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SINGULAR HARMONIC MAPS BETWEEN
RANK ONE SYMMETRIC SPACES OF NONCOMPACT TYPE

DAISHI WATABE

ABSTRACT. Regarding the uniqueness for proper harmonic maps, Li and Tam proved the
existence of a family of harmonic self-maps of the Poincaré upper-half planes assuming
the identity map on the boundary (Ann. of Math. 137 (1993), 167-201). We generalize
this example to the other rank one symmetric spaces of noncompact type and investigate
their regularity and related properties.

1. INTRODUCTION AND RESULTS

1.1. Introduction. There are relatively few examples of families of harmonic maps as
solutions to the given Dirichlet problem at infinity because of the difficulty of providing
general strategies for their construction. In this article, we shall present both a new
family of harmonic maps between rank one symmetric spaces of noncompact type and
a new technique for estimating Ho6lder regularity, in order to better understand the non-
uniqueness of solutions to this Dirichlet problem as stated explicitly below.

A Cartan-Hadamard manifold M can be compactified by adding the sphere at infinity
OM defined by the asymptotic classes of geodesic rays, thereby giving us the compactifi-
cation of M denoted by M = M U M. This leads us to the following Dirichlet problem
between Cartan-Hadamard manifolds:

Dirichlet problem at infinity for harmonic maps

For given Cartan-Hadamard manifolds M, M' and a continuous map f: M — M’
find a map u: M — M satisfying,

(1) ulorr = f and

(2) ulm: M — M' is a solution to the harmonic map equation.

In the early nineties, Li and Tam [13], [14] and, simultaneously, Akutagawa [2], carried
out ground breaking works by introducing new techniques for existence arguments, when
M and M’ are both real hyperbolic spaces. In order to simplify these arguments, Bando [3]

Date: April 30, 2000.

2000 Mathematics Subject Classification. Primary 58E20.
Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science,

Sports and Culture, Japan, and JSPS Research Fellowships.

— 11 —



in Economakis’s existence argument, we can simplify the nonlinear ordinary differential
equation into a translation invariant equation and then utilize the comparison arguments
of solutions in conjunction with a diagonal method. We can also use the latter method,
with an additional slight modification, in order to construct diverse families of harmonic
maps between various tube domains as in Chapters 2 and 3. Secondly, when estimating
the Holder regularity, Li and Tam, and Economakis, utilized the fact that the Jacobian
matrix of a geodesic symmetry of the real hyperbolic space is expressed as a product of
an orthogonal matrix and a scalar function. However, this fact does not hold true for the
other rank one symmetric spaces of noncompact type, and it was therefore necessary to
provide an argument which works, even in the cases where the Jacobian matrix can not

be expressed as the product described above.

1.2. Results. Let K = C or H denote complex or quaternion number fields. Let n, =
dimg(K"), n, = dimg(Im(K)) for In(K) = {a — @|la € K}, where a is the conjugation
of a. Our following result implies that the assumption of regularity is essential for the

uniqueness theorems of Donnelly:

Theorem 1.1. Suppose that M is either complexr or quaternion hyperbolic spaces and
k = 2. Then ezists a family of proper maps ux: M — M parameterized by A > 0
satisfying:
1. uylp: M — M is a harmonic diffeomorphism and u,|apn: OM — OM is the identity
map.
2. For X # X, we have dist(u,(s),uy(s)) ~ exp(Ndist(s,,s)) when we let s =
(x,t,p) — oo while binding |x| and |t|. Here, s, € M is a fized point and
N = Zle In; and dist is a geodesic distance function.
~u, € C'*2(3 \ {o0}, M \ {00}) for @ < (N +\/N? + 835, 2n,)/4.
. uy € C*(M, M) for a < 1/7.
. uy € C*(M, M) for a > 1/2 and A > 0.
.uy €8 fora<1/7, —c0 < B < a.
. u,\ECIﬂfor,B<—l.

N O AW

Remark 1.1. The first three claims of Theorem 1.1 hold true for Nishikawa and Ueno’s
k-term Carnot spaces, which include all rank one symmetric spaces of noncompact type
[16).

Throughout this article, C; = Cji(*,... ,*) i = 1,...,40 denote constants depending

only on the quantities appearing in parenthesis. In a given context, the same letter C;
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combined Green’s function with Hamilton’s method [12] as a basis for his own argument.
Following this, Donnelly [5], [6] extended their results to prove the existence of harmonic
maps between all rank one symmetric spaces of noncompact type [namely, real, complex,
quaternion hyperbolic spaces and the Cayley hyperbolic plane]. In order to refine his own
results, Donnelly [6] later used Graham’s Holder space [11], where derivatives are assigned
weights depending on the direction. Recently, a few attempts were made to generalize

their results as can be seen in Nishikawa and Ueno [16] and Ueno [19].

The uniqueness of a solution belonging to C'(M, M), in the work of Li and Tam,
and C2(M, M) or C® > 2, in the work of Donnelly, has been established for a given
non-degenerate boundary value. In order to confirm that these assumptions of regularity
are necessary for the results on uniqueness, we have to solve the problem of constructing
more than one harmonic map [for instance, as provided by a family] which induce a given

boundary value and are only Holder continuous when being viewed as maps from M to
!

M.

With regard to this problem, Li and Tam [14] provided an explicit example of a family
of harmonic maps between real hyperbolic planes which induce the identity map on the
boundary; these maps are Holder continuous with the exponent of 1/2 when being viewed
as self-maps of M. Hence, the assumption of regularity cannot be removed from the
uniqueness theorem of Li and Tam [14] when the dimension is two. They have constructed
this example by, firstly, reducing the harmonic map equation to a nonlinear ordinary
differential equation; and, secondly, giving explicitly expressed solutions. In this rare
example, we can express solutions for a nonlinear differential equation ezplicitly; but we
cannot generally expect this to be the case. Economakis [8] generalized Li and Tam’s
example to higher dimensional cases by using a contraction mapping the'orem, yielding no
explicitly expressed solution; his abstractly constructed maps are only Hélder continuous
with exponents of less than 1/2 when being viewed as self-maps of M. Thereby, he also
verified that the assumption of regularity cannot be removed from the uniqueness theorem

when dimensions are greater than two.

In accordance with these studies, the following problem was suggested by Nishikawa:
can we find a family of proper harmonic maps between complex hyperbolic spaces which
do not satisfy the assumption of regularity in Donnelly’s uniqueness theorems? In the
present paper, we shall solve this problem by extending Li and Tam’s and Economakis’s
results to other rank one symmetric spaces. However, our approach is somewhat different

from the one they used. Firstly, instead of using a contraction mapping theorem as
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will, in general, be used to denote different constants depending only on the same set of

arguments.

2. EXISTENCE THEOREM

2.1. Preliminary computations. Let K = R, C, H or Ca denote real, complex, quater-
nion or Cayley number field. Let us set d = dimg(K) and Im(K) = {a —a | a € K}. To
begin with, we define N as a Lie group whose underlying manifold is K® x Im(K) with

coordinate (x,t) = (x!,...,x",t), where the group law is given by
(x,t) - (x',t') = (x+ x', t +t' + 2Im(x - X')).

When K = C, N is called the Heisenberg group. In the following, the left translation
of N by (x,t) shall be denoted as 7(xs). Next, we define S = N - R, as a semidirect
product of N and R, given by the dilation p - (x,t) = (p'/2x, pt) and let 7, denote the
left translation of N - R, by s = (x,t, p). Now we select a left invariant metric g on S so
that M = (S, g) becomes a symmetric space, which is called a real, complex or quaternion
hyperbolic space, denoted by KH"+! K = R, C, H or the Cayley hyperbolic plane denoted
by CaH?2.

In the following, we shall detail a deduction of the explicit formula of the metric g on S
in conjunction with the canonical generator of the Lie algebra of S when (S, g) = CH"*+!
or HH"+1, '

To begin with, let {€/}%_, denote the canonical generator of K = C or H given re-
spectively by e! =1 and €2 = /~1 when K=C, ande! = 1,e2 =i, e = j, e* =k,
i2 = j2 = k? = ijk = —1 when K = H. Utilizing these, we can express x7 as 3 ¢, z/'e!
and t as i, t'e! and we let Im;(x?) = z7* denote the ' component of xi. Then, the
left invariant extensions in N of tangent vectors 8/9r%' (1 < j < n,1 <1 < d), 20/0t
(2<!i<d)ato=1(0,0,1) € K* x Im(K) x R, can be computed as follows:

For x' € K" so that x' is of the form

x'=(0,... ,0,ee,0, ...,0) € € R,
j—th



we can compute

. d ,
Tty (0/027) f = 2| (1) -(x,0)
e=0
d 1 j l n i =l
= e f(x,...,x]—i—é‘e,...,x,t+21m(x’ee))
e=0
— (_6_+2 - I ( j—l)i)f
= (57 ; m;(x7&') =
= :edij-1+tf

d
T(x,t) (23/atl)f = 2d_€le=0f((x; t) : (0’ Eel)) = 2—a%f = edn+l—1f-

Similarly, we observe that the left invariant extensions of 8/ (1<j<n1<I< d),
20/0t' (2 <1< d)and 2, =23/3pin N - R, are, respectively, given by

Lyj-ny+ = p"ea-1y+ (1<j<n, 1<1<4d),
Linyi-1 =  peanyio1 (2<1<a),
and
L, = 2pe,,.

By utilizing these, we define n, and n, by
n; = Spang{Lag—1)+: }1<j<n,1<i<d, ny = Spang{Lng+i-1}2<i<d-
Then, for H = L,,, we have the following decomposition of the Lie algebra of S:
s=R;{H} + n; + ny,

and ny = {X €s|[H,X]=1X} (Il =1,2). Further, for m = n, 4+ n, + 1, we have

m—1
[as €8] = Z algew
7=1

where a]; = 0, unless a, 8 € I, v € I, and thereby it holds that n, = [n,n] is the center
of n = n; + n,.

Having obtained the explicit formula of the canonical generator of the Lie algebra s,
we shall consider the metric g of S. Firstly, since S acts on N - R, transitively, an inner
product (-,-) of the tangent space T,(S) at o = (0,0,1) € S, define the left invariant
metric g assigning gs.o(V, V') = (7;,'V, 7.,'V') for V, V' € T, o(S) at each s € S. At this

point, defining the inner product above as

(-,-) = |dx|? + |dt|*>/4 + dp? /4,
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. . m'
Here g;; = g(ei, ;) is a metric of M; u.(e;) = Y 7, u/el and u]; = e;u]; and, VM and

V™' are Levi-Civita connections on TM and TM’, respectively; and V is an induced
connection on u™ (TM') = UpemTupyM' (see [5, (2.1)]).

Utilizing the computation made above, it is easy to see that the components of the
tension field of the map u: M 3 (x,t,p) — (x,t,¢¥(p)) € M are given by

) k
) = 4t - @i~ 40

k dipr 2
+2) " 1p'e(p) tn, — 4p%p(p) (%)
=1

and 7'(u) = --- = 7m*"2(u) = 0. Here, we used u™ = dy/dp and u} = 6, (i,y # m),
which are valid because u.(e,.) = dy/dpe,. and u.(e;) =e; for j =1,--- ,n, + n,. Given
the observation made above, setting N' = Z?:l jn,, ¥ = d/dp and 9 = d*p/dp?, we

have the following:

Lemma 2.1. Suppose ¥(p) is a solution for

Y(p Y(p)
PY(0) =0, P(0)=1, o(p)=—1(—p)>0 p>O0.

oi0) ~ (AN = D0 + 23 1m (—ﬁ’—) — ()L =0
(3) p 2 P 2 P 1 ) p - Y

Then u: (x,t,p) = (x,t,9%(p)) is a harmonic self-map of M inducing the identity map
on the boundary OM.

In the next section, we shall establish the existence of a one-parameter family of global
solutions for the equation (3) and study their asymptotic behavior. The growth estimates

in Proposition 2.2 are used in Subsection 3.3 in order to prove Proposition 3.1.

2.2. An asymptotic analysis of the translation invariant equation.

Theorem 2.1. There ezists a one-parameter family of global solutions ¥(p) = ¥.\(p)
parameterized by A > 0 for the equation (3).

The translation invariance of the equation (4) in the following proposition is the key
to understanding the non-uniqueness of solutions for (3). By means of the following
proposition, in order to prove Theorem 2.1, it suffices to show that there exists a nontrivial
global solution f(t) for the equation (4).
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Proposition 2.1. 9(p) = pexp(f(log(|p|))) is a solution for (3) if and only if f satisfies

" 1 ' Lo —Lf(t
f@), f'(t) >0, zﬂf_noof(t) = O’mHI_HOO f't) =0,

(4)

where f' = df/dt and f" = d?f/dt?. Given a solution f(t) for (4), we have the so-
lution f(t + log())) satisfying (4) for each A > 0. Thereby, we see that Yr(p) =
pexp(f(log(|p|A))) (A > 0) form a one-parameter family of solutions for (3) parametrized
by A > 0.

Proof. Note that log(|p|)’ = sgn(p)/|p| = 1/p. By substituting pexp(f(log(|p]))) for ¥(p)
in equation (3), we have

-1
- - P ) (i) -
P (6) — (GN — 1) Zln,( ) - wergs
p(f"(8) + (F'(1) + 1) f' (1)) "e/ ) - (—N —1)(1+ f'(t))e®
k 1-1
1350 (o25) - O+ raery Ly

= SO(f"(t) ~ SN+ 1) + %E ine®) =0,
=1

where t = log(|p|). Since f(¢t) > 0 and f(t) — 0 as ¢ — —oo we have ¥(0) = 0 and
Y(p) — oo as p = oo. Moreover, f(t) — 0 as t - —oo and f'(t) — 0 imply that
$(0) = 1.

Conversely, if y(p) satisfies (3), then we can verify that f(t) = log(v(exp(t)))—t satisfies
(4) as can be seen in the following: for p = e, ¢(0) = 1 and ¥(0) = 0 being the case, it
holds that f(t) = log(w(e?)/et) — 0 and f'(t) = ¢(e)et/1p(e!) —1 — 0 as t — —oo. Since
e~ = p/+(p), we have |

[u—y

k
£(t) - —N F1(t)— 5D (1 —eO)in
=1

[\M]

z:;( )i b0 =

I\Dl'—‘

- 2 )(pw(p) — G = 1)) +
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Proof of Theorem 2.1. By setting X(t) = f(t) and Y (t) = f'(t), we can express the

equation above as two first—order ordinary differential equations:

dY 1 1<

_ 1 1 _ -lX()
Y (t) 2J\/Y(t) +3 ?:1(1 e ),
dXxX
= (O =Y.

Consequently, we have
v _ N SF (1 —e X))

dx =~ 2 2y
N X
= —2—+E(X)7,

where

k -
E(X) — 2!:1(1 —€ lx)lnl.
2X
At this point, it should be noted that F(X) is a monotone decreasing function of X > 0.

In the following, in order to show the global existence of the solution Y (X) which
satisfies Y (0) = 0, we shall solve the following equations:

Y N X
(5) ax =3 TEXy
Y(X) = 0,dY/dX = a (X =0), a=N/2+E(0)/a> 0.

The condition dY/dX — a (X — 0) corresponds to the requirement that
limx_,0dY/dX = limx_o(N /2 + E(X)X/Y). We shall define a constant c¢ as follows:

k
1 2
c=E(0) = 5 ?_l ny.
Then a constant a in (5) is given by

a=WN + VN2 +16¢)/4.

Our strategy to complete the proof of Theorem 2.1 is as follows: in StepAl, it will be shown
that Y (X) exists globally; in Step 2, by using Y (X), we shall solve f'(t) = Y (f(t)) with
boundary values f, f' = 0 t — —o0, and thereby we will establish the global existence
of a solution f(t) for the equation (4). Once the global existence of f(t) is established,
the proof of Theorem 2.1 will be completed by using Proposition 2.1.

Step 1: The methodology we shall use to prove the global existence of Y (X) for (5) is
as follows:

Note that the right-hand side is C™ for the variables Y > 0 and X > 0. This means
that for any €, > 0, the solution Y (X) with an initial value Y (g,) > 0 exists locally for



X > g, and that dY/dX does not diverge at finite X as long as X (> 0) and Y (> 0) are
finite. Accordingly, in order to prove that Y (X) exists globally on [g,, 00), it suffices to

create positive functions which limit the behavior of Y (X) from above and below for all

X > &, We can then verify that neither Y (X) nor dY/dX diverges at any finite time.

Supposing that ¢ > ¢ > ¢ > 0 and that
a=N/2+¢/a>0, a=N/2+¢/a>0,

we have a < a < @. Next, given any ¢, > 0, let us solve
dY (X) N X

dX 2 +Ey’
dY(X) N X
6 = — —
(6) X 5 +E(X)Y,

dy(X) N X

ax 7 T¢y

with these initial values:
ag, = Y (&) < Y(e,) < Y(g,) = @c,.

Clearly, Y(X) = aX and Y(X) = @X are the solutions for the first and third equations.

This being understood, let us observe the following lemma:

Lemma 2.2. Given any T, > ¢,, it holds that
) Y(X) <Y(X)< Y(X)
on [go, Tp) for all ¢ and T satisfying

0<c< E(T,), c<eEG

Proof. Since E(X)X/Y > 0 we have dY/dX > N/2, and thereby Y (X) > 0 is monotone
increasing. Thus we can conclude that Y is bounded by X axis and that dY/dX does not
diverge at a finite time from (5). Consequently, let us next assume that Y cannot bind Y
from above, and accordingly, there exists an initial intersection of Y and Y at X, < oo.

On one hand, since Y(¢,) > Y(&,) and Y (X) meet Y (X) for the first time at X,, we
have

<0.
X=Xog

dX

On the other hand, given that E(X) is a monotone decreasing function of X and that
E(0) = ¢ < ¢, it follows that

- ]

=]

= (€= B(X,)) =2

— > 0.
X=Xpo Y(XO)

dX dX

— 19 —



Here we have obtained a contradiction, which implies the global existence of Y on [g,, 00).
So, in order to verify (7), let us further assume that ¥ cannot bind Y from below, and
accordingly, there exists an initial intersection of ¥ and Y at X, < 7T,. Then we obtain
[d(Y —Y)/dX]|x=x, < 0. On the contrary, our assumption E(X,) > E(T;) > c provides

dYy dY Xo
e — = (E(X,) — ¢)>=—== > 0.
Thereby, we have obtained another contradiction. O

Utilizing the Lemma, above, for each integer j > 0, we can obtain the solution Y =Y
which has an initial value Y (¢,) = ag, on [g,, 1], defined as £, = 1/5. From the conclusions
made above, it can be noted that each element of the sequence {Y;} satisfies:

Y<Y;<Y on [1/7,1].

Furthermore, it should be noted that the equation (5) combined with (7) provides the
upper and lower bounds for dY/dX and d?Y/dX?. Given these, when we examine {Yj}
firstly on [1/2,1], by using the Ascoli-Arzela theorem, we have a sub-sequence {Y};}
converging in C'([1/2,1]). Then, secondly, focusing on [1/3,1], by utilizing the Ascoli-
Arzela theorem once again, we can select a sub-sequence {Yj, } converging in C'([1/3, 1]).
Upon continuing, we obtain a diagonal sub-sequence converging to Yo, locally in C((0, 1]).

Thus we have obtained a solution of (5) satisfying
Y(X) < Yoo (X) < Y(X) on (0, 1].

Having already established the existence of solution Y for (5) with an initial value
Y (1) = Yoo (1) satisfying Y (1) < Yoo(1) < Y (1) as in Lemma 2.2, the continuation of Yy,
provides a solution Y on (0, 00).

At this point, it should be noted that, when dividing (7) by X, it holds that
Y (X)
l\’
By setting 0 < X < T, — 0 in order to let ¢,¢c — ¢ and @, a — a, we observe that

Y—(’?—) —a X — 0.

Hence, we obtained our desired global solution Y (X) for (5) defined on (0, o).

a< < a.

Step 2: It is important to note that Y(X) € C* by induction: firstly, (5) implies
Y(X) € C', and secondly, Y (X) € C*¥ (k > 1) implies that the left-hand side of (5) [that
is, dY/dX] is also C* thereby giving Y (X) € C¥*!. Consequently, we see that a solution
for f'(t) = Y (f(t)) exists locally and f'(t) does not diverge unless f(t) diverges. We shall
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prove that f(t) exists globally on R by showing that f(¢) does not diverge at a finite time
t.
Given ty € R, let us firstly solve

F)y=af@), @) =Y({@), f@) =af(t)

for t > t, with these initial values: f(t,) = f, > f(to) = fo > f(to) = f, > 0. According
to (7), as long as 0 < f < Ty, it holds that

F-f=af-y(HzaG-f, f~f=Y)~af2af~)),
and hence
®) Fof 2R~ f), [ f>en(s, 1),
Substituting both f = f,e~)% and f = f e(*~*) for each respective term of (8), and
noting that fye(*=%)% < T, implies

t < %log(To/fo) + to,

we have,
(9) foeltto)a > f@t) > foelttole

for the time interval [t,,a ! log(7,/ fo) + t,]. Since T, can be infinity, we can observe that
f(t) and f'(t), which exist locally, do not diverge at a finite time. Thereby we obtain the

global solution f(t) for the time interval [t,, 00).

Secondly, in order to see the behavior of f(t) for t < ¢,, by setting t, = —t,, we shall

solve the following equations:

—g(t) =ag(t), —g{)=Y(g9(t), —g'(t)=ag(®)

for t > £, with these initial values: g(%,) = g, > g(f,) = go > g(fo) = g, > 0. By adapting

@

the argument given in the above for ¢ > ¢, to t > {,, it holds that
—(@-9)=ag-Y(@za@g-9), -(¢-¢g)=Y(9) —-ag=alg—-g),
and hence, it follows that
g-g<e G —g), g-g<e (g —g)

By substituting both g = g,e~(*~%)% and g = g, e~(t=to)e for each respective term in the

above, we have

(10) goe—(t—fo)g < g(t) < goe_(t_t-")a,
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for t > t,. Since f(—t) = g(t) when t > t,, we have obtained the solution f(t) for the
time interval (—oo,t,]. Hence, we have a positive solution f(t) for the equation (4) for
all t € R, which is in C*™ by using an argument similar to that in the case of Y (X). By
means of Proposition 2.1, we are led to the family of solutions 1, (p) for the equation (3)

and thereby we have completed the proof of Theorem 2.1. O

Proof of the first claim of Theorem 1.1. Since 1/},\(p) > 0 for all p > 0, we have
Ju = (8s'ou/ds’) > 0 for all (x,t,p) € N -R,, where (s!,...,s™) = (z',...,tp).
Since Theorem 2.1 is at our disposal, we can prove this claim by using Lemma 2.1. O

Proposition 2.2. For Co>0, N = ZL, In; and 6 > 1, there exist positive constants
C,(Co, N), Cy(Co, N) and Cy(Cy, N, 8) so that, for p > C,, the following inequalities hold:

(11) ¥(p) > pexp(CipV?),
(12) V(p) < Cop™NP(p),
(13) Plp) < Cap(p)®  (6>1).

Proof. Firstly, let us set f, := f(log(t,)) for t, = log(AC,).
By setting ¢ = 0 and a = N /2, accordingly, thereby we shall set T, = oo, so that the
inequality (9) holds for the time interval [¢,,00). Owing to this inequality, we have

¥(p) = pexp(foe BONIBOCN2) = pexp(f,(C; p)V/?) = pexp(CipV/?),

where C, = f,C, N2 Thus, we have obtained the inequality (11).

Secondly, given that each n; is a non-negative integer, it holds that

k

k k
lenl < len;‘) < (Z ln,)2 = N?,
=1 =1

=1

and, thereby, it follows that

a= (N+ \/N2 + 8%, l2n,)/4 < WN.
Recognizing that @ in (7) and (9) can be arbitrarily close to a, we shall set @ so that
N <a<3N/2
holds. Since C;'p > 1 from our assumption p > C,, we have

(14) Cy BN/ +8-1,BN/2) =341 5 |
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Moreover, by using (7) and (9), we have f'(t) = Y(f(t)) < af(t) < af,e®*~t). Hence,
¥ (p) (1+ f'(log(Ap)))p™ " ¥(p)

(1 + afoe(log()\p)—-log(/\Co))ﬁ)p—1w(p)

(1 + max(1,af,) (pC; ) ") p~ 4(p)

2max(1,af,)C;%p" 1 (p)

C,C;@NID=1 3N 2y (p) = C,p*N 2ep(p),

where C, = 2max(1,af,) and C, = C,Cy @N/2)-1, Thus, we have obtained (12).

Thirdly, since the inequality (11) is at our disposal, combining this with our assumption
p > C,, we have ¥(p) > pexp(C,pV’?) > C,exp(C,p"’?). Hence '

(15) 12 < O log((p)CY).
Combining (15) with (12) and setting n(p) = ¥(p)C, !, we have a constant C; so that
¥(p) < Cup™y(p) < C,C57H(CT og(n(0)))’ (n(p)) ~*n(p)?
3 1 ) °
= 020510;3(6 - og("(p&);,s )) n(p)’ < Cyl(p)® (6> 1).
—1 0o
Here, we have deduced this last inequality by observing that n(p) = C;ly(p) >

exp(C,C2V) for p > C, according to (11), and that log(z)/z is a bounded function
on z > C,. Hence, we have (13). a

ININ N

I

Lemma 2.3. There ezxists C; = C,(N) so that

: fog(Ap))  _
I N/2) NN = O

Proof. Let h be the solution for h"(t) = N'h'(t)/2+N /2 with these initial values: h'(t,) =
f'(to) > 0 and h(t,) = f(t,) > 0. Noting that

aip' - f') 1 ' lk ~1£(2) v — ¢
—— = SN (h f)+2§e I 2 SN (K = f),

we find that A'(t) > f'(t) for t > t,, and thereby it follows that
H(t) = N2 (fI(t,) +1) — 1 > f(2).

Dividing the above by eVt/2 we see that f'(t)e~V*? is bounded from above. Moreover,
since f(t) > 0, we have

; _ k
WD) _ s (gr(0) = INF(0) = 5623 (1 = eO)im, > 0,

=1
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Ntf2

thereby it is apparent that f'(t)e” is monotone increasing. Given the observation

made above, we have a constant C; so that

f'() f(t)
(16) Co = lim w2 = M e

Proof of the second claim of Theorem 1.1.
Let (n, p(t)) be the geodesic of N-R, joining (n, p,) and s := (n, p), satisfying p(0) =
and p(1) = p. Given that

? dp

LAQ —| = |log(0'?/0;"*)|,

4p(t)2

(17) dist((n, po), (m, p)) =

by using Lemma 2.3, we have

fison() () _ (400 ey fog(A)) _ f(log(¥s))
w P | = [~ e
— C,(N/2) ) ON2 = XN as s = (n, p) o .

Since the line segment joining (n, p,) and (n, p) is a geodesic of N - R, , we have
dist((m, po), (m, p)) < dist((n,, po), (m, p))
S diSt((no, Po)a (n7 Po)) + diSt((n’ Po), (n’ p))
Applying the exponential function exp(x) to the above, we have a constant Cj so that
exp(Ndist((n, 2,), (n,0))) < exp(Ndist((no, po), (1, 9)))
< C,exp(Ndist((n, p), (n, po))),

this is because dist((n,, p,), (n, py)) < co from our assumption |n| < co when (n, p) — oco.
Furthermore, combining this with (17), we obtain

exp (N dist((no, po), (1, p))) ~ exp(Ndist((n, p), (n, po))) = g¥/%/p/?

when we let (n, p) — oo while keeping |n| finite. Combining the above with (18), we have
proven the claim. O

Proposition 2.3. Near p =0, we have

(19)  w(o)=p+ololpl®) for anya< W +\/N?+8FE, IPn,) /4.
Proof. Fix solution f(—t) = g(t) and let t = — log(|p|). Dividing (9) by e~*, we have

g(t)e > g(t,)ehos etle—D),
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Consequently, we know that g(¢)e'® is bounded from below. Further to this, we have
d(e*'g(t))
dt

thereby, we can observe that g(¢)e’¢ is monotone decreasing. Given these considerations,

= ae'g(t) + e (t) = e (ag(t) + /(1)) = e(X(9) ~ Y (9)) <0

we have a constant C,(c), so that

C, = lim g(t)

t—oo e—ta

Now, let us suppose C, # 0. By using de I’Hopetal’s theorem, we have

SO ) I () BT ) Y

e=lmox = iR G T AR Gy T T e A g(t) &
which contradicts ¢ < a. Consequently, we must have C,(¢) = 0 and

lim,_,o f(log(|p]))/|p|® = 0, thereby we have

exp(f(log(|p]))) = 1+ f(log(|pl)) ZI(_IQSM_

= 1+ |ol*((tog(lp)/lol® )ZM

= 1+ o(|p*).
Furthermore, for é given t, and T, satisfying T, > f(t,), we have

fo@(t_to)g < f(t) < foe(t_to)a on [to, a! log(To/ fo) + to,
foe(t—to)h' < f(t) < foe(t—to)Q on (——OO(), to],

for all ¢ satisfying 0 < ¢ < E(T;). Since f(t,) — 0 as t, & —oo, we can let T, — 0 so
that E(T,) — c as t,,t — —oo. This leads us to conclude the following:

Yip) =p+ o(piplﬂ), a< (N + \/N'2 +83F Py )/4.

This lemma proves the third claim of Theorem 1.1.

3. THE BOUNDARY REGULARITY

3.1. Notation. Let o denote the geodesic symmetry of N - R, at (0,0,1) which will
be given in Lemma 5.2. By the third claim of Theorem 1.1, it suffices to estimate the
regularity of @, := oouoo only near a small neighborhood of (0,0,0). We shall use u and

i as abbreviations for u, and 4,, respectively.



3.2. Regularity of .
Definition 3.1. Fors = (x,t,p) € K* x Im(K) x Ry, let || - [|s: M — Ry, be
Islls == [Ix? + ¢+ p|* = ((IxI? + )2 + [¢12) /%,

Here | - | denotes the Euclidean norm.
Remark 3.1. It holds that poo = p/||s||%;-

The following observation will be useful in order to prove Lemma 3.8:
Lemma 3.1. ||lo(s)||ls = 1/||s||x-
Proof.

lo@)lIz = |Ixeol? +teo + poo|
= |IxI? =t + p|Ix|* + t + p| 7 = |Is|;2.

a
Lemma 3.2. For |s| < 572, we have
(20) Cyls| < |Isllx < G, ls|"2.
Proof.
(21) lIsll% = (1xI* + p)* + [¢]?
< (IsI* + Is)? + Is|* < 5lsf* (< 1),
2 IsI” = [x” + [t]* + p?
#2) < sl + llsll% + lislly < 3lis|l?-
This completes the estimate. O

Lemma 3.3. ||(uoc)(s)||zYIs|lz! < 1.

Proof. By using Definition 3.1, we have ||(x,t, o')lls > ||(x,t,p)||s when g’ > p. Since

¥(p) > p, by using Lemma, 3.1, we have

luea(S)llx = [I(x00,to0,%(pe0))|ls 2 (%00, te0, pe0)||u

= llo@)ll = lIsllZ"-
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Lemma 3.4. For |s| < 5712, we have
[@(s)] < Ciols|2.
Proof. By using Lemmas 3.1 and 3.3, we have
(23) @l = lloouco|ls = llueollz' = llueallz lIsllz lIslls < lIsllx-

Note that we have ||&||, < 5'/4|s|'/? by using the inequalities (21) and (23). In particular,
we also have ||&||, < 1. Hence, by using the inequality (22), we have 37'/2|4| < ||@||y. In
summary, we have obtained C,|i| < C,|s|'/?, which completes the proof of the lemma. O

Proposition 3.1. For |s| < 572, we have
|Jal| < C,,|s|~*? for any 6 > 1.

Here ||Ja| = (Tr(‘Jf/,-J'zl))l/2 = (Zu Ia(s‘o&)/as"]2)1/2 for (s...,s™) =
(z',...,t%,p).

The proof of this proposition shall be made in the next section.

Lemma 3.5. Let |s,| < |s,| < 1/2. Let s be any point on the line segment joining s, and

S,. Suppose that we have
I7a|l < Cy,ls|™,  la(s)| < Clsl”
with B+v2>1+4¢ fore >0. Then
li(s,) — di(s.)| < C,,ls: — 82| B+7.
Proof. In the case of |s,|?t7 < |s, —s,|, it holds that
la(s,) — @(s,)| < l@(s)] + |@(s2)| < Cpolsi|™ + Ciolsa|” < 2C |8, — 8,7+,

When [s,|?+” > |s, — s,|, for any point s on the line segment from s, to s,, we have
Is| > Is2] — |s — 85| > 8] — |5y — 82| > [s2](1 — |52|B+7—1) > |s;|(1 — 27¢), and thereby

Is|=# < C\,|s, — s,|7P/(8+"), By using the mean value inequality, we have
li(s:) — a(s,)| < IT@s)[lIs: = 82| < Cyls| P8y — 8] < CysCpy 1 — 8,7/ .

a

Proof of the fourth claim of Theorem 1.1.
Combining Lemmas 3.4 and 3.5 with Proposition 3.1, and noting that 1/2 / (1/2+ 2+
8) =1/(5 + 26), we have proven the claim. O
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3.3. The estimate of ||Ja||. The purpose of this subsection is to prove Proposition 3.1.

1/2

Lemma 3.6. For any path s, satisfying |s¢| < 5772, and p.o(s;) — 0 as t — 0o, we have

Ja — Id (the identity matriz) as t — oo.

Proof. Let s., = (X, to, Pos) be any point in M so that p.o(s;) — 0 as s; — s,,. Since
poo(s..) = 0, it holds that x,, # 0 or t,, # 0. Moreover, since |s;| < 57'/2, we also
have X 00 # 0 or t.0 # 0. In addition, 0 € C* near s, = (Xu, teo, Poo) When x,, # 0
or t, # 0. We also have u = (x,t,p + o(p%*!)) according to Proposition 2.3. If a
function f € C™ near x,t # 0, it holds that f(x,t,p + o(p2+!)) = f(x,t,p) + o(p2+!)
and we therefore have f(x.0,t.0, poo + 0((p.0)2*)) = f(Xe0,toq, paa) + o((p-0)2+!).
By applying this observation to d(s*.c)/0s', we have

6(3 oa)

a Sioa a
(68l )(xo()',toO',poo'+O((poo')-+l)) (Xoa',toO' pod) +0((p°0')_ )
Utilizing the above and the chain rule, we have

O(s'ow) _ i (s'0) (oo ).6(3 ou)( ) 0(s*.0)

s’ = 0 s’
_ ':‘ la(s;a)( ).B(Soa)_‘_a(s“oa)(uo )_a(s oo) B(pe0)
- ) o) 2222
(22 (6) 4 o((po01)) 20 (1 4 o((pr0)%))
_ Za(soa)( )6(300) +o((poo)t™)
- é?ﬂ((poa)w)
This completes the proof of the lemma. O

Remark 3.2. Given Lemma 3.6, in order to prove Proposition 3.1, it suffices to estimate
||Ja|| for sufficiently large p.o. In what follows, we shall assume poo = p/||s||% > C, for
a constant C, > 0, accordingly.

In the following, we shall prove Proposition 3.2, which will be the key to making an

estimation of ||J4||. To begin with, let us note that the left invariant orthonormal frames
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obtained in previous section, can be expressed as follows:

when CH™*!,
(L,;_, = p'/? (80 +22720/0¢*)
Ly, = p"%(8/8z*—22"'0/6¢t?),
< Ly, = 2p8/082,
| Lans2 = 2p0/0p,
when HH™ !,
(24) (Ly;.a= p'/? (8/02* +22720/0t* +227°0/ B> +22748 8t*)
Ly, = p'’? (8/027* 217 0/0t* — 2278/ 6t°+227°8/ 8t*) ,
Ly, = p'/?(0/027° +22749 /8> — 227 0/ Ot° — 22728 | 0t*)
| L, =p'?(0/02*—21°0/0t*+227%8/0t>— 2270 /8¢*)
Ly =2p3/0¢ (2<1<4),
( Linsa = 2p3/0p,

(1<j<n).

Regarding these, for a point s € N - R,, let us define the matrices T = (7:;(s)) when
CH"+! by

(1i5(s)) =

—9p12 2z ... 9gn! 2p1/2

\ 2012 )
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and when HH™*+! by

1
1
1
(ij(s)) = 1

—9z12 ol _9pl4 2713 ... 2x"3 2p1/2

—9713 214 2t 2712 ... _9rn2? 2p1/2

—2z' -2z 2712 2 ...  2z™ 2p1/2

\ 2072

b

and let 7! = (7(s)) denote their inverse matrices. Utilizing these, we can express the
frame {L;} as

= 0
L;=p'? i(8) 2>
p ETI (8) 55
and the dual frame {L}} as
Ly=p7'2 Z 73 (s)ds',
=1
where (s',...,s™) = (z',...,t% p). Indeed, we can see the following:

Li(Ly) =) mr =45}
=1

Next, for the column vector ds = ‘(ds',... ,ds™), let us denote the column vector L* as
L} ds!
L'=| :|=p"T"\s) P =pTTN(s) - ds.
Ly, ds™

Utilizing this notation, we can express g = ‘L*-L* because {L;} is an orthonormal frame.

Moreover, since o is an isometry, we have

(25) g='L*-L* =" ((poa(s))“’27(o(s))-lda).((poa(s))“”T(a(s))—lda).
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Furthermore, for the Jacobi matrix Jo = (8(s'-0)/0s’), we can express the column vector
do = Yd(s'.0),... ,d(s™0)) as follows:

d(s'.0)
do = t | =Jo-ds=Jo - T(s)p"?p T (s)"'ds = Jo - T(s)p"/?L".
d(s™.0)

By substituting the above do for each respective term in (25), we can obtain the following

proposition:
Proposition 3.2.

P (po0(s)) > T(o(s)) ™ - Jo(s) T (s)
is an orthogonal matriz.

Remark 3.3. Observing that

Ts,(i a;0/0s') | = i ;7. (0/0s")

m m
= Z a’ p*/? Z 7;0/08s' + 271 Z e Z 71;0/0s'
jeh =1 J€EI2 =1

m
+271gmpl/2 Z im0/ 0s',

=1
and that (7;;(s)) is non-singular, we can confirm the following well-known fact: the linear

map
( P2 )
Ta: To(M) 3 (a,... ,a™) = (a', ... ,a™) 2_1p;;2' (71;(8)) € Tao(M)
ey

is non-singular; this fact is in consistent with the fact that multiplication 7, (the left

translation) is a diffeomorphism of the Lie group.
By means of Proposition 3.2, we have the following lemma.:
Lemma 3.7. For |s| <572 and p/||s||% > C,; we have

Iall < Cullucollz?lIsllz*w(pe0)"*%(p0 o) [s] 7.
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Proof. To begin with, by using the chain rule, we have
Ju = Jo(u.o)-Ju(o)-Jo
= (poa(uoa))l/2 (pou(a))_l/z'r(o(uoa))

(26) (pou(0)) 12 (oo (o 0)) _1/2-’1'(0(1100))_1 Jo(ueo)- T (us0)
T (weo) ™ -Ju(o)-(pe0o(s)) V2 5112, (0(s))

(27) 272(pe0(s)) 1T (0(8))-Jo(s)- T (s)
“T(s)™'.

Noting that (26) and (27) are orthogonal matrices, we shall now use Proposition 3.2 to

obtain
173l < m?(peo(us0))’? (pou(0)) ™ (pe0) /2p™
N (o (we DI (we0) ™ Jule) T(@)NT(s) I

where m =n, +n, + 1.
Next, we shall evaluate each term of the above individually.

Firstly, by using Remark 3.1, we have
(00 (ue0)) " (pou(@)) ™ (po0)'/2p71/% = [[uecr |3l
Secondly, we can observe that
I7)I? = Tx(*T(s)-T(5)) = nu + dna(Ix[* + p) + 4p.

Furthermore, according to the proof of Lemma 3.4, it holds that |poii| < |Xoﬂ|2v + |pot| <

||@]|3, < 1. Hence we have
NT(o(ueo))||? < 7 +4n, +4.

Thirdly, we can easily see that T (uco)~!.Ju(o)-T (o) is a diagonal matrix with these

entries:

1, (poa/y(po0)) vz (poo/9(pe0)) Y2h(pe o).

In the first case, by using our construction of ¢, we have poo/Y(p.o) =
exp(—f(log(Ap.0))) < 1, thereby, we have

(peo/t(po0))"* < 1.

In the second case, since ¥(p) = pexp(f(log(Ap))) and f' > 0, it holds that

(o /P(po0))*9(pe0) = (1 + f'(log(A poo))) exp(2™" f (log(A po0))) > 1.
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Comparing them, we have
1T (uoo) " -Tu(0) T (o (s))|| < map(peo) (poo/t(poa))™'>.
Fourthly, because |s| < 57!/2 implies p < 1 and |x| < 1, we may observe

IT()7M? = n+47n,(|x|2+1)p7 ! + p 1471

IA

n, + (3n, + 1)471p!
< max(n,, (3n, +1)471)p~".
Finally, by using the inequality (20), we obtain
(po0) 26712 = 1/|ls|f% < C2Js|"2.

To summarizé, we have completed the proof of the lemma. ]

Lemma 3.8. Given § > 1, for |s| < 572 and p/||s||%, > C,, we have
(28) 1(uea) ()72 lI8l15* P (po o)1 (po0) ™% < Cio /|82,

Proof. To begin with, it should be noted that the estimation for 3/2 > § > 1, is sufficient
to complete the proof, from our assumption 1 < 1/|s| (as in [s| < 571/2).
Next, by using Definition 3.1, we have the following:

lueoll2lsl724 (0o 0) /24 pe0)

_ $(pe0)(po0) V2 _. R

= /2 o
(sl lxeol2 + lIsllz 0 (po0))* + It-0l2lisll4)

Here, for the sake of simplicity, we shall set = ||s||%4(p-0) in the following.

In order to complete our estimation, we shall divide our discussion into two separate

parts, with careful consideration of the following identity as in Lemma 3.1:
(29) 1= |lo(s)lIzlIsllE = lIsll% [to* + (sl xco|* + p/|Is|%)>.

In the first case, when ||s||%|t-c|?> > 1/2, by using (13) and (20) we obtain,

C3I/J(poo)6—l/2 _ C3n6—1/2 1

> (1/2+772)1/2 - (1/2+n2)1/2 ||s||3,6_1
CS C21 C4 C2l C22

- ”S“%,d~l - Is|26—1 ’

R,

where C,, = C1-%,
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In the second case, when ||s||4|t-o|? < 1/2, it follows that

R, < DO/l
7 lIsliz Ixeo]? + |Isl2 % (pe0)
Firstly, when ||s||%|x.0|? > 1/2, by using (13) and (20) once again, we have

Ca’(,b(po 0‘)6_1/2 C37)6_1/2 1 CiChy C3Cy5Ch
= BT = %1 = 26-1 -
1/2+n 1/2+7 [IslZ" = sl sl
Secondly, when |s||%|x.0|?> < 1/2, by utilizing the identity (29) in coordination with
lIsll%|t-0|* < 1/2, we have (||s||%[x-o|?+p/||s||2)? > 1/2, which implies that ||s||2 |x.o|?+
p/lIsll% > 1/+/2, and thereby it follows that

p/lslly 2 1/v2 — |Is|l} %0,
Combining this with, ||s||%|x.o|*> < 1/2 we have p/||s||% > 1/v/2 — 1/2 and thus,
sl /e < (1/vV2-1/2)7".
Making use of this inequality with (11) and (12), we have
Calp/lsI&)™™  _— Ci(o/lIslle) ™ (o/llsll4)

R, <

R, < <
wio/lIsllz)2lIsl% = (o/lisll4) exp(2-1C, (o/lsl|4 )™ ") I1sl12
3N/2+1/2 - N /2
= Cu(lsliz/p) (o/lsllt) ™' exp(=271C, (o/I1slI4) V") < oo.
To summarize, we have verified (28). O

Proof of Proposition 8.1. By summarizing the estimation in Lemmas 3.7 and 3.8, we
can prove Proposition 3.1. O
3.4. The fifth claim of Theorem 1.1. Proof of the fifth claim of Theorem 1.1.

Define two paths s;(7) (i = 1,2) by

posi (1) = T'™1(1/72), pesy(7) = 0,
Is: (Tl = 7, lIsa2(T) | = (228, (7)) /2 = (t%e8,(7)) "2,
XoS;(T) = t8;(7) = t'ss;(7) =0 i=1,2.
To begin with, we shall note that ||s,(7)||% = 784~1(1/72)2 + (t%s,(7))? implies
(s, (7)/lIs: (T)|2)? = 1 — T4y~ (1/72)%
Since poii(s,) = Y(p.0(s,))/(¥(po0(s:))* + (t25,(7)/||8:(7)||4)?), we have
[a(s:(7)) — @(s2(7))] > |pota(s,) — poii(s,)|
= poii(s,) = 72/(2 — Ty~ (1/72)?).

— 34 —



If u is e-Holder continuous, we have
|a(8:(7)) = @(s2(T))| < Cislsi (1) — 82(7)|* = Cos 971 (1/72)".
This implies that
/@2 = 7Y (1/7%)) < Car* (w7 (1/)",
thereby we obtain
1< 2=y (/7)) Cour®® D (71 (1/7%)°
(30 | < 2C,, TN (y1(1/77))".

For p' = poo(s,) = pes, /7%, we have 1/72 = 9(p') = p' exp(f(log(A\p'))), we therefore
obtain log(1/72) = log(p') + f(log(A\¢')). Thus, by using (16) we have
o f(log(¢'))
Cs = pll_’,’;o (N /2)~ 1N Tog(@)/2
o 108(1/7?) — log(p)
# o (N2
_ i log(1/7?)
PR

Hence, it follows that
¥ (1/72) = o' ~ (log(1/7%)*".

Combining the above with (30) and further supposing that € > 1/2, we observe that on
one hand, the right side of (30) tends to be 0 when 7 — 0, but on the other hand, the

left side is one. This leads to a contradiction. |

4. GRAHAM’S NON-ISOTROPIC HOLDER SPACES

In this section, we shall estimate the regularity of coordinate functions of our con-
structed maps in terms of Graham’s non-isotropic Holder spaces.

To begin with, let n = (x,t) denote a point of N = K" x Im(K) and let us further
define the Heisenberg distance function dy of N by

_ 1/4
dy(no,m;) = (|xo — xi[* + |to — t1 — 2Im(xo - xl)[2) /*
This distance function has a good property for scaling, that is,

(31) pdN(n, n,) = dN(p ‘n,p- nl),

— 35 —



where p-n = p-(x,t) = (p'/?x, pt) is the dilation. Then, by utilizing this distance
function, Folland and Stein’s Holder space I's is defined by a set of functions f on N
satisfying:

[f(ny) — f(ng)]| < C’zng(nl,ng)ﬁ for all n,,n, € N.

Following these, extensive research has been made into the properties of this I's space.

Well-known inclusion relationships are given below:

Lemma 4.1.
cCPcrsc ch?,
This can be proven by noting that
(32) Cyodn(ni,nz) < [n; — no| < Cydn(ny, np)'/?

for small n;, n,.
Given these defined spaces, let us consider the boundary value h of the coordinate

functions of our harmonic maps. We can observe the following:

|[t'oh(n;) — t'oh(ny)| < Cady(ng,ny)? forall 3<2 (2<1<d),

|1‘jloh(n1) - .’L‘jloh(ng)l < Cudy(ng, n,)? forall <1 1<j<n1<I1<d),
thereby, we can conclude the following:
Corollary 4.1. u|gy € I'g for f < 1.

Taking I's spaces into account, Graham [11] defined Holder spaces on M whose members
have boundary values belonging to I'g, by utilizing a discretization of the invariant metric
g, namely, the distance function:

[Ax[?  |Ap|? |At - 2Im(x, - AX)|?
+— 2

p p p

where p = min(p), p2), Ax = x; — X2, At = t; —ty and Ap = p; — py. In order to identify

d(51182)2 =

) for §; = (Xi,ti, pt) € M7 ('l = 1,2)a

the above with Graham’s expression [11, (6.2)], we may compute the following:
d(s1,:)° = |(p7'/2Ax,p™'Ap, p~ (At — 2m(x, - A%)))[?
= |p7'- (my -0zt o1 — p2) |2

By using this distance function, Graham defined the two-parameter family of Holder

spaces I'4 as follows: for —0o < 8 < @, 0 < @ < 1, a function f on M is in T2 if

I£(s1) — f(52)| < Caup?/?d(s),82)" for all s;,s, € M.
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In this section, we shall assume that all functions on MU{p = 0} are compactly supported,
by multiplying smooth cut-off functions if required.

Now let us mention the following theorem by Graham [11, Theorem 6.17, Proposition
6.7]:

Theorem 4.1. Suppose that « > 8 > 0. Then we have C* C T2. Moreover, f € T'?
implies f(-,p) € 'z (uniformly in p). Consequently, f has a boundary value f(-,0)
belonging to I's.

As an implication of this theorem, we may make a cursory characterization of I'? as a
space of functions which belong to C in the interior and whose boundary values belong
to ['s. An analogous space to I} was examined by Graham, where the interior regularity
was measured in terms of C* norms, rather than C® norms. This space is defined in the

following way:

For multi indices v = (y',... ,9™), let us set
m
1 m . . .
D'=¢ ---ef’, I=D_7" wt() =D 7'+ 29 +29™
i=1 i€l i€l

Then, he defined C’,f as a space of functions f satisfying
DY f| < C’asp(ﬁ_‘”t("))ﬂ,

for all multi indices 7 satisfying |y| < k, taking into account the appropriate weight for

each derivative.
Proposition 4.1 (Proposition 6.15 [11]). C? c I'8.

It should be further remarked that these spaces I') and Cf are invariant when group

actions are being applied:

Proposition 4.2 (Proposition 6.7 [11]). f € I'} if and only if fors € T2, and f € C?P if
and only if for, € CP.

Motivated by his work, Donnelly [6] adopted Graham’s space Cf in order to study the
Dirichlet problem at infinity for harmonic maps, thereby proving the uniqueness of the
solution within Cg for B > 2. Following their dialectic, let us estimate the regularity of
the coordinate functions of our harmonic maps % near the origin on one chart given in
(36).

To begin with, we shall remark the following;:

| T - T(s)p'?||? = ZZ(L s'ol) 25 Z Z(Dvs ulpwt(‘y)/2)

i=1 j=1 i=1 |y|=1
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Similar to Lemma 3.7, supposing that p/||s||%; > C, [as given in Remark 3.2], we have

Lemma 4.2.
7@ - T(8)p"2|| < Crlluoa |72 lIsll 2400 0) (o0 /2 (pe0)) * 02,

Here, it should be remarked that because 7 (s) is multiplied from the right side of Ji,

the unwelcome term ||7~!(s)|| is not present at this time as it is in Lemma 3.7.

Proceeding with, let us evaluate the right-hand side of the above. Firstly, ||s||};, > p?
implies that

(p20) " 0% = (o/lIsl%) /202 < 1.
Secondly, by utilizing the proof of Lemma 3.8, we have
lluco || lloll ¥ (0o 0)b(pe 0) ™% < Caallsll i .
Finally, combining ||s||}% < p(1=20)/2 with the above, we have concluded the following:
Proposition 4.3. 4 € C{’ for B < —1.

Hence, we have verified that the assumption of regularity cannot be removed from
Donnelly’s theorem [6].

Next, let us consider the space I'G. To start with, we remark the following:

Lemma 4.3. ([11, Lemma 6.4]) Let n;,n, € N, and suppose that n, varies over a

bounded set. Then Cy|n; — ny| < |n; - ny'| < Cy|n; — ny|.

Utilizing the above as in Graham’s proof [11, Proposition 6.8], we have the following
rough estimate:

|s%t(s1) — s'oti(sz)] < Caa(|x1 — X2|? + [t1 — t2]® + [p1 — po?)2/2

< Co(lxy — I'K'zl2 + |t; — t2 — 2Im(x; - (%X; — iz))|2 +|p1 — p2|2)a/2
X1 — X? t; — t2 — 2Im(x; - (X] — X2))|? — pol2\ a/2
= Cagpa/z(l 1 = Xa| +P| 11—ty (x1 - (%1 — X3))| +p|p1 p2| )

P 7
—xo? | Jti—tp— 21 (&g — %o))[2 — pol2va/2
< qupa/2(lxl ple +| 1 — to mi;(l (%1 — %2))| + |p1 p2p2| )a

for @ < 1/7 near the origin. In the last inequality, we allowed for the possibility that
the right-hand side diverges. Hence, we find that near p = 0, each coordinate function
of & is in ' for —oo < B < a for a < 1/7. Thereby, once again, we can verify that the

assumption of regularity cannot be removed from Donnelly’s theorem [6].
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5. THE CAYLEY TRANSFORMATION

In this section, we review some facts from hyperbolic geometry. In the following, K
denotes R, C or HL

5.1. The homogeneous model of KH". Let V1*(K) be the vector space K"*! together
with the unitary structure given by

O(2,w) = —Zwo + Z1w; + - - + ZWh.

An automorphism g of V1*(K) is said to be a unitary transformation. The group of
unitary transformations G = SO(1,n), SU(1,n) or Sp(1,n) is a subgroup of SL(n+1, K),
which is K-linear, that is '

®(9(2), 9(w)) = (2, w).

Define V_, by
Vo ={¢=(¢...,¢") € K™ B((,¢) = ~1}.
A projection map P: V_; — P(V_,) is given by using the following equivalence relations:
¢ ~ (' if and only if there exists A € K \ {0} so that ¢ = {'A.

Since ®(¢,({) = —1 < 0 implies

ICH2 + -+ [C P < IC°P,
we have [¢°|2 # 0. Hence, P(V_) is identified with

Bg ={(w',...,w") €K" | Y |w’|* <1},
Jj=1
by identifying [¢] € P(V_) and w € Bg for (w’ = ¢?(¢°)~! j = 1,---,n). Then in the
coordinate representation, the map P: V_; — By is given by

P)=w, w ="

5.2. The Cayley transformation as determined by +k, € OKH". Let {k;,... ,kn}
and {eg, ... ,e,} be the standard basis of P(K"*!) and K"*!, respectively. An element g
in G is said to be parabolic if g leaves exactly one point on the boundary fixed. Firstly,
we shall focus on the particular boundary point &, = (0,...,0,1) € KH". Since k, =
P(ep + €,), an element g € G leaves k,, fixed if and only if g(eo + ;) = (e + €,)A for
A € K\ {0}. Because of this, in order to examine the parabolic subgroup, a different basis



é; = 1, e:d;; which contains a multiple of eg + e, is often used. Following this, we shall

change the basis as follows:

é0 == (60 - en)/\/ia
én = (60 + en)/\/i

éj = € ISJSTL—I
In the form of a matrix, this change of basis is provided by

1/V2 -1/v2
D= E.
1/V2 1/V2

)

where F, _, is the identity matrix of the degree n— 1. The linear transformation C = D!
or the projective transformation which it induces is called the Cayley transformation. In
the coordinate representation, C is given by

C:(¢%¢h .., "M = (P = ¢V, ¢ L (O + (M) /V2).

Viewed as a projective transformation,

P o= —V2uw(l-w"),
7t = (L+wh)(1-wt)7,

which maps an open ball
n
Bg = {we K" | Z|w"|2 <1}
k=1
to the Siegel domain of type II

Z={ne K |Re(r") > Y IPP/2)

Our convention in the case of K = C differs from that of Graham’s [11, p. 444]. His 2" is
v—1n", 27 is /21 and his w is —w, respectively. Following Graham’s change of variable
[11, p. 444], setting a new coordinate (x, t, p) by

(33) x) =1 /V2, p=Re(n") - SIS /2, —t=Im(n"),
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thus we have obtained a diffeomorphism from BE to K*! x Im(K) x R, given in the

following:

x = —wl(1 —w")t,

(34) . n—1 1 )
—t+p=(1+w")1-w")" =D Wl —w

=1

At this point it should be noted that the group G = D~GD preserves D~1(V_,), thereby
the action of G on B is converted by the Cayley transformation C into the action of G
in ¥. Furthermore, C maps k, to the point co = C(k,) € 0X. Thus, the isotropy group
of k, in G corresponds to the isotropy group of oo in G.

Secondly, we shall focus on another boundary point —k, = (0,...,0,—1) € OKH™".
Noting that P(—eg + e,) = —kp, we can perform the same computation by replacing k,

with —k,. In the coordinate representation, we have
C: ((07 Cla s 7<n_17 Cn) - ((—CO) - Cn)/\/ia Cla LR Cn—l’ ((—CO) + Cn)/\/i)
Viewed as a projective transformation,

7= Vw1 - (~u) T
o= (1 (w) (- (—e™) T

If we set a new coordinate (x,t,p) according to (33) again, then the formula above is

given in the following form:

x! = —(—w!)(1 = (™))",
(35) PR S .
~t+p=(1+(-w"))(1 - (-w") - Z lw 21 — (—w™)|72.

Thus, we constructed the Cayley transformations as determined by the two boundary
points k, and —k,. We shall denote these as ¥,, and ¥_,,, respectively. They satisfy
U, = (—Id)oW_g,. Hence, we have the following boundary charts of B = Bg U S™+"2

(S™*"2 being a n; + ny dimensional sphere) given by the Cayley transformations ¥, and

W, : R+ x Ry, — Bg \ {ka},
U_;, : R"*" x Ry, = Bg \ {—kn}-
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5.3. A linear fractional transformation. G = SO(1,n),, SU(1,n), or Sp(1,n) acts
on P(V_) = Bg, as a linear fractional transformation B > w — s(w) € B given by

w'os(w) = (8:0 + Z.s.—,»'z1)")(s>*oo + Zs(,,-w")‘l for s = (s;) € G.
=1 j=1

There is an Iwasawa decomposition G = KAN where K coincides with a stabilizer sub-
group of G that leaves the origin of P(V_) fixed. Given that S = N A is diffeomorphic to
G/K = P(V_), we shall examine the Lie algebra s of S. The a-gradation of s is given by
s = R{H} +n, + n,,

n-1
n, = {ZX; | (x',...,x"") €K'}, n,={T|teImK)},
n;, = {)l(:le s|ad H)X =iX} (i=1,2),

where, each X; has four entries depending on x/, —x’ and —x%’ placed in the (I + 1)-st
column and (! + 1)-st row and the other entries vanish. Understanding that any element
of n is provided as a linear combination Z;:ll X! + T, we can express any element of S
[being defined as (s;;) = exp(3_1—; X' + T) exp(sH)] as follows:

[ Ch(s) + e~*(|x|2 — t)/2 —&' .-+ —%"1 Sh(s)+s~*(—|x|* +t)/2
_e-'-'xl e—sxl
1
(s45) = )
_e—sxn—l e—sxn—l
\ Sh(s)+e*(]x[2—t)/2 —=&! --- —x"1 Ch(s)+ s*(—|x[2 + t)/2 )

Recognizing that an action of an element of S to Bg is a fractional transformation, we

can observe that (s;;) maps the origin of B to
w' = —e *x!(Ch(s) + e *(|x|® - t;)/2)—l
= (e +1+x2—t)7,
w" = (Sh(s)+ e *(|x|?> — t)/2) (Ch(s) + e™*(|x|> — t)/2) "’
= (e -1+ x> —t)(e®* +1+|x|*> - t)_l.
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So, by substituting p for e?*, we have obtained a diffeomorphism M 3> (x,t,p) —
(wl,...,w") € P(V_) given by

w o= =2 (xP—t+p+1)7" (1<Ii<n-1),
w' = (xP-t+p—1)(x?—t+p+1)"".

Since the point oo determined by R, directions is mapped to k, € 8Bg, this diffeomor-
phism shall be denoted by ®,,. Recognizing that

1-w" = 2(xP—t+p+1)7,
1+w" = 2(|x|2—t+p)(|x|2—t+p+1)_l,

we can obtain the inverse of this diffeomorphism given by

x! —w!(1 - w")—l,
n—1
—t+p = (1+w*)(1- w")_1 - Z lw![?|1 - w"l_z.
=1

At this point, it should be noted that this diffeomorphism is identical to the Cayley
transformation (34). By setting ®_,, = (—Id)o®;,, we have boundary charts of B =

BR U S™Mtn2 given by
- Py, : RM+m2 x Ry, — By \ {ka},
®_i.: R x Ry, = By \ {—kn}-

As we can observe from Chen and Greenberg [4, Proposition 2.3.1], the left invariant
metric on P(V_) = Bg is dw-dw at the origin O = (0,...,0) € BE. Furthermore, we can

verify the following:
Lemma 5.1.
d('UJo\Ilkn)'d(wo‘Ijkﬂ)lo = d(wo\I’_k")-d(UJo\I’_kn)'o = dXdi + dtdf/‘l -+ dp2/4

for 0 =(0,0,1) = ¥ 1(0). This determines the canonical left invariant metric g so that

(N -R4, g) is a symmetric space.

Since the geodesic symmetry of the ball B at the origin 0 € Bg is B > w — —w € Bg,
the geodesic symmetry of N-R, at o = (0,0,1) = ®;'(0) = ®Z; (0) € N-R, is provided
by

0= @ @ s, = ®plo(—1d)o®y, : R™ ™2 x Ry, \ {(0,0)} = R *™ x R,, \ {(0,0)}.
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This will be the coordinate transformation of the coordinate system as given in (36).
Regarding the estimation in Proposition 3.2, it should be noted that o*(g) = g, this is

because w — —w is an isometry of (Bg, gp) and it holds that ¢ = ¥} (gs) = ¥* (gB).

Lemma 5.2. The ezplicit formula of o ts as follows:

xteo = —xX(xP—t+p)",
—teg + (po0) = (t+p)|Ix>+t+p|"".
Proof. Recognizing that
I+uw)1-w)? = (1+e”)(1-2)(1-7") ' 1-w")

= (1-v"+uw"+ w1l - w72

Q-w) ' (1+w") = 1-w) ' (1-7") 7' (1-3")1+uw")
= 1 w21 T 4"+ ),
we obtain
xXP—-t+p=>0+w" )1 -w")"'=10-w")"1+w"),
and thereby
(X =t +p) 7" = (1 - w1+ w) ™ = (1+w") (1~ w").
Utilizing the above, we find that
oo = —(-w)(1-(-w")”
= (- )(1-w)"'1-w)(1+w")"
= —x(xP-t+p)7,

—teg +poo = (1—-(-w")" (14 (-w") — |xe0]?
= (1+w") 7 (1-w") - |xeol
= (X’ —t+p) " —|xoof?
= (t+p)|IxI?+t+p| "
m

Remark 5.1. Generally speaking, we should note that the regularity of the coordinate
functions of maps depends on the coordinate system. Let us consider the diffeomorphisms
f2o: N x Ry 3 (x,t,p) = (x,t,0%*) € N x R, for an integer 2a > 0, and a coordinate
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system given by fy,0¥, and fr,0¥_y, , instead of (36). Then our harmonic maps are of
the form f; ouofon: N xR, 3 (x,t, p) = (x,t,9(p%*)/2*) € N xR, , where v(p?®)1/2x =
(0% + o(p**|p|?22)) /22 = p 4 o(p|p|?*2). This affects the third claim of Theorem 1.1. In
order to be consistent with the C? statement in Donnelly [5], we may have to consider the
above with a = 1. Although we can obtain the fourth claim without specifying a by using
the same argument, we had to leave out this further complication for want of readability.
But, it is easy to see from our results in this article that the coordinate functions of our
map cannot be C? for the case of & = 1. Therefore, we can conclude that the assumption

of regularity cannot be removed from Donnelly’s theorem [5].
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