Nihonkai Math. J.
Vol.11(2000), 1-9

On an Invariant Subspace Whose Common Zero Set is the Zeros of Some Function
By

Takahiko Nakazi

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry
of Education.

Abstract. Let F' be a nonzero function in H2(D") such that if ¢ is a function in
L>*(T") and ¢F is in H*(D"), then ¢ belongs to H*(D™). We study the set of multipliers

of an invariant subspace M of H?(D") whose common zero set of M is just a zero set of
F.

§1. Introduction

Let D™ be the open unit polydisc in C" and T™ be its distinguished boundary.
The normalized Lebesgue measure on T™ is denoted by dm. For 0 < p < oo, H?(D") is the
Hardy space and LP(T™) is the Lebesgue space on T". Let N(D") denote the Nevanlinna
class. Each f in N(D") has radial limits f* defined on T™" a.e.. Moreover, there is
a singular measure do; on T™ determined by f such that the least harmonic majorant
u(log | f]) of log | f| is given by u(log |f|)(2) = P.(log |f*| + dos) where P, denotes Poisson
integration and z = (2,22, ++,2,) € D" Put N,(D*) = {f € N(D") ; doy < 0}, then
H?(D™) C N.(D™) c N(D") and H?(D™) = N.(D*)N L*(T™) C N(D")N LP(T™). These
facts are shown in [10, Theorem 3.3.5].

A closed subspace M of HP(D") is said to be invariant if 2;,M C M for j =
1,2,---,n. For an invariant subspace M of H*(D"), set

M(M) = {$ € L>(T") ; $M € H*(D™)}.

M(M) is called the set of multipliers of M and M(M) 2 H*(D"). M(M) has been
studied in [1],{2],(3],[7],[8] and [9]. In the previous paper [7], the author studied M(M)
in general and gave a necessary and sufficient condition for M(M) = H=(D"). It is
easy to see that M(M) = H*(D™) when the condimension of M in H?(D") is finite.



R.G.Douglas and K.Yan (1] generalized this result. They introduced the common zero set
Z(M) and the singular measure Z3(M) for an invariant subspace M of H?(D"), that is,

ZM)={z€D"; f(z)=0 for fe M}

and
Zs(M) = inf{—doy ; f € M, f #0}.

If F is a nonzero function in H?(D") and MF is an invariant subspace generated by F,
then
Z(Mr) = {z € D" ; F(z) = 0} = Z(F)

and Z3(Mp) = —dop. If hyp_2(Z(M)) = 0 and Z3(M) = 0, then M(M) = H>(D")
where hj,_, is real 2n — 2 dimensional Hausdorff measure [1): In the previous paper [8],
the author studied an invariant subspace whose common zero set is the common zero set of
the kernel of a slice map. The real 2n—2 dimensional Hausdorff measure of such a common
zero set may be positive when n = 2. K.Izuchi [2] showed that M(Mg) = H*(D") for
an outer function F. In this case, Z(MFp) = @ and Z3(MFp) = 0. In the previous paper
[9], the author studied the function F with M(MFp) = H*(D") when n = 2. He gave
two necessary and sufficient conditions for M(Mp) = H*(D?). Moreover he showed that
some function F' (it is neither an outer function nor a weakly outer function) satisfies
M(MF) = H°°(D2). .

In Section 2, we give several factorization lemmas which will be used in the latter
sections. In Section 3, we generalize (3) of Theorem 4 in [9] to an arbitrary n. Moreover
we study when a function f with doy = 0 satisfies M(My) = H*°(D") under a condition
on Z(f). Fix a € D*. For f in H*(D"), put

(2af)(A) = f(aad,---,end) (X € D).

®, is called a slice map. When n = 2,®, maps H%(D") into L?(D), where L2(D) is
the Bergman space (cf. [10, p.53],(8]). In Section 4, in case n > 3, we show that if
M is an invariant subspace with Z(M) = Z(ker ®,) and Z3(M) = 0, then M(M) =
H*(D"). In case n = 2, we determine a with M(M) = H(D") when M is finitely
generated, Z(M) = Z(ker ®,) and Z3(M) = 0. This improves Theorem 4 in [8]. When
n = 2,Z(ker®,) = Z(F) for F(z) = azz; — a1z2. Let F be a homogeneous polynomial
of arbitrary degree. We are interested in M(M) when M is an invariant subspace with
Z(M) = Z(MFp) and Z3(M) = 0. In Section 5, we study it when F is a Weierstrass
polynomial.
In this paper, we use the following notations.

z = (ZJ',Z;),Z;- = (zla'"azj—hzj-l-la""zn)'
D" = D; x D}, D} = [l¢zj D¢ where D™ =[1j., D, and D, = D.
T" =T; xT], T; = [1¢; Tc where T" =[;_; T and T, = T.

— [ [ A— . — n M o M
m = m; x mj;, m; = [[;x;m, where m = [[z_, m, and m, is the normalized
Lebesgue measure on 7.



§2. Factorization lemmas

For fin N(D"), f(z) = 2, Fj(z) is a homogeneous expansion of f and Fjis a
polynomial which is homogeneous of degree j. The smallest j = j(f) such that F; is not
the zero-polynomial is called the order of the zero which f has at (0,---,0). For p € D",
the order of the zero of f at p, O(f,p), is simply the order of the zero of f,(z) = f(z + p)
at z = (0,---,0). In this section, we give a factorization of f under a condition on
O(f,p) (p € D™). This will be used in the latter sections. Put

F(z) = z{ + ar1(21)25 + -+ + ar(2) 21 + ao(2})

where {a;}52} are analytic on D} and a;(0,---,0) =0 for 0 < j < £—1, then we call F a
Weierstrass polynomial of degree £. In this section we give several factorization lemmas
which will be used in this paper. Lemma 1 is well known. In fact, it is valid for simply
connected regions which are Cousin II domain (cf. [4],[5]).

Lemma 1. Let F and f be nonzero holomorphic functions on D™. If O(F,p) <
O(f,p) for every p € D" then f = Fg where g is holomorphic on D*. When O(F,p) =

O(f,p) for every p € D", Z(g) = O.

Lemma 2. Let F and f be nonzero functions in N(D"). -

(1) O(F,p) = O(f,p) for every p € D", then f = Fg where g and g~! are in
N(D™).

(2) If O(F,p) = O(f,p) for every p € D™ and dop > doy, then f = Fg where g
is in N, (D"). :

Proof. By Lemma 1, we have a factorization f = Fg. Hence

fNloglg(ra)ldm < [ |1og|f(rz)lldm + [ |log |F(rz)|ldm

implies that g belongs to N(D"). This implies (1). Since do; = dog + do,, if dop > doy
then do, < 0 and so g belongs to N,(D™). This implies (2).

Lemma 3. Let F be a function in N.(D") and dor = 0. If f is a nonzero
function in N(D™)(N.(D™)) and O(F,p) < O(f,p) for every p € D*, then f = Fg where
g is in N(D™)(N,(D")).

Proof. By Lemma 1, we have a factorization f = Fg. By the proof of Lemma 2,
g belongs to N(D™). Since dog = 0, do, = do; < 0 and so g belongs to N,(D") if f is in
N.(D").

Lemma 4. Let F be a Weierstrass polynomial of degree 1 in the Nevanlinna
class and dop = 0. If f is a nonzero function in N(D™) (N,(D")) such that f,(2;,0') has
a zero of order O(f,p) at z; = 0 for each p in Z(f), Z(f) € Z(F) and Z(f) # @ then
f = F'qg where g is in N(D™) (N.(D")) and € is a positive integer.

Proof. Suppose F(z) = 2, — a(z]) is a Weierstrass polynomial. By hypothesis,
there exists f € N(D")(N.(DV)) such that f,(z1,0’) has a zero of order O(f,p) # 0



at z; = 0 and so by the Weierstrass preparation theorem, there exists a polydisc A in
C", centered at (0,---,0), such that f,(2) = w(z)h(z) for z € A, where h is analytic in
A, h has no zero in A and w(z) is a Weierstrass polynomial of degree £. We can write
w(z) = [Ii=1(21 — a;(2})) for z = (21,2]) € A. Since Z(f) S Z(F), if (a;(z}),2]) € A,
then @j(z]) = a(z} + p}) — p1. Hence w(z) = (21 — (2] + p}) + p1)° on some polydisc A
which is contained in A. Hence f(z) = F(z)‘h(z —p) for z € A + p. This implies Lemma
4.

Lemma 5. Let F be a nonzero homogeneous polynomial such that F(z) =
F(z1,23). If f is a nonzero function in N(D")(N.(D")) such that Z(F) = Z(f) and
Z(f) # O, then there exists a homogeneous polynomial Q(z) = Q(z1, 22) of degree 1 such
that f = Qg and F = QG where g is in N(D")(N.(D")) and G(z) = G(z1,22) is a
homogeneous polynomial. When n = 2, the same conclusion is. valid under the weaker

condition : Z(F) 2 Z(f) and Z(f) # 9.
l . .
Proof. Since F(z) = Y _a;z{ 2] because F(z) = F(z,2,),

F(z) = zfia,- (2—2-)J

¢
¢ [I(bjzz — cjz;) where b; =1 or ¢; =1, and |b;| <1, |¢j| < 1.
j=0

Let Q(2) = boz — coz, then Z(Q) C Z(F) = Z(f). Hence O(Q,p) < O(f,p) for every
p € D™. Lemma 3 implies this lemma. Suppose n = 2 and Z(F') 2 Z(f) # @. For each
J, put

Il

hi(X) = f(bi), ;) (X € D),
then h; = 0 on D or Z(h;) is a descrete set in D. If there exist at least a j (0 < j < ¢)
such that k; = 0 on D, then O(f,p) > O(Fj,p) for every p € D? and F;(z) = bjz; — cjz.
Then as Q = F; the lemma follows. If there does not exist any j such that h; = 0 on
¢

D, then | JZ(h;) is descrete. Since Z(f) C Z(F), this implies that Z(f) is descrete and
i=o

hence Z(f) = @. This contradicts Z(f) # Q.

§3. M(Mp) = H>(D")

Let F be a nonzero function in H?(D"). Then M(MFg) = H*(D") if and only
if F has the following property : If |[F| > |f| a.e. on T™ and f is a function in H*(D"),
then |F| > |f| on D™.

This was shown in [9, (1) of Theorem 4] only for n = 2 but the proof works for
arbitrary n > 2. In this section, we study a function F' with M(Mp) = H*(D"). Put
for each 1 < j < n,



HY = {f € L*(T") ; J(m;,m{) =0 if m; <0} and H}NH] =L,

then H° N f];o = L{;) is a commutative von Neumann algebra. If £U) denotes the
conditional expectation from L*(T™) to L3), then £ () is multiplicative on H® and H® +

HY is weak star dense in L*(T™"). This implies that H  is an extended weak-*Dirichlet

algebra with respect to £), Hence we can use the general theory of an extended weak-
*Dirichlet algebra in [6].

Suppose h is a nonzero function in H?(D"). For some measurable set E in T7, if
h satisfies the following equality ;

— . '_
/TxElog|h|dm_/E(1og|/Tj hdmy|)dm},

J
h is called j-outer for E C Tj. The left side in the above equality is always bigger than
or equal to the right one for arbitrary function in H?(D"). h is j-outer for E C T} if and
only if
EW(log |h]) = log |EY)(R)| a.e. on Tj x E.
We call h simply j-outer when E = T]. The following Theorem 1 is a generalization of
(3) of Theorem 4 in [9] for arbitrary n. The proof is parallel to that in [9].

Theorem 1. Suppose h is a function in HP(D"). If h is L-outer for any € (# ])
and j-outer for E C T} with m}(E) > 0, then M(M,) = H*(D").

t
If h = [J ke and each ke in H(D") satisfies M(M,,) = H™(D"), then it is clear

{=1
that M(M,,) = H=(D"). By [9, p.495] there exists a function A in H*(D") which does
not satisfy the conditon in Theorem 4 but M(M,) = H*(D"). This was pointed to me
privately by Professor K.Takahashi.

Lemma 6. ([1, Corollary {]). For a function ¢ in N(D™) N L>(T™) and an
invariant subspace M of H*(D"), we have ¢ € M(M) if and only if doy < Z5(M).

Theorem 2. Suppose F is a nonzero function in H®(D") and M(Mp) =
H>(D"). If f is a nonzero function in H?(D™) and it satisfies one of the following
(1) ~ (3), then M(M;) = H®(D").

(1) O(F,p) = O(f,p) for every p € D™ and doy =0

(2) n =2 and F is a homogeneous polynomial with Z(F) 2 Z(f) and doy = 0.

(8) F is a Weierstrass polynomial of degree 1, Z(F) 2 Z(f), doy = 0 and
fo(21,0") has a zero of order O(f,p) at z1 =0 for each p in Z(f).

Proof. (1) If ¢ € M(M;), then ¢f € H?(D") and so by Lemma 2, ¢Fg €
H?*(D") where g and g~! are in N(D™). Hence ¢ = ¢F is analytic on D" and so ¢ €
N(D™) N L*(T"). 4 is also in M(M/) because F' € H*(D™). By Lemma 6,

d0'¢, S Za(M,) = dO'f =0



by hypothesis on f and so ¥ belongs to H*(D"). Thus FM(M;) C H*(D") and so
M(M;) = H*(D") because M(Mp) = H*(D").
(2) We may assume that Z(f) # @ by [1]. Since n = 2 and F is a homoge-
¢

neous polynomial, by the proof of Lemma 5, F(z) = c[[(bjz2 — cjz1), [bj| = 1 or |¢;| =
j=0 '
1 and |b;] < 1, |¢j| £ 1. By Lemma 5, there exists at least j (0 < j < £€) such that
f = (bjza—c;jz1)g; and doy; = 0. If Z(g;) is not empty, then Z(g;) € Z(F). By repeating
¢

the argument above, we can prove that f = [](b;z2 — ¢;z1)'V)g where Z(g) = @ and £(j)
j=0
is a nonnegative integer (0 < j < £). Since M(MFp) = H*(D"), |b;| = |c;| # 0 for any
3 (0 £ 5 < £). For if there exists a j such that [b;]| # |c;|, then-(bjz2 — ¢cjz1)~! ¢ H*°(D"),
and (bjz; — cjz1)”' € M(MF). This contradicts that M(Mp) = H>(D"). By [8,
¢

(4) of Proposition 3], M(Mg) = H*(D") where Q = [](bjz2 — ¢;z)*¥). By (1),

Jj=0
M(M;) = H*®(D") because f = Qg and Z(g) = 0.
(3) By Lemma 4, f = Fig and g € N(D™). If Z(g) is not empty, Z(g) C Z(F)
and so by Lemma 4, ¢ = F*¥g’. We can repeat this process and get f = F‘h for some

positive integer £ where h and h~! are in N(D"). We can prove (3) as in the proof of (1)
and (2). '

§4. Slice map

In this section, when Z(M) = Z(ker ®,) and Z3(M) = 0, we give a necessary
and sufficient condition for that M(M) = H>(D").

Theorem 3. Suppose n > 3. Let a = (ay,---,a,) € D" and M be an invariant
subspace in H*(D™).

(1) If M D ker ®,, then M(M) = H>(D").

(2) If Z(M) = Z(ker®,) and Zs(M) = 0, then M(M) = H>*(D").

Proof. If a = (ay,-+-,0,) = (0,--+,0), then z; € ker®, and ker®, = {f €
H?*(D") ; f£(0,---,0) = 0}. Hence Z(ker ®,) = {(0,---,0)} and Zy(ker®,) = 0. If o =
(a1, -+, as) #(0,---,0), then there exists some a; # 0,a;2; —a;z; € ker @, for i # j, and
Z(ker ®,) = {(c1,---,a,A) € D™ ; A € C}. Therefore for any a € D", Zs(ker ®,) =0
and the real 2n — 2 dimensional Hausdorff measure of Z(ker ®,) is zero. Now a theorem
of R.G.Douglas and K.Yan [1, Theorem 1] shows (1) and (2).

Theorem 4. Suppose n = 2. Let @ = (ay,a;) € D? and M be an invariant
subspace in H*(D?).
(1) If M? ker ®,, then M(M) = H*®(D?).



(2) Let £ be a finite positive integer. Suppose there exists a function f in M
such that 1 < O(f,p) < € for each p in Z(M). When Z(M) = Z(ker ®,) and Z3(M) =
0, M(M) = H>(D?) if and only if ;| = |ea|.

Proof. (1) is proved in [8, (6) of Proposition 3].

(2) We have that Z(ker ®,) = {(a1X,a2)) € D?* ; A € C}. If a = (a1, 03) =
(0,0), then Z(M) = {(0,0)} and so M(M) = H*(D?) by [1, Theorem 1]. We assume
a = (a1,az) # (0,0). Since M C ker @, if || # || then M(ker @,) # H*(D?) by (8,
(4) of Proposition 3] and so M(M) # H*°(D?). Assuming |a;| = |az| > 0, we will show
that M(M) = H*(D?). Note that

Z(M) =N {2(f5) ; fo € M). |
Since Z(M) = Z(a1z; — azz) and f5 € M, Z(fs) 2 Z(ca22 — az21). By Lemma 3,

fﬂ = (01122 - azll)t(mhﬁ

where hg € N(D?), hg(a1 ), az)) # 0 on D for each B and £(B) is a positive integer. Since
Z(fp) 2 Z(hp), Z(M) 2 ﬂZ(hp). If ﬂZ(hp) is not discrete, then hg(ai A, a2A) = 0 on

D because Z(hg) 2 ﬂZ(hp) and Z(M) Z(ayzz — a321).

Suppose ¢ E M(M), then by definition ¢fs = (@122 — z2;) “P)phg belongs
to H2(D?). Hence (a1z; — a321)"®)¢ is analytic on D? \ Z(hg) and £(8) < £. Since
ﬂZ(hg) is discrete, ¥ = (3122 — @221)'é is analytic on D?. For a nonzero function f in

B8 .

M,y f = (12— 0az2,)'df € H*(D?). By the proof of [1, Theorem 1}, € N(D?)NL>(T?)
and by Lemma 6 doy, < Z5(M) = 0. By [1, Proposition 2] ¥ belongs to H*°(D?). Thus,
since F = (ay22 — a321)" is weakly outer and ¢ € M(MF), ¢ belongs to H*(D?) because
M(Mp) = H*(D?) by Theorem 4.

In the previous paper, (2) of Theorem 4 was proved under the condition £ = 1.
N
When Z(M) = (\{Z(f;) : f; € M} and N < oo, it is clear that there exists a function
i=1
f in M such that 1 < O(f,p) < ¢ for each p in Z(M).

§5. M(M) = H>(D").

When F is a nonzero function in H2(D"), it is interesting to study the set of
multipliers of an invariant subspace M of H?(D™) whose common zero set of M is just
a zero set of F. In Section 3 and 4, we studied such a problem in very special cases. In
Theorem 2, it was studied when M has a single generator. In (2) of Theorem 4, it was
studied when M is finitely generated, n = 2 and F is a Weierstrass polynomial of degree 1



such that F(z) = ayz; — a;2;. In this section, we are interested in when F' is an arbitrary
Weierstrass polynomial.

Theorem 5. Suppose F is a Weierstrass polynomial of degree £ and M is an
invariant subspace of H2(D™) such that Z(M) = Z(F) and Zs(M) = 0. If for each p in
Z(M), there ezists a function f in M such that f,(z1,0') has a zero of order £ at z; =0,
then the following (1) and (2) are true.

(1) FM(M) C H>(D").

(2) If M(MFp) = H>(D"), then M(M) = H>®(D").

Proof. It is necessary to show only (1). Suppose F(z) = zf + ary(2})zf 1+ -+
a1(2z1)z1 + ao(2}) is a Weierstrass polynomial, then for each z; € D*"!,

F(z) = [1(21 — @(21)).

j=1

Let A; an A} be polydiscs in C and C™™?, respectively such that A = A; x A}. Suppose
p is arbitrary point in Z(M) and f is a function in M such that f,(2,0,---,0) has a zero
of order ¢ at z; = 0, by the Weierstrass preparation theorem, there exists a polydisc A
in C", center at (0, -+, 0), such that f,(z) = W(z)h(z) for z € A, where h is analytic in
A, h has no zero in A, :

W(z1,21) = 2f + be_a(2)) 217 + -+ - + bi(2])z1 + Bo(2))

where z = (21, 2}), {b;}’Z4 are analytic on A’ and b;(0,---,0) = 0 for 0 < j < £—1. Since
F(p) = 0, we may assume that p = (p1,p}) and p; = a;(p}). Let Bi(z}), -, Be(z}) be
¢

the zeros of fy(-,2]) in A', counted according to multiplicities. Then W(z) = [[(z1 —
=1

Bi(z1)) (z € C x A') (see[10,p.11]). If 2y + p1 — (2} + p,) = 0 and z € A, then
f(z+p) = 0. Hence we can assume that 8;(z]) = a;(z{ +p}) —p1. Thus W(z) = F(z+p)
on A because O(W,0) = O(f,p) = O(F,p). Suppose ¢ € M(M), then ¢f belongs to
H?*(D") and so

é(z + p)f(z + p) = ¢(z + p)F(z + p)h(2)

on AP by what was just proved. Hence ¢F is analytic on Ap + p. Since p is arbitrary
point in Z(M), ¢F is analytic on D™. #F belongs to M(M) because F € H>*(D™). and
oF € N(D*)N L*(T"). Now Lemma 6 and Z5(M) = 0 imply (1).

The author would like to thank the referee for several suggestions.
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