Nihonkai Math. J.
Vol. 11(2000), 167-202

THE INDEX FORM OF A GEODESIC
ON A GLUED RIEMANNIAN SPACE

Masakazu Takiguchi

Abstract

A topological space obtained from Riemannian manifolds by identifying their iso-
metric submanifolds is called a glued Riemannian space. In this space, we consider the
variational problem with respect to arc length L of piecewise smooth curves through
the identified submanifold B. The first variation formula shows that a critical point
of L is a curve which is a geodesic on each Riemannian manifold and satisfies certain
passage law on B. We call this curve a B-geodesic. The second variation formula for
a B-geodesic is also obtained. Moreover, we study the index form and B-conjugate
points for a B-geodesic in this variational problem. Especially, in a glued Rieman-
nian space constructed from Riemannian manifolds of constant curvature, we have
the passage equation which make the relation between the shape operator and the
first B-conjugacy clear.

0. Introduction

In Riemannian manifolds, various results have been given on geodesics by many authors.
Recently, N.Innami studied a geodesic reflecting at a boundary point of a Riemannian man-
ifold with boundary in [4]. Let M be a Riemannian manifold with boundary B which is
a union of smooth hypersurfaces. A curve on M is said to be a reflecting geodesic if it is
a geodesic except at reflecting points and satisfies the reflection law. He dealt with the
index form, conjugate points and so on, as in the case of a usual geodesic. Moreover, in
[5], he generalized these to the case of a glued Riemannian manifold which is a space ob-
tained from Riemannian manifolds with boundary by identifying their isometric boundary
hypersurfaces.

The purpose of this paper is to generalize some of his results to the case of a glued
Riemannian space, which is obtained from Riemannian manifolds M; and M, (we allow
the case where dim M, # dim M,) by identifying their isometric submanifolds B; and B,.
The detailed definition will be described in Section 1. We consider the variational problem
with respect to arc length L of piecewise smooth curves through the identified submanifold
B. The first variation formula shows that a critical point of L is a curve which is a geodesic
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on each Riemannian manifold and satisfies some passage law on B. We call this curve a
B-geodesic. We can apply our results to the glued Riemannian manifolds as a special case
where dim M; = dim M, = dim B + 1. Moreover, examining the case where M; = Mj,
B; = B, and an endpoint of the curve through B coincides with a starting point, we can
also apply our results to the endmanifold case. For example, see [6]. Note that geodesics
in this special case are normal to the submanifold, while B-geodesics are not normal to B
in general.

In Section 1, for a piecewise smooth curve through a point of the identified submanifold
B, we define a variation of such a curve. We give the first variation formula of arc length and
show that the critical curve is a B-geodesic. The second variation formula for a B-geodesic
is obtained in Section 2. Moreover we express the index form in terms of the passage
endomorphism A which is defined by using the shape operators of B in M; and M;. In
Section 3, we consider the variation of a B-geodesic through B-geodesics and definitions of
a B-Jacobi field and a B-conjugate point are given. In Section 4, we study fundamental
properties of B-conjugate points and the index form. Finally, in Section 5, we consider the
relations between the map A and S which is the difference of the shape operators of B in
M, and M,. Moreover, in a glued Riemannian space obtained from Riemannian manifolds
of constant curvature K; and K5, we give the passage equation which make the relation
between the shape operator and the first B-conjugacy clear.

The author would like to express his sincere gratitude to Professor N. Abe for suggest-
ing this problem and his helpful advice and to Professor S. Yamaguchi for his constant
encouragement. We also express our gratitude to the referee for useful comments resulting
in the improvement of this paper.

1. Preliminaries

Let N, and M) be manifolds (possibly with boundary) for p =1,---;,nand A = 1,---,m.
We allow the case where dim N; # dim N; and dim M, # dim M, for i # j and k# [. A
map @ : N — M from the topological direct sum N := N, [[---[I N to M = M, ]I
-« -1 My, is smooth if @|N, is smooth. A tangent bundle TM of M is the direct sum
TM =TM,[1---1ITM,,, where T M, denotes the tangent bundle of M,. We note that a
tangent bundle TM on M is not constant rank vector bundle on M. We put T,M := T, M),
for p € M. We define a map mzy : TM — M by

ma(vp) i=p foruv, € T, M.

A wvector field V on M is a map V : M — TM such that mg; o V = idg, where idyy; is
the identity map on M. If V|M, : M\, — TM, is smooth vector field on each M,, then
V is smooth. Let I, be a closed interval in R which is a manifold with boundary, for
p=1,---n. Amapa:I:=L][]---11I, = M is called a curve on M if & is smooth.
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Let M, be a manifold (possibly with boundary) with a submanifold B, for A = 1,2
and ¢ a diffeomorphism from B; to B,. A glued space M = M, Uy M, is defined as
follows: M is the quotient topological space obtained from the topological direct sum
M = M, ][I M, of M; and M, by identifying p € B, with ¥(p)€ B,. We allow the case
where B; = B, =0, M; = 0 or M, = (0, where 9 is the empty map. Let 7 : M — M be
the natural projection which is defined by m(p) = [p], where [p] is the equivalence class of
p. Let Ny be a manifold with a submanifold Cy (A = 1,2), 7: C; = C; a diffeomorphism
and N = N, U, N, a glued space. A glued smooth map ¢ : N — M on N derived from
a smooth map @ : N — M or, simply, a smooth map on N is defined by ¢ = 70 . We
note that a glued smooth map on N is considered as a map on N which, possibly, take two
values at [p] (p € Cy»). A glued smooth map ¢ is continuous if o(p) = ¢(7(p)) holds for
any pe C;.

A glued tangent bundle TM of M is the glued space TM; Uy, T M,, where ¢, :T'B, —
T B, is the differential map of . Let # : TM — TM be the natural projection which
is defined by #(v) = [v], where [v] is the equivalence class of v. For p € M, we set
T,M := #(T,M) = {[v] € TM|v € T,M}. We define a map 7y : TM —M by

7m([vp]) := [p] for v, € T, M.

We note that momy = mp o# holds. A glued vector field V : M — TM on M derived from
a vector field V on M or, simply, a vector field on M is defined by V = 7o V. A glued
vector field V is called a smooth glued vector field provide V' is glued smooth. If a glued
vector field V on M is continuous, then we can regard it as a cross section of "M over M;
that is mpr o V = idy,. Similarly, we can define a glued vector field (or vector field) along a
curve a: I:= 111 I,— M.

Let TxM be the dual vector space of T,M. We put T*M = T*M,11T*M;, where
T*M, is the cotangent bundle of M. For 8, (€ T;M), @q (€ Ty M) € T*M, we define
an equivalence relation ~ as follows: f,~, if and only if 6, = @, (p = ¢) or Oplr,B, =
¥* (@) (p € Br, ¢ = 9(p)) or &glr,s, = ¥*(8,) (¢ € B1, p = ¥(q)), where ¥ is the
dual map of ¥.. The quotient space obtained from T*M by this equivalence relation is
denoted by T*M. Let # : T*M — T*M be the natural projection, that is, #(f) := R
where [0] is the equivalence class of §. For p € M, we set Ty M := #(T; M) and define a
map [9) : T,M — R by [6]([0]) := 6(d) for 6 € T;M and o € T,M. Then we can regard
T;M as the dual of T,M. We put T (M) := T (M) [I1 T™*(Mz), where T™*(M,) is the
(r, s)-tensor bundle of My. An (r, s)-tensor field on M is a cross section of T™*(M). The
definition of the smoothness of a tensor field on M is similar to that of a vector field on M.
Similarly, we can define the equivalence relation on 77*(M) induced from those on ™
and T*M, and denote the quotient space by T™*(M). Let # :T7*(M) — T"*(M) be the
natural projection. A glued tensor field T derived from a tensor field T on M is defined by
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T = #oT. A glued tensor field T derived from a tensor field T on M is (glued) smooth if
T is smooth.

Definition 1.1.  Let (M), g») be a Riemannian manifold with a Riemannian submanifold
B, for A = 1,2 and ¢ an isometry from B, to B,. Let g be the metric on M which is defined
to be g, = (ga)p for p € M. A glued Riemannian space (M, g) = (My,g1) Uy (M2, 9,) is a
pair of a glued space M = M, Uy, M, and a glued metric g on M derived from g which is
a glued tensor field derived from the (0, 2)-tensor field g.

We note that, for any glued smooth vector fields V and W on M derived from smooth
vector fields V and W on M, respectively, a map g(V, W) : M — R defined by

9(V,W)(p) := §(Vp, W)

is glued smooth on M derived from a smooth map g(V,W): M — R.

From now on, identifying B, with B, by ¢, we put B := B, & B; and T,B := T, B,
T,B, for p € B and omit the symbol [:] of the equivalence class. In particular, [M),] :=
w(M,) will be denoted by M). We call a map a : [a, to] [1[to, b)) = M a glued curve derived
from a curve @ : [a,to) I[to, 4] = M or, simply, a curve on M if a : [a,to] I1[to,b)] &> M
is a continuous glued smooth map derived from a. Let a : [a, o] [I[to,b] & M be a glued
curve derived from a curve & :[a,to) [I[to,b] — M. The (glued) velocity vector field of
ais o = tod'. We put o/(tp — 0) := 7 o @j(tp) and o/(to + 0) := 7 o @(to), where
a, := al[a, to] : [a,tp) =M and @, := &|[to, d] : [to,b] = M. We note that a glued velocity
vector field is considered as a glued vector field along & and not generally continuous.
We call a : [a,b] & M a piecewise smooth curve on M provided there is a partition
a=a9<a < - <ag < agq1 = bof[a,b] such that a|[a;—1, ai+1] : [ai-1, ai] [a, aiy1] > M
is a glued curve. We call a; (j =1, - -, k) the break.

Remark. Let M be a smooth manifold. A usual piecewise smooth curve « : [a,b]— M
is considered as a piecewise smooth curve in a glued space. Moreover the fact that a usual
piecewise smooth curve may have two velocity vectors o/(to — 0) and o’ (¢p +0) at the break
to can be naturally explained as above.

If M is a glued Riemannian space such that (M,g) = (M;, g1) Uy (Ms, g2), then let
Q(M;, My; B) =: {1 be the set of all piecewise smooth curves o : [a,b] — M such that there
is to € (a,b) with a(ty) € B, a([a,to)) C M, and a([te,b]) C M,. We note that a glued
Riemannian space is not a smooth manifold in general. But we can define arc length of
such a curve as follows:

L(@) = [ le'@hd + [ o/ ®)lade,
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where || - ||x is the norm of a tangent vector to M.

Definition 1.2.  Let a € {2 be such that a(ty) € B (to € (a,b)). A variation of a in
is a map
¢ :la,b] x (—e,6) =+ M,

for some € > 0, such that

(L1) 0a() = 0(r5) €,
(1.2) wo(t) = a(t) for alla <t < b,
(1.3) p(to(s),s) € B,

where a = ag(s) < a;(s) < -+ < to(s) = aj(s) < -+ < ax(s) < ar41(s) = b are the breaks
of ¢, (a;(0) = a; (i = 1,-- -, k) and t9(0) = to = a;). We assume that a;(s)’s are smooth
with respect to s.

A fized endpoint variation ¢ of « is a variation such that

(1.4) o(a,s) =ala) and (b, s) = a(b).

Let D* be Levi-Civita connection of Riemannian manifold M) (A = 1,2). The vector
fields Y and A along « given by Y (t) := (8p/8s)(t,0) and A(t) := (D*/ds d¢p/Bs)(t,0)
are called variation vector field and transverse acceleration vector field of ¢ respectively,
where D*/ds := Dj5, and D*/3t := Dj5. We write X(t,s) = (0p/0t)(t,s) (X(t) =
X (t,0) = o/(t)), Y(t,5) = (8p/0s)(t, s) (Y(t) = Y(t,0)) and A(t,s) = (D*/8s dp/ds)(t, s)
(A(t) = A(t,0)). The projection from T, M), to T,B is denoted by tan.

Definition 1.3. A curve a € Q such that a(ty) € B is a geodesic through B or a
B-geodesic if a satisfies the following conditions:

(1.5) al[a, to] and a|[ty, b] are geodesics, that is D)o’ = 0, on M; and Mj, respectively,

(1.6) tan o/(to — 0) = tan o/(to + 0),

(1.7) 91(c/(to — 0), &/ (to — 0)) = ga(a(to + 0), &' (o + 0)).

For each s € (—¢,¢), let L(s) be the length of the longitudinal curve ¢, : t— @(t,s).
We shall find formulas for the first and second variation of arclength on ¢, that is, for

dL d’L
' _ aL " e
L (0) - ds s=0 and L (O) ds? =0 ’
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where the latter is considered when L'(0) = 0.

Lemma 1.4. Let o be an element of  such that a(ty) € B. If ¢ is a variation of o in
Q) with the variation vector field Y, then we have that

(1.8) al(0)a!(to — 0) + Y (to — 0) = a;(0)a/(to + 0) + Y(¢o + 0).
In particular,

(19) t:)(())a'(to - 0) + Y(to - 0) = tB(O)a'(to + 0) + Y(to + O) € Ta(to)B-

Moreover, if o/(tg — 0) ¢ Tu(to)B and o' (to + 0) & Ty(t,) B, then we have that

91(Y (to — 0),norc’ (o — 0)) _ _ g2(Y(to + 0), nora’ (¢ + 0))

(1.10) o(0) = " g1(o/(to — 0), nore (to — 0)) g2(a’(to + 0),nora’(to + 0))

This lemma shows that variation vector fields 5re elements of the set 7,2 defined as below:

Definition 1.5. If o € Q, the set T, consists of all vector fields Y along a which
satisfy the following condition : For i =1, - - -, k, there is a real number d; such that

(1.11) dia(a; — 0) + Y (a; — 0) = dia’(a; + 0) + Y (a; + 0),
and, in particular,.

(1.12) dja'(to —-0)+Y(t—0) = d,-a'(to +0) + Y(to +0) € Ta(to)B-

We note that o’ € T,Q (in this case, d; = —1). Conversely, given Y € T, we can
choose a variation whose vector field is Y. In fact, we can know this claim from the following
lemma.

Lemma 1.6. If a € QandY € TQQ, then there is a variation of o whose variation
vector field is Y.

We compute the first variation formula.

Proposition 1.7 (First Variation Formula). Let o : [a,b] & M be an element of
Q) with constant speed ¢ # 0 such that a(ty) € B. If ¢ is a variation of a in Q with the
variation vector field Y, then
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1 t b
L'(0) = - {/a 0gl(Y, o")dt + s 92(Y, a")dt}

1 j—l ! k /
+- {Z D1 (Y, )+ D Apga(Y, )}

i=1 i=j+1

+= {0 (¥ (to — 0), @'(t0 ~ 0)) — g2(¥ (t0 +0), o/ + 0))}

1
+-1{02(Y(0), & (b)) = g1 (Y (a), & (a))},
where a; < <+ - <ty =a; < --- < ax are the breaks of @ and for A =1,2

Agga(Y, ') = ga(Y(a; — 0),0(a; — 0)) — ga(Y (a; +0), &/ (a; +0)).

Lemma 1.8. Let a : [a,b] & M be an element of Q with g,(o/(to — 0),a/(to —
0)) =g2(a’(to + 0), &/ (to + 0)) such that a(ty) € B. Then the following are equivalent:

(1.13) tan o/ (to — 0) = tana’'(¢9 + 0).

(1.14) g1(Y (to — 0), &/ (to — 0)) = g2(Y (to + 0), &/ (to + 0)) for any Y € T,f.

Proof.  For simplicity, we put d := d;, X4 := o/(to £ 0) and Y, := Y (t, £ 0).
(1.13)=-(1.14): If (1.13) holds, we have
92(Ys, X1) = go(Y- +dX_ —dXy, Xy) = g2(Y- +dX_,tan X_) — dga(X+, X+)
=q(Y_+dX_,X_)—da(X_,X_)=g(Y_, X_).
(1.14)=(1.13): If (1.14) holds, we get

a(X-,y) = g2(X4,y) for any y € Ty,)B.

Hence we have tan X_ = tan X,. O
Corollary 1.9. A curve o of Q with constant speed ¢ # 0 such that o(ty) € B is a

B-geodesic if and only if the first variation of arc length is zero for every fired endpoint
variation of a in 2.
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2. The index form

For A = 1,2, let R* be the Riemannian curvature tensor of a Riemannian manifold M),

defined as
RMX,Y)W := D}YD}W — D} DYW — D*x yjW,

for any vector field X, Y and W on M,, and S} the shape operator of B C M) defined as
S3(V) := —tan D} Z,

for any vector field V' tangent to B and Z normal to B. Especially, if B = {p}, we have that
S% =0 for Z € T,M,. A vector field Y along a piecewise smooth curve a : [a,b] - M is a
tangent to a if Y = fo' for some function f on [a, b] and perpendicular to a if g\(Y,a') = 0.
If ||’||x # O, then each tangent space To(;) M has a direct sum decomposition Ro/+{a'}*.
Hence each vector field Y along o has a unique expression Y = Y7 + YL, where Y7 is
tangent to a and Y is perpendicular to «, that is,

_ gA(Y’ a’) o

yt=
g»\(ala al)

If o is a B-geodesic, then (Y7)' = (Y')T and (Y1) = (Y')*.

Definition 2.1. Let ¢ € B and v € T,M, (A = 1,2) is not tangent to B. A linear
operator Py : T, B @ Span{norv} — T, B is defined by

gx(w, norv)

P(w) = w gx(v, norv)

for any w € T,B & Span{norv}(C T,M,), where nor : T,M, — T,B* is the projection.

We note that P} is surjective, PY(v) = 0, P}’ = Py for k # 0 and if « € Q and
Y € T,Q, then we have that

PY =0y (¢, — 0)) = PX @ (v (£ + 0)).

Theorem 2.2 (Second Variation Formula). Let~y: [a,b] - M be a B-geodesic with
constant speed ¢ # 0 such that v(to) € B. If ¢ is a variation of v in §, then we have that

L"(0) = % {/ato(gl(y_l_l’y.u) _ gl(Rl(Y, V)Y, Y))dt
+ /t:(gz(Yl', YY) — g RA(Y, )Y, y))dt}

+%{92(A(b),7'(b)) — 91(A(a),7'(a)
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+01(Soryt0—0) (PT ©™ Y (0 — 0))), PY @Y (8o — 0)))
—92(S2 010y (P Y (20 + 0))), Py (Y (80 + 0)))},

where Y is the variation vector field and A is the transverse acceleration vector field of .

Proof. We get

2@ = 3 { [* @, v*) - (R (v, ), V)t

+ L@y, v4) - B, ) ¥ )it

2 {9:40), 7 ®) - 0:(A0), 7(a)
+91(Alto — 0) + 266(0)Y (to — 0), 7 (50 — )
~52(4(ts = 0)+ 24O)Y"(t0 = 0) /(1= 0)

k
+ Z D91 (A+230)Y, )+ S Agga(A + 2d4(0)Y", 'y')},
i=j+1

where
Asgr(A +24{(0)Y",7') = gr(A(a; — 0) + 2a(0)Y"(a; — 0),7'(a; — 0))
—ga(A(a; + 0) + 2af(0)Y(a; + 0),v'(a; + 0)).
We show the following facts:
91(A(to — 0) + 2£5(0)Y'(to — 0), 7' (to — 0))
—g2(A(to — 0) + 2¢5(0)Y"(to — 0), 7' (to — 0))
= 91(Shary(to-0) (P (Y (t0 — 0))), X~ (¥ (£ — 0)))
~92(SEory(tara) (P Y (t +0))), B OO (Y (5 + 0)))}.
In fact, let B: (—6,8) — B be B(s) := ¢(to(s), s), then
B'(0) = t(0)7'(to — 0) + ¥ (to — 0) = P =0 (¥ (to — 0))
= #,(0)7 (to + 0) + Y (o + 0) = Py ¥ (Y (¢, + 0)),
Dﬂ,(o)ﬂ = A(to — 0) + 2£,(0)Y"(¢o — 0) + t5(0)7'(to — 0)
and
D% )8 = A(to + 0) + 2t5(0)Y"(to + 0) + t5(0)7' (to + 0).
Thus we have
91 (Shory(to-0) (P 7Y (b0 — 0)), PT ™Y (10 - 0)))
= 92(S2orp (t040) (T CTO(Y (t0 + 0)), P (Y (8 + 0)))
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= 1(Shory(to-0)(8'(0)), B'(0)) = 92(S2ory(20+0y(8'(0)), B(0))

= gl(D;li'(O)ﬁ', nory'(to — 0)) — 92(D;2a'(0)ﬂ'a nor?y'(to + 0))

= g1(A(to — 0) + 2t5(0)Y"(to — 0) + t4(0)'(to — 0), 7 (to — 0)) — g1(Df )8', tan 7 (to — 0))
—g2(A(to + 0) + 2t5(0)Y"' (2o + 0) + t5(0)7'(to + 0), 7' (to + 0)) + 92(Dg’,(0)ﬂ’,tan v (to + 0))

= g1(A(to — 0) + 2t4(0)Y"(to — 0), 7' (to — 0)) — g2(A(to + 0) + 2t5(0)Y"(f0 + 0),7' (20 +0)), -

where D? is the Levi-Civita connection of B. This completes the proof. (]

For a fixed endpoint variation, since g; (A(a),%'(a)) = 0 = g.(A(b),~'(b)), L"(0) depends
only on the variation vector field Y. :

Let p and ¢ be points of M; and M,, respectively. And let Q(p, q) C € be the set of all
piecewise smooth curves a : [a,b] = M in  such that a(a) = p and a(b) = ¢. A subspace
T p, q) in T is defined by

T.p, q) := {Y € ToQ| Y(a) =0, Y (b) = 0}.
If o/ (to — 0) and o/(to + 0) are not tangent to B and Y € T,(, then

_g1(Y(to — 0),nora/(to —0)) _  g2(Y (to + 0), nore/(to + 0))
g1(c/(to — 0),nore/(to — 0)) ~  g2(a’(to + 0), nora/(to + 0))

dy = dj -

Hence, if Y,V € T,{, then

a(Y(to -0t =0) _ . ga(¥(to+0),(to+0)
a1(e(to— 0),0/(to—0))  © ' ga(’(to +0), &(t + 0))

dy. =dy +
and dy v = dy + dy.
Lemma 2.3.  Let P\ be a linear operator defined as definition 2.1. Then we get

POy (to — 0)*) = P @™V (¥ (0 - 0)),

and
POy (8 + 0)*) = P7*O(Y (8 +0)),
for all Y € T,Q.
Proof. Let X =+'(t,—0),Y =Y (to —0) and Y! = Y (¢, — 0)*. Then we have that

Xyl — vl X = g, X) ) < a(Y, X) _ px
PX(YY) =Yt +dyi X (Y ——gl(X,X)X + dy+—gl(X’X))X PX(Y). =]

We note that PY ©~9(y/ (¢, — 0)) = Py @ (y/(t,+0)) = 0 and Py O (YT(¢, —0)) =
Py (yT(4 4 0)) = 0.
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Definition 2.4.  The indez form I, of a B-geodesic v such that y(a) = p and v(b) = ¢
is the unique symmetric bilinear form

L :T,Q(p,q) x T,Up,q) = R,

such that
L(Y,Y) = L"(0),

where L is the length function of a fixed endpoint variation of v in Q(p, q) with variation
vector field Y € T,Q(p, q).

Corollary 2.5. If v € Q(p,q) is a B-geodesic of constant speed ¢ # 0 such that
v(to) € B, then

1 to
LWy =< { [ a@¥, wh) - (B, 1)y, Wt

b
+ [ a4, W) - go(BY, 77, W)t
0
1 ’ 0— ! _
+={91(Snorvto-0y (BY VY (b0 = 0))), PT O (W (20 — 0))
—92(S2ory g0 (P3O (Y (10 + 0))), B O (W (80 +0)))},

forall YW € T.Qp, q).

From Lemma 2.3, it follows immediately that
L(Y,W)=L(Y*, W) foralY,W € T,Q(p,q).
Thus there is no loss of information in restricting the index form I, to
TiQp,q) == {Y € T,Q(p,q) | Y L '}.

We write I,,L for this restriction.

Integration by parts produces a new version of the formula above.

Corollary 2.6. Let v € Q(p,q) be a B-geodesic of constant speed ¢ # 0 such that
v(to) € B. If Y and W € T,Q(p,q) have breaks a; < --- <ty =a; <--- < ax, then we
have that

1 [ o b
L(Y,W)=-= { [P+ + Ry Whdt + [ (Y + B2V, 7)., Wl)dt}

1 't — o
+ {91 (Sharptto-0y (BT ™V (¥ (t0 — 0))) + Y */(to — 0), P " (W (£ — 0)))
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—02(SZortoney (PF T (t + 0))) + Y (20 + 0), P (W (t+0)))}

1{291(Aa.yl, W(a:)) + Z 92(A. Y, W_L(a/i))} .
i=5+1
Proof. We have
(Y (to — 0), WL(to — 0))
= g1 (Y¥(to — 0), P/~ (W (to — 0) — dwg1 (Y (to — 0),7'(ta — 0))

= (Yt —0), @V W(to—-0). O
Corollary 2.7. Let v € Q(p,q) be a B-geodesic of constant speed ¢ # 0 such that

v(to) € B. ThenY € TiQ(p,q) is an element of the nullspace of I if and only if Y
satisfies the following two properties :

(2.1) Y is a Jacobi vector field on M; and M,,
and
(2.2) S oppito—ty(PT © 7O (Y (to — 0))) + tan Y’ (to — 0)

= Sty (PF V(¥ (20 + 0))) + tan Y (g +0).

Let ¢ € B, u € T,M, and v € T,M, with ||ul|; = |jv||2, tanu = tanv and v ¢ T,B. We
define a linear map A, , : T,B & Span{norv} — T, B ® Span{norv} as

92((Snoru — Saors) (P2 (w)), v)
- g2(v, norv) norv}

,v(w) ” ” {(Srlwru norv)(Pv( ))_

for any w € T,B & Span{norv}. We call this map A,, a passage endomorphism.

Lemma 2.8. The map A,, is symmeltric.
Proof. Let w;,w; € T,B @ Span{norv}. Then we have that
ooy g2(w, nOrv)
92(Aup(w1), w2) = g2(Au,p(wr), Py (w2) + mv)
g2(ws, norv)
22— y)
gZ(v’ IlOI"U)

g2(wa, norv)v)}
g2(v, norv)

“ ” {92((5'1"”_“ noru)(P2 (wl)) Py (w ) +
_92((Sf!;oru — Sng)(qu(wl)), ’U)

g2(v, norv)

o {9a((Skars = S2ers) (PR (100)), P (1)

g2(norv, Py (ws) +
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’ 92(w2, norv)
+92((Spory — Story) (P (w1)), mv)

((Srlwru SZorv)(P;(wl))’U)

92(v, norv)

“’U” 92(( noru norv)(Pv(wl)) P2 (wZ))

g2 (w2, norv)}

” ” g2(Pv(w1) ( noru norv)(P2 (11)2))) _92(w1’ uv(’lﬂz)) O

The following hold:

(23) Aku,kv = Au,v fOT k 75 0,
(2.4) Ayp(w) L v,

(2.5) Ayy(wh) = Ayp(w)
where wl = w — M'v

92 (’U, v) -

Corollary 2.9.  Ify € Q(p, q) is a B-geodesic of constant speed c # 0 such that y(t) € B
and ¥'(to + 0) & Ty ,)B, then

1 to
L,W) == { [*ar*, W) - (B (v, 7))y, W)ds
b
+ [ (@4, W) - ga(B(Y, )7, W)t}
+g2(A'7'(3o—0),7'(to+0)(Y(to + 0))’ W(to + 0))7

forall Y,W € T,Q(p,q).

3. Conjugate points

Let vy : [a,b] & M be a B-geodesic such that y(t,) € B. Consider a variation ¢ :[a, b] x
(—€,€) = M such that ¢(¢,0) = v(¢) and ¢, = (-, s) is a B-geodesic for each s and the
parameters to(s) at which the B-geodesics are through B for s. Let Y be the variation
vector field. Then, we can prove the following.

Lemma 3.1.

(3.1) Y+ RMY, Y)Y =0 on My, (\=1,2),
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(3.2) Sharvito—ay(PT 7O (¥ (to = 0))) + tan V' (to — 0)

= 82, itas0) (P ©FO(Y (to +0))) + tan Y'(to +0),

(3.3) a(Y(t),7'(t)) = Cit + C; for some constants Cy and C; (A = 1,2).

Proof. (2): Let B : (—€,6) = B be B(s) = ¢(to(s),s). And we put Zi(s) =
norX (to(s)%0, s). Then, we find

St orx(ta-0) (P 0" (Y (to — 0))) = S%_(0)(8'(0)) = — tan(D Z_)(0)

and
S x(tat0) (P O (Y (20 +0))) = — tan(D} Z,)(0).
Further, it holds that
Dy Z_ = Dj(X(to(s) — 0,s) — tan X (to(s) — 0, s)

= th(s) D(;tX (to(s) — 0, 5) + D(,;:" (to(5) = 0,5)

—DP (tan X (to(s) — 0, 5)) — norDj (tan X (to(s) — 0, s))

DY
ot

where D is the Levi-Civita connection of B. Hence we have that

(to(s) — 0,8) — Dg (tan X (to(s) — 0,5)) — norDj (tan X (to(s) — 0, s)),

(34)  Skorxiro—oy(Pr ™Y (to — 0)) = — tan Y'(to — 0) + Df (g)(tan X (to(s) — 0, 5))
and similarly

(3.5)  SZx(eero)(Po PTOY (to +0)) = — tan Y'(to + 0) + Do) (tan X (to(s) + 0, 5)).
a

Lemma 3.2.
If ¢ is a variation through B-geodesics of the same constant speed, that is, ||Op,/dt||]x =
const for all s, then we have that

(3.6) ax(Y(t),7'(t)) is constant.
Furthermore,
(3.7) Y =Y.
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Definition 3.3.  Let v be a B-geodesic such that () € B. If Y € T, satisfies the
conditions (3.1), (3.2) and

(3.8) 91 (Y'(to — 0),7'(to — 0)) = g2(Y"(to + 0),7'(to + 0)),
then Y is called a B-Jacobi field along .

We note that, by (3.2) and (3.8), if Y is a B-Jacobi field, then
(3.9) q1(Y'(to — 0) — IT'(P(Y), tan'(to — 0)), nory'(to — 0))

= g2(Y'(to + 0) — I(P(Y), tan 7 (to + 0)), nory'(to + }0)),

where II* is the second fundamental form tensor defined by
I (V,W) = norDy W

for any tangent vector fields V and W to B, and P(Y) = Py "(t0=0)(y (¢y—0)) =P] '(t°+°)(Y(to
+0)). Let J, be the set of all B-Jacobi fields along 7. A B-Jacobi field Y along v
is a perpendicular B-Jacobi field if Y is perpendicular to 7. Let J,,J- be the set of all
perpendicular B-Jacobi fields along 7. A B-Jacobi field Y along v is a continuous B-
Jacobi field if Y(to — 0) = Y (to + 0) € T, B. Let J7" be the set of all continuous
B-Jacobi fields along .

Lemma 3.4. Let v be a B-geodesic such that y(to) € B. If Y and W are B-Jacobi
fields along v, then it holds that

(3.10) (Y (2), W'(t)) — gA(Y'(t), W(t)) is constant,
and
(3.11) (Y (@),7 (@) =Cit+ G

for some constants C; and C2 (A =1,2).

Proof. Let Y(to &+ 0) = Ya, W(to £0) = Wy, Y'(2o £0) = Y4, W!(to = 0) = W, and
v'(to£0) = X4. As usual, it is clear that ' '

(Y, W) — g (Y',W) = const. = Cy

and
g2(Y,W') — go(Y', W) = const. = C5.

Hence we must show that

g (Yo, W) — (YL, W_) = g2(Ys, Wy) — g2(Y, Wo).
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In fact we have that, by (3.2) and (3.9),
(Y=, W) — i (YL, W) — {g2(Vs, W}) — g2(Y{, WS}
= q(P(Y2) —dy X_,W!) — (YL, P~ (W-) —dwX_)
—{ (P (Yy) — dy X4, Wh) — g2(Y, By (Wy) — dw X))
= gi(P~(Y_),tan W' — tanW}) — g;(tan Y’ — tanY7, PX-(w.))
—dy {g1(X-, W.) — g2(X4, W})} + dw {91 (Y., X) — g2(Y], X4)}
= g1 (P (Y-), =Shorx_ (P~ (W) + Skorx, (P5 * (W4)))
—~91(=Sharx_ (P~ (Y2)) + Sk, (P (Y)), P~ (W2)
= — (P (Y-), Storx_ (A~ (W) + 02(P5* (Ya), Shorx,, (B3 * (W)
+91(Shorx_ (P~ (Y2)), P~ (W) = 92(S2orx, (P2 (Y2)), Py (W) = 0.

By Corollary 2.7 elements of the nullspace of I,],l are perpendicular B-Jacobi fields. If
Y is a B-Jacobi field, then Y L v < there exist ¢; € [a,b] ({ = 1,2) such that Y (t;) L v
(i = 1,2) & there exist t; € [a,b] (i = 1,2) such that Y'(¢,) L v and Y'(tz) L v, since
(3.11). Y is a B-Jacobi field if and only if Y7 and Y are B-Jacobi fields. J,, J;" and
J;°" forms real vector spaces.

Lemma 3.5. Let v be a B-geodesic and Y a B-Jacobi field along v. Then Y 1is the
variation vector field of a variation ¢ of v through B-geodesics.

Definition 3.6.  Let vy be a B-geodesic with y(to) € B and v/(to + 0) € Ty(,)B, and Y
a B-Jacobi field. We say that Y is strong if it holds

(312)  Skorro—oy(PY V(¥ (o — 0))) + Y"(to — 0) € Tyee) B&Span{nory'(to — 0},
that is,
’ _a1(Y'(to — 0),nory'(¢o = 0))
(3.13) norY'(tp — 0) = 9 (7' (to = 0), mory (o —0)) nory'(to — 0),
and

(314)  S2,(0r0)(PF V(Y (to +0))) + Y'(to + 0) € Ty0) B&Span{nory'(to +0)},

n
that is,

92(Y'(to + 0), nory'(to + 0))

'(to + 0).
g2(7'(to + 0), norvy'(tg + 0)) nory'(to + 0)

(3.15) norY'(to + 0) =
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Let .773‘ be the set of all strong B-Jacobi fields. Jj‘ forms a real vector space. If Y € 7,,
then it holds that YT € .Zf‘. We note that if dim M; = dim M, = dim B + 1, then all B-
Jacobi fields are strong.

Proposition 3.7. Let v be a B-geodesic with y(ty) € B and 7'(to + 0) & T, B,
and Y a B-Jacobi field. Then there erist a strong B-Jacobi field W with W(ty — 0) =
Y (to — 0), tanW'(to — 0) = tanY'(top — 0) and g:(W'(to — 0),nory'(to — 0)) =g:1(Y'(to —
0), nory'(to — 0)), and a B-Jacobi field V with V(to — 0) = 0 such that Y (t) = W(t) + V (¢).
And this decomposition is unique. '

Proof. We put

5 (Y'(to — 0), nory'(to — 0))

g1(7'(to — 0),norvy'(¢g — 0)) norvy'(to — 0)

v_ =norY'(t, — 0)

and
92(Y'(to + 0), nory'(to + 0))

g2(7'(to + 0), nory'(to + 0))
Let V be a B-Jacobi field such that V (to — 0) = 0 and V’(to £ 0) = v4. In fact V satisfies
the conditions (3.2) and (3.6). We set W =Y — V. Then we have that '

vy = norY'(t + 0) — norvy'(to — 0).

W(to - 0) = Y(to - 0), tan W’(to - 0) = tan Y’(to - 0)

and

ey e oy _ q1(Y'(to — 0),nory'(¢o — 0))
norW!(to = 0) = nor"lf = 0) = v =% (551t —0), nor(to — 0))

nory'(to — 0).

Hence we get that
91(W'(to — 0), nory'(to — 0)) = g1(Y"(to — 0), nory' (o — 0))
and

g1(W'(to — 0),nory'(to — 0)) e
91(7'(to — 0),nory'(to — 0)) nor?y'(to — 0).

nortW'(to — 0) =
We have ,
g2(W'(to + 0), nory'(¢o + 0))
92(%'(to + 0), nory/(to + 0))
in a similar way. It follows that W is strong.

nory’ (to + 0)

norW'(to + 0) =

We assume that there exist another decomposition Y = W; + V; where W is a strong
B-Jacobi field with W, (¢, — 0) = Y (¢, — 0), tan W{(to — 0) = tan Y’ (¢o — 0) and g, (W] (to —
0), norvy'(¢p — 0)) = g1(Y'(to — 0),norvy/'(¢o — 0)). Then we have

Wi(to £0) =Y (to — 0) = W(to — 0),
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tan W{(to = 0) = tanY'(to £ 0) = tan W'(t, £ 0)

and, since g;(W!(to — 0),nory'(to — 0)) = g1(Y'(to — 0),nory'(to — 0)) = q(W'(to —
0)7n0r7l(t0 - O))’

g1(W](to — 0), nory’'(to — 0))
g1('(to — 0), nory’ (to — 0))

_ g1(W'(to — 0), nor?y'(to — 0))

91(¥'(to — 0),nory'(to — 0))

We get that norW!(to + 0) = norW'(to + 0) in a similar way. Hence we have that W) = W.
|

norWj(to — 0) = nory'(to — 0)

nory’(to — 0) = norW'(¢o — 0).

Proposition 3.7 gives the direct sum decomposition
Ty = T3t + JeMe.
Elements of JM"™: are called (My, M2)-Jacobi fields. Then we have that
TMMe = gMy 4 gMa,

where JM is the set of all (M), M;)-Jacobi fields which is identically zero on M, (A # w).
The resulting projections pr,, : J, = J2t and pry, p, : Jo— J MM are obviously R-
linear. For Y € J,, we put pry,(Y) =: Y.

We treat special cases of B-geodesics. Let v be a B-geodesic with y(to) €B. If v'(to +0)
is normal to B (thus so is ¥'(to — 0)), 7 is called a normal B-geodesic. By using (3.4) and
(3.5), the following assertion holds.

Proposition 3.8. A B-Jacobi field Y along a normal B-geodesic vy is the variation
vector field of a variation ¢ of v through normal B-geodesics if and only if

(3.16) Sk ito—oy(PT OO (Y (to — 0)) + tan Y'(tp — 0) = 0
(that is S;,(to_o)(Pf"(m—o)(Y(to —0)) + Y'(to — 0) is normal to B),
and

(3.17) S0y (P OV (80 +0)) + tan Y (o + 0) = 0

(that is 53,(t0+0)(P;"‘°+°’(Y(t0 +0)) + Y'(to + 0) is normal to B).

Remark. Let v be a normal B-geodesic. Then any perpendicular B-Jacobi fields are
continuous.
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Definition 3.9. Let v be a B-geodesic such that y(t,) € B. We say that (t2)
(ty € (a,b)) is a B-conjugate point to v(t1) (t1 € [a,b), t, < t2) along v if there exists a
B-Jacobi field Y along « such that Y (¢;) = 0, Y (¢2) = 0 and Y'|[t;,t,] is nontrivial.

Remark. 1. Let v be a normal B-geodesic with ¥(ty) € B and dim B = 1. If there exist
focal points of B along 7|[a, to] and 7|[to, b], then there exist B-conjugate points.

2. B-conjugate points in M) are always usual ones but the converse is not true in
general. We give an example which shows this:

Example 1. Let M = M; U,q M, be a glued Riemannian space which consists of the
following M) and B a submanifold of My (A =1,2):

M, = S%(1) = {(z,y,2)|z® +y* + 22 =1}, My = E3, B={(0,-1,0)},

and g¢; is a Riemannian metric induced from the natural Euclidean metric of E? and g, is
the natural Euclidean metric of E3. We defined a B-geodesic vy :[—7/2,4+00) — M by

_ [ (0,cost,sint) on [-7/2,7]
() = { (0,—-t+m—1,0) on [r,+00)

Then, T,S? is the set of all vector fields Y along < such that Y|[a,to] and Y|[to,b] are
piecewise smooth vector fields on M; and M, respectively, and, Y (to — 0) = dv'(to — 0)
and Y (to +0) = d'(to +0) for some d € R. Hence, y(7/2) is a conjugate point to y(—m/2)
but not a B-conjugate point. ”

Remark.  Let v be a B-geodesic with () € B. If ¥(to) is a conjugate point to ~(a)
along 7|[a, to], then it is also a B-conjugate point to y(a) along 7.

Examples of B-conjugate points: We give some examples. Let U, := 8/0x,
U, :=0/8y and U := 0/0z be the natural frame field on the Euclidean space E3.

Example 2. Let M = M, U,y M, be a glued Riemannian space which consists of
the following two surfaces in the Euclidean space E?® and B a boundary (submanifold) of
M. by (/\ = ]., 2)2

Ml = {(.’E, Y, Z)I.’II2 + y2 + 22 = lay > O}a A42 = {(x,y,z)|$2 +y2 +22 = l)y < 0},

B = {(z,0, 2)|z* + 2* = 1},

and g», A = 1,2, are Riemannian metrics induced from the natural Euclidean metric of
E3. We defined a (normal) B-geodesic v : [0, 7] = M by

v(t) = (0, cost,sint).

— 185 —



Then Y (t) = sin tU, is a B-Jacobi field along y. Hence () is a B-conjugate point to v(0).
If M, and B are replaced by the following, we get a B-geodesic which is not normal:

M, = S*(1) N {(z,y, 2)lz < y}, Mz = S*(1) N{(z,y,2)|z > y},

B = 5*(1) n{(x,z,2)}.

In this case, () is a B-conjugate point to v(0) as above.

Example 3. Let M = M, Uiy M, be a glued Riemannian space which consists of the
following M) and B a submanifold of M) (A =1,2):

M, = 52(1)1 M, = Eaa B = {(07 _1’0)}’

and g; is a Riemannian metric induced from the natural Euclidean metric of E* and g, is
the natural Euclidean metric of E®. We defined a B-geodesic v :[0, +00) = M by

_ [ (0,cost,sint) on [0, 7]
() = { (0,—t+m—1,0) on [r,+00)

Then,
sintlU; on [0, ]

0 on [mr, +00)

v -
is a B-Jacobi field along . Hence, for any t € [r,+00), 7(t) are B-conjugate points to

7(0).

Example 4. Let M = M, U;q M, be a glued Riemannian space which consists of the
following two surfaces in the Euclidean space E® and B a submanifold of M, (A =1,2):

M, = S%(1), My = {(z,y, 2)|z* + (y + 2)* + 2> = 1}, B = {(0,-1,0)},

and g,, A = 1,2, are Riemannian metrics induced from the natural Euclidean metric of
E®. We defined a B-geodesic 7 : [0,27] = M by

_ [ (0,cost,sint) on [0, 7]
() = { (0, cos(t — w) — 2,sin(t — 7)) on [m,2n]

Then,
sintU; on [0, 7]

0 on [, 2n]

Y(t) = {

is a B-Jacobi field along . Hence, for any t € [r, 27|, y(t) are B-conjugate points to ~(0).

Example 5. Let M = M, U;q M, be a glued Riemannian space which consists of the
following two surfaces in the Euclidean space E® and B a submanifold of M, (A =1,2):

M, = §%(1), M, = {(z,0,2)}, B = {(,0,2)|z? + 2* = 1},
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and g), A = 1,2, are Riemannian metrics induced from the natural Euclidean metric of

E®. We defined a B-geodesic 7 : [0,7/2 +1] = M by

__ f(0,cost,sint) on [0,7/2]
(8) = { (0,0,7/2+1—1t) on[n/2,m/2+1]
Then y(t) = {sin tU; on [0,7/2]
T\ +7/2=t)U; on[n/2,m/2+1]

is a B-Jacobi field along . Hence (/2 + 1) is a B-conjugate point to -y(0).

Example 6. Let M = M; U;q M, be a glued Riemannian space which consists of the
following M), and B a submanifold of M, (A =1,2):

M, = {(ZL‘,O,Z)}, M, = Esv B= {(.’E, 0, z)‘xZ +22= 1})

and ¢, is a Riemannian metric induced from the natural Euclidean metric of E® and g, is
the natural Euclidean metric of E*. For any point p of B, let v; be the unit speed geodesic
on M; from O = (0,0, 0) to p, and v, the unit speed geodesic on M; from p to ¢ = (0, %, 0).
Then, joining 7; and 7, produces a B-geodesic 7. Hence ¢ is a B-conjugate point to O
along 7.

Example 7. Let M = M, U;y M, be a glued Riemannian space which consists of the
following M, and B a submanifold of M, (A =1,2):

= S5%(1), My = E®, B = {(=,0, 2)|z® + 2* = 1},

and g, is a Riemannian metric induced from the natural Euclidean metric of E3 and g, is
the natural Euclidean metric of E3. For any point q of B, let y; be the unit speed geodesic
on M; from p = (0, 1,0) to g, and -y, the unit speed geodesic on M; from g to r = (0, k, 0).
Then, joining ; and 7, produces a B-geodesic v. Hence r is a B-conjugate point to p
along 7.

4. Fundamental properties of the index form and B-conjugate points

Let ¢ € B, u € T,M; and v € T,M, with ||u|l; = ||v||2, tanu = tanv and v ¢ T;B. We
define a linear map Q,, : T,B & Span{noru} — T,B @ Span{norv} as

91 (w, noru) nor } Lo (w, noru) Hory

91(w, noru) g1(u, noru)

Qup(w) = {w -
for any w € T,B & Span{noru}. The following hold:

(4.1) Qruky = Quy for k #0.
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(4.2) Quu(z) =z for any z € T;B.
(4.3) Qu (noru) = norv.

(44) g2(Qu,v(w)1z) = gl(wix)

(4'5) g2(Qu,v(w)a Qu,v(w)) =q0 (wa w)
for any w € T, B & Span{noru}.
(4.6) 92(Qu»(w), norv)g; (w, noru) > 0

for any w € T,B @ Span{noru}. Let v be a B-geodesic with () € B and ~'(t, + 0)¢

for any z € T,B and w € T,B & Span{noru}.
T (;)B. Then we have

‘ (4.7) Qv (to-0),7(to+0) (7 (B0 — 0)) = 7/ (to + 0).
IfY € T, then it holds that
‘ (4.8) Qy(to-0),7(to+0) (Y (fo — 0)) =Y (20 + 0).

Remark. Let g € B, u € T,M, and v € T,M; with |lu|l; = ||v|j2, tanu = tanv and
v ¢ T,B. If we define a linear map Q, : T,B ® Span{norv} — T,B & Span{noru} as

_ | . _ g2(z,norv) | g2(2, norv)
Quu(z) = {z g2(v, norv) norv} + 42(v, 0r0) noru

for any z € T, B @ Span{norv}. The following hold:
Qu,v o Qv,u = id, Qu,u o Qu,v = id,

g2(Qu,v(w)a Z) =0 (w, Qv,u(z))
for w € T, B & Span{noru} and z € T,B @ Span{norv}.

Lemma 4.1. Let v be a B-geodesic such that v(t,) € B and ¥'(to + 0) ¢ T)B. If
Y € T.,Q is a B-Jacobi vector field along vy, then

=117 (to + 0)l|l2Ay (t0-0).(ta+0) (Y (to + 0))
=tanY’(ty — 0) — tanY'(¢p + 0)
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91(Y'(to — 0), nory'(to — 0)
91(7'(to — 0), nory'(to — 0)

_ g2(Y'(t0 + 0), nory’(to + 0)
g2(7'(to + 0), nory'(to + 0))

= Qu(t0-0),7(to+0) (PI' (Y'(to — 0))) — pr?(Y'(to + 0)),

where
pr' : Ty(e0)M1 — Ty(s0)B @ Span{nory'(to — 0)}

and
pr? : Ty(te)M2 — Toyt0) B @ Span{nory'(to + 0)}

are orthogonal projections. In particular, if Y is strong, then
~ {17 (to + 0)ll2Ay (t0-0),7'(to+0) (Y (to + 0))
= Q' (to~0)v(t0+0) (Y (to — 0)) — Y'(to + 0).
Proof. Let v'(to £0) = X4, Y(to £ 0) = Yy and Y'(¢o £ 0) = Y. Then we have that

N X4 ll2Ax_x, (Y+)

X4
— _(Ql Q2 X4 92((SrlxorX_ - Srzer.;.)(PZ (Y+))’ X+)
- (SnorX_. SnorX+)(P2 (Y+)) + 92(X+, IIOI‘X+)

norX

g2(—tanY”’ + tanY}, X)

norX,.
g2(X4,norX,) ¥

=tanY! —tanY] +

- Since g1(X_,norX_) = go(X4,norX,) and ¢;(Y!, X_) = g2(Y], X), the first equality is

true.

Moreover we have that, by (4.2) and (4.3),

Qx_x, (pr}(Y’)) — pr’(Y])

g1(Y!,norX_) 3 B ,  g2(Y{,norXy,)
gl(X_,norX_)QX"X+(norX-) tanY] + gg(X+,norX+)n0rX+

g1(Y/,norX_) . g2(Y,norX,) 0
g1(X_-,norX_) g2(X4,norX,)

This completes the proof. O

=tanY' +

01'X.|...

=tanY! —tanY] + orX, —

Using Lemma 4.1 and (4.8) the following assertion can be verified.

Proposition 4.2.  Let v be a B-geodesic such that y(to) € B and 7' (to+0) €Ty (,)B. Real
vector spaces J, J,f"", J,yl and .77" have dimensions mi+my, m; +my—1, m; +mg — 2
and 2(n + 1), respectively, where my = dim M) and n = dim B.
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Remark. In the paper [1], the case where M; = M, and B; = B, is studied. In this case,
it holds that dim 7, = 2m, dim J;*" = 2m — 1, dim J,Yl =2m - 2 and dimJ* = 2(n + 1),
where m = dim M, and n = dim B. This results agree with Proposition 4.2.

In the paper [5], the author studied the case where dim M; = dim M, = dim B + 1. In
this case, it holds that dim J, = 2(n+1) and dim J;} = 2n, where n = dim B. This results
also agree with Proposition 4.2.

Let v be a B-geodesic such that (o) is not a conjugate point to y(a) and J? the set
of all B-Jacobi field such that Y(a) = 0. That is J) = {Y €7, | Y(a) = 0}. Then the
dimension of 7 is the one of M.

Proposition 4.3.  Let v be a B-geodesic. We assume that (ty) and y(b) are not B-
conjugate points to y(a). Then, for any v € Ty4)Ma, there is a unique Y € J? with
Y (b) = v.

Proof. = We define a map v : J? — T, M by (Y) = Y (b). We must show that 1 is
linear isomorphism. It is clear that 1 is linear. For Y € J.?, we assume that ¥(Y) = 0.
Then we have that Y (b) = 0 and, by the hypothesis, Y = 0. It follows that 1 is injective.
Since dim 7 = dim T,,(;) M2, ¥ is surjective. (m]

Let v be a B-geodesic of constant speed ¢ # 0 with y(¢y) € B. We set T,Q° :={Y €
T, Y(a) = 0}. Then we define the eztended indez form I : T,Q° x T,Q° - R by

8wy = 2 { [* @, W) - g (R (7)), W)t
+ [ @y, W) — gy (BY, oy, W)t
=01 (Sharr -y (PT ™Y (10 — 0))), PO (W (15~ 0)))
~02(SZoryto40) (PF O (Y (0 +0))), P (W (10 + 0)))},

forall Y,W e T,Q°.

Let v be a B-geodesic with ¥(ty) € B and ¥'(to+0) ¢ T, B. We put m,; =dim M, and
n = dim B. If ¥(%) is not a conjugate point to y(a), then we note that dim J**° = n + 1,
where 70 = J3tN J?, and can take a basis of J as follows:
Let e),- - -, em, be an orthonormal basis of T)(,,) M such that e, - -, e, is an orthonormal
basis of Ty(,)B and epty := nory'(to + 0)/|lnory'(to + 0)|l2 =: e},,. We put e;,, :=
nor?y'(to—0)/||nory’(to — 0)||;. Then there exist n+1 strong B-Jacobi fields e, (t), -+, €n41(2)
and my; — (n + 1) (M, Mz)-Jacobi fields en42(t), - - -,em,(t) in .7,{"’2 such that
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ek(to + 0) = €,

tan e;c(to - 0) + Srlwr'y’(to-—o)

(ek) = tan e;c (to + 0) + Sﬁom,(tow)(ek),
norej(to — 0) = gi(ek(to — 0), €nt1)€nts

norej (to + 0) = ga(ei(to + 0), ert+1)er+z+1,

ens1(to £0) = ez,
tane,,,(to — 0) = taney . (to + 0),
norey,;(to — 0) = g1(€ny1(to — 0), €ny1)€nt1s
nore,,; (to + 0) = ga(en41(to + 0), er1)emsns
ei(t) = 0 onfa, to],
ej(to +0) = e,
(l=n+2,:--,my).

Theorem 4.4.  Let v be a B-geodesic such that y(to) € B and v'(to + 0) & Tyo)B- If
v(t1) (t1 € (to,b]) is not a B-conjugate point to v(a) and also y(t1) (t1€ (a,to]) is not @
conjugate point to y(a), then, for any Y € T,,QO, there erist a unique B-Jacobi field J € J,?
such that J(b) =Y (b) and

18(J,J) < (Y, Y).
In particular, the equality holds if and only if J L=YvdL,

Proof. We put my = dim M, (A = 1,2) and n = dim B. By Proposition 4.3, since
+(b) is not B-conjugate point to v(a), there exist a unique B-Jacobi field J such that
J(b) = Y (b).

We can take a basis of .,7.? as above. since v has no B-conjugate points, ei(t),  em.(t)
are independent on (%o, b] and so are ei(t), -, en+1(t) on (a,to). Let Enya, -, €m, be elements
of Tyt,) M, such that ey, -+, €x, €ni1:€nt2, ") Em, BT basis of T\y(¢p) M. Let nia(t), +, Em, (1)
be Jacobi fields along |[a, to] in M; such that e1(t), -y ent1(t), Ensa(t), s €m, (t) are linearly
independent on (a, to], €& (a) = 0 and é(to—0)=¢ forl=n+2,---,m. For simplicity,
we set e(t) := (t). Forany Y € T, ), we can put

% fe(tex(t) on [a,to]
Y(t) =4 'm ,
3 filt)e(t)  on [to, ]

k=1
where fi (k= 1,---,n+ 1) are piecewise smooth on [a,to] and [to, ], fi, (b =n+2,--", my)
are piecewise smooth on [a, o], and fi, (l =n+2,---,my) are piecewise smooth on [to, b].
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Then we have that fi(to — 0) = fi(to +0) for k = 1,---n+ 1 and fi(tx — 0) = 0 for
l=n+2,--,m,.

We compute IS(Y, Y). We have that, except at breaks,

Y'(t) = DA Y (t) = g{f;<t)ek(t) + fe(®)eb ().

Hence we get

(4.9) oY), Y ()

3 et |

SO0 1200 3 AOD, 3 fetrel )+

k=1 A k=1 k=1

Since R(e(2), 7(6)7'(t) = —et"(8),

(410) G (RY (), YOW (@), Y () = ?3 Fe(O)ar (BNt (), Y () (8), Y- (8))
- - % FeOaE @), YE0) = — S5 f® Aot @), et @),

k=1

We can compute

(411) 2 o3 Sel0et @), 3 fult)ed(®)
k=1 k=1

- gl\(kgi: fL (et (), '"z fe(t)ei'(®) + .‘L\(? fe()ei'(9), :Z fe®)e ()
= =3 =1 =1

+O( KO0, 3 (06 0) + (3 Selthed(®), 3 et (1)
By (4.9), (4.10), (4.11) and Lemma 3.4, we have that,

(¥ (), Y () — a(RMNY (1), ()7 (1), Y (¢))

m) 2 my m)

S @O + % (S @@, X fuled' ©)

k=1 A k=1 k=1

+gx(kz‘: fLet (o), kﬁ: fe®er (1) - (S fe®)ek (1), S FL B )
=1 =1 k=1 k=1

S 1@t + & (S Alek @), 3 felt)et(®)
k=1 A k=1 k=1

Since ex(t) € JY (k=1,---,n+1), we get
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(412)  IY,Y)
1 to |, n 2
= AL Z noao
+o 3 et 0,3 e )]+ 3 fu0et 0,3 e @),
a k=1 =1 to
+g1 (Snor7 (to—O)(P’Y (tO“O) (Y(t() - 0))’ PI‘Y,(to_O)(Y(tO - O)))

= 92(Sar toso (P OV (t0 + 0)), B (Y (0 + 0)))}

1 . ‘Zd
=21/ ka(”k ), ¢

n+1

+ Y frlto) fi(to)(91(ex (to — 0), &' (to — 0)) — ga(ex (to + 0), €' (to + 0)))

k=1

2
|3 ste o) a

to

to

+ 3 f®)fiB)gale (), e (®))

k=1
n+1

+ 3 felto) filt0) (91(Skoryta—oy (PT 7 (ex)), PT @~ (er))

k,l=1

~92(Sarrto10) (P 0 e)), PY 0 (e1))) |
= [ rwa] [ |5 sodo], «

+ Z Fi(0) f1(b)ga2(ex (b), €' (b))

k=1

n+1

+ > fr(to) fi(to)(91(ex(to — 0), €1(to — 0)) — ga{ex, €j(to + 0))
k=1

—g1(ef (to — 0), el'(to — 0)) + ga(el, el (to + 0))
+91(SLoryrito—0) (PT O (ex(to — 0))), er(to — 0))

~05(SZrpos0y (PO e, ) }

=%{/t° %f,; dt+/o ka(t
+ Z fr(b) fi(b) g2(ex (b), &' (b))
k,l=1
n+l1
+ i Fe(t0) fi(t0) (91(Story(to—o0y (PT ™ (ex(to — 0)) + €k (to — 0), &x(to—0))
k=1
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~02(Sor 0P “°*°>( ex)) + €i(to +0), 1)

=L |E neeto]

Since J is a B-Jacobi field with J(a) = 0 and J(b) = Y (b),

ek, det 52 O Bon(edt),e'0) ).

k=1

Jt) = 3 felblex(t).
k=1

By (4.12), we get

1o

L JI) == 3 fu(0) fi®)ga(er (b), €' (b))

Icll

and

o], «}

)=+ L { [ ||kz'::l fi@et @) f
> I3(J, J).

If it holds I3(J,J) = I%(Y,Y), then, we have that
m)
> filt)ex(t) =0 (A =1,2).
k=1
Hence we get Y+ = JL. a

Let v be a B-geodesic of constant speed ¢ # 0 with y(ty) € B. If it holds a t; <
t2 < to, we set T.,mh,,]Q = {Y | vector fields along 7|[t;,%,]}. Then we define the map

Lytsta] © Tyjfea )2 X Tyt )2 = R by
~ 1 rt2
Lty 1) (Y, W) = p /t {9 (Y, W) — g1 (RU (Y, 7')y', W)} dt,
1
for all Y, W € Ty, 1)

Theorem 4.5. Let vy be a B-geodesic with v(t,) € B and +'(ty + 0) ¢ T,(s0)B. The
following are equivalent :
(1) (1) (t1 € (to,b]) is not a B-conjugate point to v(a) and also Y(t1) (41 € (a,to))
is not a conjugate point to y(a).
(2) I is positive definite.
Proof. We assume that (1) holds. By Theorem 4.4, for Y € T;'Q(v(a), v(b)), there
exists a unique B-Jacobi field J with J(b) = 0 such that

LY,Y) 2 I,(J,J).
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Since y(b) is not a B-conjugate points to y(a), J is a trivial B-Jacobi field. Therefore we
have that I,(Y,Y) > 0, and the equality holds if and only if Y = Y+ = J+ = 0. This
shows that I is positive definite.

Conversely, if there exists t; € (to,b] such that v(¢;) is a B-conjugate point to y(a).
Then there is a nontrivial B-Jacobi field J with J(t;) = 0. We define Y € T;"Q(v(a), (b))

by
J(t) on [a,t]

Y(t) = {0 on [t1,8]

By Corollary 2.7, we have that ,
L(Y,Y)=0

and I is not positive definite.

Furthermore, if there exists ¢, € (a,to] such that «(t,) is a conjugate point to v(a).
Then there is a nontrivial Jacobi field J along «|[a, t;] with J(a) = 0 and J(¢;) = 0. We
define Y € T;"Q(v(a), (b)) by

_[J({) ona,t]
Y(e) = {0 on [t,b]

By Corollary 2.5, we have that

L(Y,Y) = Lz (J,J) =0
and I is not positive definite. m]
Corollary 4.6. Let v be a B-geodesic such that y(ty) € B and v'(to + 0) ¢ Ty,)B
such that it satisfies (1) of Theorem 4.5. Let ¢ : [a,b] X (—&,€) = M be a fized endpoint
variation of v in Q. Then there ezists a positive number ' (0 < €' < €) such that, for any

s € (—¢',¢e),
L(s) > L(0).

Furthermore, if p,([a, b]) # v([a, b]), then it holds that
L(s) > L(0).
Proof. Let Y(# 0) be a variation vector field of . By Theorem 4.5, we have that
IF(Y,Y) > 0. O

Let v be a B-geodesic of constant speed ¢ # 0 with y(tp) € B. If it holds t, < ¢; <
ta < b, we set Ty, )2 = {Y | vector fields along 7|[t;,2]}. Then we define the map
Lyjies ta) * Tifen )2 X Tty 0212 = R by

~ 1 rtz
I’7|[t1,t2](Y’ W) = Z/t' {92(Yllv WJJ) - g2(R2(Y’ 7,)'7,’ W)}dt,
1
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forall YW € T’yl[tl,tzlﬂ'

Theorem 4.7.  Let v be a B-geodesic such that y(to) € B, ¥'(to +0) & Ty)B and
v(t) (t € (a,to]) is not a conjugate point to y(a). If there ezists Y €T Q(v(a), (b)) such
that L(Y,Y) < 0, then there ezists t; € (to,b) such that v(t1) is a B-conjugate point to
v(a)-

Proof.  We take any Y € T;:Q(v(a),v(b)). If v(t1) is not a B-conjugate point to v(a)
for any t; € (to,b), then, by Theorem 4.4, there exists a nontrivial B-Jacobi field J;, along

v|la, t1] such that
I'y|[a,t1]0(Y, Y) 2 I'7|[a,t1]0(Jt1a Jtl)a

Ji, (@) = 0 and Y (t,) = J;,(t1). It is obtained that J;, L +'. Since Lyag® (t€ (to,b]) is
continuous on ¢, J := %1_13 J; is a B-Jacobi field such that J(b) = %1_% Ji(t) =Y (b) =0and

0=1I,(J,J) <L(Y,Y). O

Theorem 4.8.  Let vy be a B-geodesic such that v(t,) € B, v'(to+0) € Ty(;0) B and v(to)
is not a conjugate point to y(a). If there ezists t; € (a,b) such that y(t1) is a B-conjugate
point to v(a), then there exists Y € T;-2(v(a),v(b)) such that I,(Y,Y) <O0.

Proof. If 4(t;) is a B-conjugate point to y(a), then there exists a nontrivial B-Jacobi
field J along 7|[a,t,] with J(a) =0 and J(t,) = 0.

In the case of t; < t; < b, we have that J'(t;) # 0 by the assumption. And there is
a convex neighborhood U 3 ~(t;) such that, for some € > 0, v(t; — €) and (¢, + ¢€) are
contained in U and, v(t; +¢€) is not conjugate point to y(t; — ). Then there exist a Jacobi
field Z along 7|[t, — €,t) + €] with Z(t; —€) = J(ty — €) and Z(t; +¢) = 0. We define
Y € T;9Q(v(a), (b)) by,

J(t) onla,t — €]
Y(t)-_— {Z(t) on [tl—E,tl +€] .
0 on [t; +¢,b)]
By Corollary 2.7, we get that
0= Lyjfass) (4, ) = Iyjlas=e’ (% I) + Iypts e (: J)-
Hence we obtain that
I,,(Y, Y) = 'ylla.tx—EIO(Ya Y) + fvl[tx—e,tﬁe](y, Y)

= '7|[a,t1—-e]0(Js J) + i‘Yl[tl—E,t1+E](Z’ Z)
== ~1|[t1—e,t1](J, J)+ f7|[t1—e,t1+61(Za Z).
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We set a vector field J along 7|[t; — €, %, + g] by

~ . J(t) on [tl - €,t1]
J(t) = {O on [t1,t +¢€]

Then we have that

I’Y(Y’ Y)= ~’Y|[i1—5,t1+5](Z! Z) - f’rl[tl—s.t1+5](j’ j) <O0.
In the case of a < t; < tp, we can get the claim in the similar way. ()

Corollary 4.9. Let vy be a B-geodesic such that y(to) € B, v'(to+0) ¢ T ,)B and
Y(to) is not a conjugate point to y(a). If there exists t; € (a,b) such that y(t;) is a B-
conjugate point to y(a), then there exist a positive number € and a fized endpoints variation
of v in Q such that L(s) < L(0) for any s € (—¢,¢) — {0}.

Proof.  If y(t,) is the first B-conjugate point to y(a), then, by Theorem 4.8, there exists
Y € T;-Q(v(a),v(b)) such that

I,(Y,Y) <o. o

Remark.  In Theorem 4.8, the condition that ~(p) is not a conjugate points to v(a)
is necessary. In fact, in Example 3 and 4, for any Y € TA;LQ(fy(O),fy(Z'/r)), it holds that
L(Y,Y) > 0.

5. The passage equation
1

We show the relation between S, , := —lT——I—l-(S,lmu —~ 82 ) and A,,, where ¢ € B,
Nnorvjjz2

u € TyM; and v € T,M; with |Jull; = ||v||z, tanu = tanv and v ¢ TyB. We note that
Skukv = Sup for k # 0. Let Ay and :\H denote the maximal eigenvalue and the maximal
absolute eigenvalue of a symmetric linear transformation H. That is

Mg = max{)\; | eigenvalues of H},

and
5\1.1 = max{)\H, /\—H}-

Lemma 5.1. Letq€ B, u € T,M; and v € T,M, with ||u|l; = ||v||2, tanu = tanv and
v ¢ T,B. Then we get

lvllz 5 3
_ >
||norvl|2 Sup = 24

u,v?
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where S, , = (S,lom Sz ).

Proof. We get
92(w, norv)

v — —
F(w) =w g2(v, norv)

for any w € T, B & Span{norv}, and, as in the proof of Lemma 2.8,

192 (Aup (), w)] = ,—I;,I—H;Igzas,tm — 52, ) (P (w)), P (w))|

norv v v
= L0 S Py 0), Py
lollz P(w) . Py(w)
< Mvli2_ S, ,
< Taorof 112192 Sus Gty o8 )T !
since “ "
v vll2
18l < TSl
This proves the inequality. (]

Lemma 5.2. Letq € B, u € T,M, and v € TyM; with ||u||; = ||v||z, tanu = tanv and
v ¢TyB. Then the following are true.

(1) Sup=0if and only if A,, =0.

(2) Sup<0ifandonlyif A,, <O.

(8) Sup>0if andonlyif A,, > 0.

Proof. Let w,,w; € T;B & Span{norv}. We have that

02(Au(n), wa) = ”’l‘l‘;’ﬁ;“zgz(su,.xpf(wl)),P;(wzn.

Since Py is surjective, the statements are clear. 0

Proposition 5.3. Letq € B, u € T,M; and v € T,M; with ||u||; = ||v||s, tanu = tanv
and v ¢ T,B. Then the following are true.

(1) If Sup <0, then trd,, > ——"-?-I-Ig—trSu,,, and ———— llv ”2 Suw < Ao, -
||norv||> [[norv]|, ||2
(2) If Sup >0, then trA,, < ﬂtrs.,,, and ||v||2 ASun 2 Ay

|Inorv||2 |Inorv]|,

(3) If Suy=AI, then trA,, > T ”vl!k“ {1 +(n- 1)||

nor'u||2}
llvli3

Where n is the dimension of B.

Proof.  In order to prove this lemma, we extend S, , linearly on T, B®Span{norv} by
putting S, ,(norv) = 0. The trace of S,, do not change. Take an orthonormal basis {ex}
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such that ey, - -e, € T,B are eigenvectors of S with eigenvectors Ay, - - -, A,, respectively,
and e,y = norv/||norvl||s. Then we get

sy ”IlOI"UHg W v v
trAuu - Z g2 R ek ) “’U”2 kzl g2(Su,v(P2 (ek))’ P2 (ek))

__ ||norvl|, 1
Mol ZQZ(Suv ex) ek) + gz(v,norv)g2(su’v(v)’v)
_ |[norvlls { n 1 }
= 02 (Su,w(v), V) ¢ -
ol 5™ Taorog?2 S )¥)
Since Sy, (v Z Aeg2(v, ex)ex, we have that
k=1

lolls &, flmorollp v
trdyy = ———— > A~ .
e UTE Rl

lInorv|lz (=
Since ||norv||? + g2(v, ex)? < ||v]|2, we see that

2
”nor'U”2 e )2 S 1

+ g2 -
2\ T 11 €k
l|v]|3 l|vll2

for each k. Hence we have that

tra,, > o s, <o,
b |Inorv||2 '

v .
T T

Allolla { unowna} .
trhu, = —lZ_ g 4 (- 1) B2T02 if S0 = A
Torolz 1+ ™ VTl

This completes the proof of the statement (3) and the first parts of (1) and (2). Others are
clear from the proof of Lemma 5.1 and the statement of Lemma 5.2. O

and

Let v be a B-geodesic in ) with v(to) € B and v'(to + 0) € Tyt,)B. We put dim M) =
mx (A = 1,2) and dimB = n. Let e] := 7'(to — 0)/||7'(to — 0)|l1, €2, - -, €y, be an
orthonormal basis of T, M; such that ey, - -,eq;; is an orthonormal basis of T%,)B &
Span{nory'(ty—0)}. We take €} := Qu(to-0)v(to+0)(€x) (k = 1,--,n+1) and eqs, - €, €
T'y(t9) M2 such that ef,-- -, e}, is an orthonormal basis of T'(t) M2. Let ei(t), -+, ens1(t) be
parallel vector fields along 7 such that ex(to £ 0) = ef (k=1,---,n+1). Furthermore let
ems2 (t),- - - eqn (t) be parallel vector fields along 7|[a, to] such that e, (to—0)=¢, (h =
n+2,---,m;) and e, (¢), -, e}, (t) parallel vector fields along 7|[to, b] such that e, (to—0) =
e, (lz =n+2,---,my). For simplicity, we set alt) =ef(t) l=n+2,---,m,).
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n+1

fY(t) = Z Yi(t)ex(t) is a B-Jacobi field, then we have Y*(t) = Z Yi(t)er(t). Let

R*Y(t) be the matnx representation of R*(-,~'(¢))7'(t) with respect to the basis {eg(t)
“,en+1(t)}, A the one of A, (s—0)y(t0+0) With respect to the basis {ez(t),- - -, ens1(t)} and
Yet(t) =t (Ya(t),- - -, Ynya(t)), where ¢ is a transposition. Then we have that

(5.1) (Y*4)"(t) + R*4(t)Y*(t) = O for ¢ # to.
(5.2) Y*(t) is continuous,
(5.3) (V) (to — 0) — (Y**)' (to + 0) = —|17'(to + 0)||2AY**(2o)-

We put Yar, () =* (Yasa(2), - -+ Yimy (¢)) 0n [a, t0] and Y (8) =* (Yas2(t), - -, Yonsy (t)) om
[to, d]. Let Ry, (t) be the matrix representatlon of R (-,7(t))7'(t) with respect to the basis
{en+2(t),- - -,em,(t)}. Then we have that

(5.4) V2, () + R, (8) Yo, () = 0,
(5.5) ?Ml (to — 0) = 0 and ?Mz (to+0)=0.

In particular, if (%) is not conjugate point to v(a) and ¥, (a) = 0, then we have that

(5.6) Y, (t) = 0 on [a, to].

We define the function pg : [a,b] = R and fk : [a,b] = R by

ct1 ifK=0

——tancVKt CifK>0
pk(t) = \/?

,___KtanhC\/—Kt if K<0
and
t ifK=0
sincVKt if K>0

fr(t) = cx/— ,

sinhev/—Kt if K <0
\/__ vV

respectively. We prove the passage equation.
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Proposition 5.4 (The passage equation). Let M; and M, be Riemannian manifolds
of constant curvature K, and Ko, respectively. Let v : [a,b] — M be a B-geodesic with
Y(to) € B, ||7'(to+0)|l2 = ¢ and ' (to +0) & Ty(s0)B. If v(b) is the first B-conjugate point
to y(a), then we get that fi,(t — a) > 0 for t € (a,ty] and

1 1
= +
PK, (tO - a) pKz(b - tO)

when sz(b - to) > 0.

Proof.  The matrix strong B-Jacobi field Dg along v with D*(a) = 0 and (D**)'(a) = I
is written

(5.7) D) = fro(t - )1
for t € [a, t,], where I is the identity map. By the assumption, we have that
[k, (t —a) > 0 for t € (a, ).
From (5.7), we get
(5.8) D(t) = {fk,(to — a) fry (t — to) + fx: (to — @) fi, (t — t0) H + cf, (o — @) fx, (t — t0) A

fort € [to,b].

If there is a matrix (M;, M,)-Jacobi field Dyy, along 7|[te, b], then Dy, with Dy, (t5) =0
and D)y, (to) = I is written
Dy (t) = fr, (¢ — to)]

for t € [to,b]. By the assumption, we have that

frs(t — to) > 0 for t € (to,b).

Then D* is symmetric from (5.7) and (5.8), det D**(b) = 0 and D*(b) = 0 since «(b) is
the first B-conjugate point to v(a). We see that

B fk,(to —a) | fk,(b—to) }
4= {Cfxx(to —a) M cfx, (b — to) !

1 1
+
Pr,(to — a)  px,(b—to)

and A\_4 = if sz(b - to) > 0. O
Remark. If K, < 0, then it holds that fx,(t—a) > 0 for t € (a,tp]. In the case of K; > 0,
we have that fk, (t —a) > 0 for t € (a, to] if cv/K1(to — a) < 7.

If K, < 0, then it holds that fg,(b — to) > 0. In the case of K, > 0, we have that
sz(b — to) > 0 if C\/Kz(b - to) <.
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