supLi;) — V (inf L) < —g / q(t, z)dzdt.
I"zxﬂgz
Summing up the above i; — i; + 1 inequalities, we have
§ &
V) -V (L) <33 / qt, z)dzdt.
=T X0
This follows that V() - —oo as t — oo and contradicts that v(¢t,z) > 0 for
t>1t; and z € Q and the definition of V() for t € R*.
Case II. —-1<p<0
We first prove that V(t) > 0 for t > t. If it is not the case, by noting that
V(t) in nonincreasing for t > ¢, we can suppose that there exists a t3 > ¢ such

that V(t) < 0 for t > t3. Therefore, there exists a u = const. > 0 such that
V(t) < —p for t > t3. So, we have from (7)

U(t) < —p—pU(t—7) for t 2> t3, (12)

where U(t) = [u(t,z)dz for t € RT.
If p= -1, we have from (12) U(tg +ir) < —(i+1)p+ U(t3 — 7) = —oo. This
is a contradiction.
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If -1 <p <0, we have from (12)

1-(=p)**! i+1 T
itp +(=p)'"U(ts—71) > <O0.

Ults+i1) < —p - 17

This is also a contradiction.

In what follows, we can prove that (6) holds by using the same arguments as that
in Case I. We omit it. This completes the proof.

REMARK 1. We now show that Initial and Boundary Value Problem (1)-(3) with
p > —1 has an eventually positive solution which tends uniformly in € Q to zero
as t — oo by an example.

Consider the equation:

o (u(t,2) + pult = 1,2)) + a(t,2)ult — 2,2) = Au(t,2) (13)

for t >3 and z € (1,2) with homogeneous Neumann boundary condition:

o 0
—_ = — >
axu(t, 1) axu(t, 2) for t >3 | (14)

and initial condition:

u(t, z) =§ for (t,z) € [1,3] x [1,2], (15)

2_
where p > ~1 and q(t,z) = 1—33 - S_gz‘*; %‘f—ltjﬂ'

It can be verified that u(t,z) = £ is a positive solution of Initial and Boundary
Value Problem (13)-(15). Obviously, if p > —1, then gq(¢,z) is not infinitely

integrable. On the other hand, if p = —1, then ¢(t,z) is infinitely integrable.

3 The Case: p= -1

THEOREM 2. Assume that for any increasing sequence of disjoint open intervals
Is CRY for i =1,2,--- with supl; - oo as i — oo and any sequence of
subregions Q; CQ for i =1,2,--- such that for any ig > 1

/tq*(t) i / q(s,r)dzds = oo, (16)

° i=i°([t—a,sup I;) n I;)XQ,‘

where ¢*(t) := infzeqq(t,x) for t € RY. Then every solution of Initial and
Boundary Value Problem (1)-(8) with p= —1 oscillates.

PROOF. Suppose, for the sake of contradiction, that Initial and Boundary Value
Problem (1)-(3) has an eventually positive solution u(t,z). Take a ¢; € Rt such
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that u(t,z) >0 for t > t; and z € Q. So, u(t-— 7,z),u(t —o,z) > 0 for
t>ty:=t1+ X and z €. Let

v(t,z) = u(t,z) —u(t — 7,z) for (¢t,z) € RT x Q. (17)

Then by Equation (1), we have
-%vv(t, z) = —q(t, x)u(t — 0,z) + a®Au(t,z) for (t,z) € R x Q. (18)

Integrating the both sides of (18) over {2, we have from Green’s first identity that
(10) holds. From (10), we know that V() is nonincreasing for ¢ > t;. By using the
similar arguments as in the proof of Theorem 1, we know that V() >0 for ¢t > tz
This follows from (17) that

Ut) >U(t—7) for t > ts. (19)

Therefore, there exist an M’ = const. >0 and a t3 > to such that U(f) > M’ for
t>t3 and U(t—7),U({t—0) > M’ for t >tg:=t3+ A

By the definition of U(t), there exists a subsequence (t(‘), z(‘)) € ;xQ; CRYxQ

such that u(t—o,z) > M := 'ﬂx'be%ﬁ for (t,z) € I; x Q; C Rt x Q, where infI; > 4
and Q; C Q for i =1,2,---. It is obvious that we can let I; be an infinite sequence
of disjoint open intervals with supl; & oo as 7 — oo. In fact, if it is not the case,
then we consider ¢ > sup ;. This will lead a contradiction.

By virtue of (10), we can get

%V(t) <- / a(t, 2)u(t — 0, 7)dz < —M / g(t,z)dz for t€ Lyi=1,2, -

For any t > t4, we select the least 7; such that ¢ < infl;,. This yields by
noting that V'(t) is nonincreasing

|4 (sup Ii1) - V(t) < | 4 (sup Iix) - V(ianil)
< -M f q(s,z)dzds for t > 4,
([t’supl‘l]nlil)xn"l

V(suplj41) =V (inf I;; 1) < —M / q(s,z)dzds for t > t4,
([0 By 1] (Vg 2) ¥y
V(supL) -V (inf ;) < —M / q(s, z)dzds for t > tg

([t,sup | n I;)XQ"

......
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Summing up the above inequalities, we obtain that

oo
Vi) > M Z / q(s,z)dzds for t > t4.
=i (tsup L)) L) %9

Now, we let T be such that T = [t;Tt—i] for infl;, >t > t4, where [ is the
greatest integer function. Then, we have from (17)

Uty > Ut-1)+M S f q(s, z)dzds
; i=1y (itsup1i) N L)<

> Ut-Tr) + M| S I g(s,z)deds + - - -
1=t ([t,sup L] nI,')Xﬂi

+ § f q(s,z)dzds
=t ([t—(T-1)7sup LI I:) x %
> MT § J q(s,z)dzds for infI;; >t > t4.
=t ([tsup L] L) xS

Again, by making use of (10) and (19), we have

VW) < —aOUE-0) (20)

o0
< —q*(t)MT Z / q(s, z)dzds
=h ((t-o,5up LI I:) x %
= —H(t) for infl;, >t >4

Noting that £ — L as t — oo, we have

tq*(t) 3 / q(s, z)dzds ’
=41 ([t—a,sup L] () L) x 9

oo
Hence, we have from (16) and (21), [ H(t)dt = oo. This yields from (20) that

o
V(t) = —oo0 as t — oo. This is a contradiction. The proof is complete.
REMARK 2. In a matter of fact, there is no nonoscillatory solution for Initial and

Boundary Value Problem (1)-(3) with p = —1. It can be also seen from the example
in Remark 1.
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4 The Case: p< —1

THEOREM 3.Assume that the assumptions in Theorem 1 hold. Let wu(t,z) be a

nonoscillatory solution of Initial and Boundary Value Problem (1)-(8) with p < —1.
Then

lim u(t,z) = 00 or — oo uniformly in z € L.

t—oo :

PRrROOF. Without loss of generality, we let u(¢,z) be an eventually positive solution
of Initial and Boundary Value Problem (1)-(3). We first show that (6) does not hold.
If it is not the case, then lim; ;o v(t,z) = 0 uniformly in z € by (7). This
follows that lim¢,o V() = 0. But, we know that V(t) is nonincreasing from
(10). Hence, V(t) > 0 for t > t;. From the definition of V(t), there exists a

sequence of points (t(i),z(‘)) 1) >ty and () € Q for i =1,2,--- such that
v (t(i),z(‘)) > 0. Thus, we have from (7)

u (t(i),z(i)) > —pu (t(i) -, Z(i)) for t® >t and 29 €Q,i=1,2,---.

This contradicts (6) by noting that p < —1 or —p > 1.
In the sequel, we shall prove that

lim u(t,z) = oo uniformly in z € Q. (22)
t—o0

If it is not the case, then there exists a sequence of points (t(‘), x(i)) ERt xQ
for i=1,2,--- such that 0 < lim u 10 — a,x(‘)) =L < oo.
1—00

We may let {t(i)} be an increasing sequence. So, we can choose an 7; > 1 such
that t®) > ¢; for i >4, and 0 <u (t(") - o, a:(")) < % for i > ;.

By virtue of the continuity of solution wu(t,z), we can take an infinite sequence
of disjoint open intervals I; C Rt with infI;, > ty,supl; - 0o as i - 0o and a
sequence of subregions Q; C 2 for i =1,2,--- such that (t(‘),z(‘)) €I; xQ; and

O<u(t—o,z) < % for (t,z) € I; x Q4,7 > 1;.
As in the proof of Theorem 1, we have lim;, o, V(t) = —00. Consequently,
tl_lbrgo v(t,z) = —oo uniformly in z € Q. (23)

In a matter of fact, noting that v(¢,z) > 0 can not hold for all (t,z) € R* x Q,
if (23) does not hold, then there exists a sequence of points (t(‘),x(i)) eRT xQ

such that 0 > lim; oo v (t("),x(")) = —-M* > —o00, where M* = const. > 0.
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We may let {t(i)} be an increasing sequence. So, there exists an iy > 1
such that v (t(i),x(i)) > —-M* -1 for ¢ > i3. By continuity of wv(¢,z), there
exist an infinite sequence of disjoint open intervals I; C Rt for i =1,2,--- with
infI;, > ta,supl; & oo as i — oo and a sequence of subregion ; C Q for
1=1,2,--- such that 0> v(t,z) > —M* —1 for (t,x) € I; x Q;,1 > ia.

Let I? x Q2 C Rt x Q for i =1,2,--- be such that

(t,2) <0 for (t,z)e?x,i=1,2,---,
vtk 2 >0 otherwise.
Therefore, we have
V(i) = [o(t,z)dz= [ v(t,z)dz + f v(t,z)dz

Q o\n?
> [o(t,z)dr for tGIOi—l 2

a?

On the other hand, it is easy tosee that UI; C UI? and U c U for i > io.

Hence, we obtain that V() > f v(t, x) dz > —(M* 4+ 1)mes); for t € I;,i > i,

where mesQ; means the measure of ©; for i =1,2,-.-.. This is a contradiction if
we let ¢t — oo.

Now, dividing by u(t — 7,z) in the both sides of (7), we have
o(t,z) _  u(t =)
u(t—T1,7) u(t-T,2)

» ; (3) 2(9)
Taking (t(i) —7+o0, x(i)) € I;xQ; for 1 =1,2,---, we know that tli)rgno ﬁ%_—%&?% =
—o00. This contradicts (22). Thus, the proof is complete

REMARK 3. We can show by an example that Initial and Boundary Value Problem
(1)-(3) with p < —1 hasan eventua.lly positive solution u(t,z) which goes uniformly
in £ € Q to infinity as t = oo.

Consider the equation:

+p>p for t>t; and z € Q. (24)

gt- (u(t,z) + pu(t — 1,z)) + q(t, z)u(t — 2,z) = Au(t, z) (25)
for t >3 and z € (1,2) with homogeneous Neumann boundary condition:
-agx-u(t, 1) = -gx—u(t,Z) for t >3 (26)
and initial condition:
u(t,z) =zt for (¢,z) €[1,3] x[1,2], (27)
where p < -1 and ¢q(t,z) = _%:__i_'g.

It can be verified that u(t,z) = xt is a positive solution of Initial and Boundary

" Value Problem (25)-(27). Obviously, if p < —1, then g¢(t,z) is not infinitely

integrable.
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