Nihonkai Math. J. Vol.11(2000), 1-9

On an Invariant Subspace Whose Common Zero Set is the Zeros of Some Function

By

Takahiko Nakazi

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Abstract. Let F be a nonzero function in $H^2(D^n)$ such that if ϕ is a function in $L^{\infty}(T^n)$ and ϕF is in $H^2(D^n)$, then ϕ belongs to $H^{\infty}(D^n)$. We study the set of multipliers of an invariant subspace M of $H^2(D^n)$ whose common zero set of M is just a zero set of F.

§1. Introduction

Let D^n be the open unit polydisc in C^n and T^n be its distinguished boundary. The normalized Lebesgue measure on T^n is denoted by dm. For $0 , <math>H^p(D^n)$ is the Hardy space and $L^p(T^n)$ is the Lebesgue space on T^n . Let $N(D^n)$ denote the Nevanlinna class. Each f in $N(D^n)$ has radial limits f^* defined on T^n a.e.. Moreover, there is a singular measure $d\sigma_f$ on T^n determined by f such that the least harmonic majorant $u(\log |f|)$ of $\log |f|$ is given by $u(\log |f|)(z) = P_z(\log |f^*| + d\sigma_f)$ where P_z denotes Poisson integration and $z = (z_1, z_2, \dots, z_n) \in D^n$. Put $N_*(D^n) = \{f \in N(D^n) : d\sigma_f \le 0\}$, then $H^p(D^n) \subset N_*(D^n) \subset N(D^n)$ and $H^p(D^n) = N_*(D^n) \cap L^p(T^n) \subseteq N(D^n) \cap L^p(T^n)$. These facts are shown in [10, Theorem 3.3.5].

A closed subspace M of $H^p(D^n)$ is said to be invariant if $z_jM\subset M$ for $j=1,2,\cdots,n$. For an invariant subspace M of $H^2(D^n)$, set

$$\mathcal{M}(M) = \{ \phi \in L^{\infty}(T^n) \; ; \; \phi M \subseteq H^2(D^n) \}.$$

 $\mathcal{M}(M)$ is called the set of multipliers of M and $\mathcal{M}(M) \supseteq H^{\infty}(D^n)$. $\mathcal{M}(M)$ has been studied in [1],[2],[3],[7],[8] and [9]. In the previous paper [7], the author studied $\mathcal{M}(M)$ in general and gave a necessary and sufficient condition for $\mathcal{M}(M) = H^{\infty}(D^n)$. It is easy to see that $\mathcal{M}(M) = H^{\infty}(D^n)$ when the condimension of M in $H^2(D^n)$ is finite.

R.G.Douglas and K.Yan [1] generalized this result. They introduced the common zero set Z(M) and the singular measure $Z_{\partial}(M)$ for an invariant subspace M of $H^{2}(D^{n})$, that is,

$$Z(M) = \{ z \in D^n ; f(z) = 0 \text{ for } f \in M \}$$

and

$$Z_{\partial}(M) = \inf\{-d\sigma_f ; f \in M, f \neq 0\}.$$

If F is a nonzero function in $H^2(D^n)$ and M_F is an invariant subspace generated by F, then

$$Z(M_F) = \{z \in D^n ; F(z) = 0\} = Z(F)$$

and $Z_{\partial}(M_F) = -d\sigma_F$. If $h_{2n-2}(Z(M)) = 0$ and $Z_{\partial}(M) = 0$, then $\mathcal{M}(M) = H^{\infty}(D^n)$ where h_{2n-2} is real 2n-2 dimensional Hausdorff measure [1]. In the previous paper [8], the author studied an invariant subspace whose common zero set is the common zero set of the kernel of a slice map. The real 2n-2 dimensional Hausdorff measure of such a common zero set may be positive when n=2. K.Izuchi [2] showed that $\mathcal{M}(M_F) = H^{\infty}(D^n)$ for an outer function F. In this case, $Z(M_F) = \emptyset$ and $Z_{\partial}(M_F) = 0$. In the previous paper [9], the author studied the function F with $\mathcal{M}(M_F) = H^{\infty}(D^n)$ when n=2. He gave two necessary and sufficient conditions for $\mathcal{M}(M_F) = H^{\infty}(D^2)$. Moreover he showed that some function F (it is neither an outer function nor a weakly outer function) satisfies $\mathcal{M}(M_F) = H^{\infty}(D^2)$.

In Section 2, we give several factorization lemmas which will be used in the latter sections. In Section 3, we generalize (3) of Theorem 4 in [9] to an arbitrary n. Moreover we study when a function f with $d\sigma_f = 0$ satisfies $\mathcal{M}(M_f) = H^{\infty}(D^n)$ under a condition on Z(f). Fix $\alpha \in \overline{D^n}$. For f in $H^2(D^n)$, put

$$(\Phi_{\alpha}f)(\lambda) = f(\alpha_1\lambda, \cdots, \alpha_n\lambda) \quad (\lambda \in D).$$

 Φ_{α} is called a slice map. When n=2, Φ_{α} maps $H^2(D^n)$ into $L^2_a(D)$, where $L^2_a(D)$ is the Bergman space (cf. [10, p.53], [8]). In Section 4, in case $n \geq 3$, we show that if M is an invariant subspace with $Z(M)=Z(\ker\Phi_{\alpha})$ and $Z_{\partial}(M)=0$, then $\mathcal{M}(M)=H^{\infty}(D^n)$. In case n=2, we determine α with $\mathcal{M}(M)=H^{\infty}(D^n)$ when M is finitely generated, $Z(M)=Z(\ker\Phi_{\alpha})$ and $Z_{\partial}(M)=0$. This improves Theorem 4 in [8]. When n=2, $Z(\ker\Phi_{\alpha})=Z(F)$ for $F(z)=\alpha_2z_1-\alpha_1z_2$. Let F be a homogeneous polynomial of arbitrary degree. We are interested in $\mathcal{M}(M)$ when M is an invariant subspace with $Z(M)=Z(M_F)$ and $Z_{\partial}(M)=0$. In Section 5, we study it when F is a Weierstrass polynomial.

In this paper, we use the following notations.

$$z = (z_{j}, z'_{j}), z'_{j} = (z_{1}, \dots, z_{j-1}, z_{j+1}, \dots, z_{n}).$$

$$D^{n} = D_{j} \times D'_{j}, D'_{j} = \prod_{\ell \neq j} D_{\ell} \text{ where } D^{n} = \prod_{\ell=1}^{n} D_{\ell} \text{ and } D_{\ell} = D.$$

$$T^{n} = T_{j} \times T'_{j}, T'_{j} = \prod_{\ell \neq j} T_{\ell} \text{ where } T^{n} = \prod_{\ell=1}^{n} T_{\ell} \text{ and } T_{\ell} = T.$$

 $m=m_j\times m_j',\ m_j'=\prod_{\ell\neq j}m_\ell$ where $m=\prod_{\ell=1}^nm_\ell$ and m_ℓ is the normalized Lebesgue measure on T_ℓ .

§2. Factorization lemmas

For f in $N(D^n)$, $f(z) = \sum_{j=0}^{\infty} F_j(z)$ is a homogeneous expansion of f and F_j is a polynomial which is homogeneous of degree j. The smallest j = j(f) such that F_j is not the zero-polynomial is called the order of the zero which f has at $(0, \dots, 0)$. For $p \in D^n$, the order of the zero of f at f, f, f, is simply the order of the zero of f, f, f, at f is a polynomial is called the order of the zero of the zero of f, f, f, is simply the order of the zero of f, f, f, at f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f, is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f and f is a polynomial which is homogeneous expansion of f is a polynomial f is a polynomial f and f is a polynomial f in f is a polynomia

$$F(z) = z_1^{\ell} + a_{\ell-1}(z_1')z_1^{\ell-1} + \cdots + a_1(z_1')z_1 + a_0(z_1')$$

where $\{a_j\}_{j=0}^{\ell-1}$ are analytic on D_1' and $a_j(0,\dots,0)=0$ for $0\leq j\leq \ell-1$, then we call F a Weierstrass polynomial of degree ℓ . In this section we give several factorization lemmas which will be used in this paper. Lemma 1 is well known. In fact, it is valid for simply connected regions which are Cousin II domain (cf. [4], [5]).

Lemma 1. Let F and f be nonzero holomorphic functions on D^n . If $O(F,p) \leq O(f,p)$ for every $p \in D^n$ then f = Fg where g is holomorphic on D^n . When O(F,p) = O(f,p) for every $p \in D^n$, $Z(g) = \emptyset$.

Lemma 2. Let F and f be nonzero functions in $N(D^n)$.

(1) O(F,p) = O(f,p) for every $p \in D^n$, then f = Fg where g and g^{-1} are in $N(D^n)$.

(2) If O(F, p) = O(f, p) for every $p \in D^n$ and $d\sigma_F \ge d\sigma_f$, then f = Fg where g is in $N_*(D^n)$.

Proof. By Lemma 1, we have a factorization f = Fg. Hence

$$\int_{T^n} |\log |g(rz)| dm \le \int_{T^n} |\log |f(rz)| |dm + \int_{T^n} |\log |F(rz)| |dm$$

implies that g belongs to $N(D^n)$. This implies (1). Since $d\sigma_f = d\sigma_F + d\sigma_g$, if $d\sigma_F \ge d\sigma_f$ then $d\sigma_g \le 0$ and so g belongs to $N_*(D^n)$. This implies (2).

Lemma 3. Let F be a function in $N_*(D^n)$ and $d\sigma_F = 0$. If f is a nonzero function in $N(D^n)(N_*(D^n))$ and $O(F,p) \leq O(f,p)$ for every $p \in D^n$, then f = Fg where g is in $N(D^n)(N_*(D^n))$.

Proof. By Lemma 1, we have a factorization f = Fg. By the proof of Lemma 2, g belongs to $N(D^n)$. Since $d\sigma_F = 0$, $d\sigma_g = d\sigma_f \leq 0$ and so g belongs to $N_*(D^n)$ if f is in $N_*(D^n)$.

Lemma 4. Let F be a Weierstrass polynomial of degree 1 in the Nevanlinna class and $d\sigma_F = 0$. If f is a nonzero function in $N(D^n)$ $(N_*(D^n))$ such that $f_p(z_1, 0')$ has a zero of order O(f, p) at $z_1 = 0$ for each p in Z(f), $Z(f) \subseteq Z(F)$ and $Z(f) \neq \emptyset$ then $f = F^{\ell}g$ where g is in $N(D^n)$ $(N_*(D^n))$ and ℓ is a positive integer.

Proof. Suppose $F(z) = z_1 - \alpha(z_1')$ is a Weierstrass polynomial. By hypothesis, there exists $f \in N(D^n)(N_*(D^N))$ such that $f_p(z_1, 0')$ has a zero of order $O(f, p) \neq 0$

at $z_1=0$ and so by the Weierstrass preparation theorem, there exists a polydisc \triangle in \mathbb{C}^n , centered at $(0,\dots,0)$, such that $f_p(z)=w(z)h(z)$ for $z\in \triangle$, where h is analytic in \triangle , h has no zero in \triangle and w(z) is a Weierstrass polynomial of degree ℓ . We can write $w(z)=\prod_{j=1}^{\ell}(z_1-\alpha_j(z_1'))$ for $z=(z_1,z_1')\in \triangle$. Since $Z(f)\subseteq Z(F)$, if $(\alpha_j(z_1'),z_1')\in \triangle$, then $\alpha_j(z_1')=\alpha(z_1'+p_1')-p_1$. Hence $w(z)=(z_1-\alpha(z_1'+p_1')+p_1)^{\ell}$ on some polydisc \triangle which is contained in \triangle . Hence $f(z)=F(z)^{\ell}h(z-p)$ for $z\in \triangle+p$. This implies Lemma 4.

Lemma 5. Let F be a nonzero homogeneous polynomial such that $F(z) = F(z_1, z_2)$. If f is a nonzero function in $N(D^n)(N_*(D^n))$ such that Z(F) = Z(f) and $Z(f) \neq \emptyset$, then there exists a homogeneous polynomial $Q(z) = Q(z_1, z_2)$ of degree 1 such that f = Qg and F = QG where g is in $N(D^n)(N_*(D^n))$ and $G(z) = G(z_1, z_2)$ is a homogeneous polynomial. When n = 2, the same conclusion is valid under the weaker condition : $Z(F) \supseteq Z(f)$ and $Z(f) \neq \emptyset$.

Proof. Since
$$F(z) = \sum_{j=0}^{\ell} a_j z_1^{\ell-j} z_2^j$$
 because $F(z) = F(z_1, z_2)$,

$$F(z) = z_1^{\ell} \sum_{j=0}^{\ell} a_j \left(\frac{z_2}{z_1}\right)^j$$

$$= c \prod_{j=0}^{\ell} (b_j z_2 - c_j z_1) \text{ where } b_j = 1 \text{ or } c_j = 1, \text{ and } |b_j| \le 1, |c_j| \le 1.$$

Let $Q(z) = b_0 z_2 - c_0 z_1$, then $Z(Q) \subseteq Z(F) = Z(f)$. Hence $O(Q, p) \le O(f, p)$ for every $p \in D^n$. Lemma 3 implies this lemma. Suppose n = 2 and $Z(F) \supseteq Z(f) \ne \emptyset$. For each j, put

$$h_i(\lambda) = f(b_i\lambda, c_i\lambda) \quad (\lambda \in D),$$

then $h_j \equiv 0$ on D or $Z(h_j)$ is a descrete set in D. If there exist at least a j $(0 \le j \le \ell)$ such that $h_j \equiv 0$ on D, then $O(f, p) \ge O(F_j, p)$ for every $p \in D^2$ and $F_j(z) = b_j z_2 - c_j z_1$. Then as $Q = F_j$ the lemma follows. If there does not exist any j such that $h_j \equiv 0$ on D, then $\bigcup_{j=0}^{\ell} Z(h_j)$ is descrete. Since $Z(f) \subseteq Z(F)$, this implies that Z(f) is descrete and hence $Z(f) = \emptyset$. This contradicts $Z(f) \ne \emptyset$.

§3.
$$\mathcal{M}(M_F) = H^{\infty}(D^n)$$

Let F be a nonzero function in $H^2(D^n)$. Then $\mathcal{M}(M_F) = H^\infty(D^n)$ if and only if F has the following property: If $|F| \geq |f|$ a.e. on T^n and f is a function in $H^2(D^n)$, then $|F| \geq |f|$ on D^n .

This was shown in [9, (1) of Theorem 4] only for n=2 but the proof works for arbitrary $n \geq 2$. In this section, we study a function F with $\mathcal{M}(M_F) = H^{\infty}(D^n)$. Put for each $1 \leq j \leq n$,

$$H_j^p = \{ f \in L^p(T^n) \; ; \; \hat{f}(m_j, m_j') = 0 \; \text{ if } \; m_j < 0 \} \; \text{ and } \; H_j^p \cap \bar{H}_j^p = \mathcal{L}_{(j)}^p,$$

then $H_j^{\infty} \cap \bar{H}_j^{\infty} = \mathcal{L}_{(j)}^{\infty}$ is a commutative von Neumann algebra. If $\mathcal{E}^{(j)}$ denotes the conditional expectation from $L^{\infty}(T^n)$ to $\mathcal{L}_{(j)}^{\infty}$, then $\mathcal{E}^{(j)}$ is multiplicative on H_j^{∞} and $H_j^{\infty} + \bar{H}_j^{\infty}$ is weak star dense in $L^{\infty}(T^n)$. This implies that H_j^{∞} is an extended weak-*Dirichlet algebra with respect to $\mathcal{E}^{(j)}$. Hence we can use the general theory of an extended weak-*Dirichlet algebra in [6].

Suppose h is a nonzero function in $H^p(D^n)$. For some measurable set E in T'_j , if h satisfies the following equality;

$$\int_{T_j \times E} \log |h| dm = \int_E (\log |\int_{T_j} h dm_j|) dm'_j,$$

h is called j-outer for $E \subset T'_j$. The left side in the above equality is always bigger than or equal to the right one for arbitrary function in $H^p(D^n)$. h is j-outer for $E \subset T'_j$ if and only if

$$\mathcal{E}^{(j)}(\log |h|) = \log |\mathcal{E}^{(j)}(h)|$$
 a.e. on $T_j \times E$.

We call h simply j-outer when $E = T'_j$. The following Theorem 1 is a generalization of (3) of Theorem 4 in [9] for arbitrary n. The proof is parallel to that in [9].

Theorem 1. Suppose h is a function in $H^p(D^n)$. If h is ℓ -outer for any $\ell \neq j$ and j-outer for $E \subset T'_j$ with $m'_j(E) > 0$, then $\mathcal{M}(M_h) = H^{\infty}(D^n)$.

If $h = \prod_{\ell=1}^t h_\ell$ and each h_ℓ in $H^\infty(D^n)$ satisfies $\mathcal{M}(M_{h_\ell}) = H^\infty(D^n)$, then it is clear that $\mathcal{M}(M_h) = H^\infty(D^n)$. By [9, p.495] there exists a function h in $H^\infty(D^n)$ which does not satisfy the conditon in Theorem 4 but $\mathcal{M}(M_h) = H^\infty(D^n)$. This was pointed to me privately by Professor K.Takahashi.

Lemma 6. ([1, Corollary 4]). For a function ϕ in $N(D^n) \cap L^{\infty}(T^n)$ and an invariant subspace M of $H^2(D^n)$, we have $\phi \in \mathcal{M}(M)$ if and only if $d\sigma_{\phi} \leq Z_{\partial}(M)$.

Theorem 2. Suppose F is a nonzero function in $H^{\infty}(D^n)$ and $\mathcal{M}(M_F) = H^{\infty}(D^n)$. If f is a nonzero function in $H^2(D^n)$ and it satisfies one of the following $(1) \sim (3)$, then $\mathcal{M}(M_f) = H^{\infty}(D^n)$.

- (1) O(F,p) = O(f,p) for every $p \in D^n$ and $d\sigma_f = 0$
- (2) n=2 and F is a homogeneous polynomial with $Z(F)\supseteq Z(f)$ and $d\sigma_f=0$.
- (3) F is a Weierstrass polynomial of degree 1, $Z(F) \supseteq Z(f)$, $d\sigma_f = 0$ and $f_p(z_1, 0')$ has a zero of order O(f, p) at $z_1 = 0$ for each p in Z(f).

Proof. (1) If $\phi \in \mathcal{M}(M_f)$, then $\phi f \in H^2(D^n)$ and so by Lemma 2, $\phi F g \in H^2(D^n)$ where g and g^{-1} are in $N(D^n)$. Hence $\psi = \phi F$ is analytic on D^n and so $\psi \in N(D^n) \cap L^{\infty}(T^n)$. ψ is also in $\mathcal{M}(M_f)$ because $F \in H^{\infty}(D^n)$. By Lemma 6,

$$d\sigma_{\psi} \leq Z_{\partial}(M_f) = d\sigma_f = 0$$

by hypothesis on f and so ψ belongs to $H^{\infty}(D^n)$. Thus $F\mathcal{M}(M_f)\subseteq H^{\infty}(D^n)$ and so $\mathcal{M}(M_f)=H^{\infty}(D^n)$ because $\mathcal{M}(M_F)=H^{\infty}(D^n)$.

(2) We may assume that $Z(f) \neq \emptyset$ by [1]. Since n=2 and F is a homogeneous polynomial, by the proof of Lemma 5, $F(z)=c\prod_{j=0}^{\ell}(b_jz_2-c_jz_1), |b_j|=1$ or $|c_j|=1$ and $|b_j|\leq 1$, $|c_j|\leq 1$. By Lemma 5, there exists at least j $(0\leq j\leq \ell)$ such that $f=(b_jz_2-c_jz_1)g_j$ and $d\sigma_{g_j}=0$. If $Z(g_j)$ is not empty, then $Z(g_j)\subseteq Z(F)$. By repeating the argument above, we can prove that $f=\prod_{j=0}^{\ell}(b_jz_2-c_jz_1)^{\ell(j)}g$ where $Z(g)=\emptyset$ and $\ell(j)$ is a nonnegative integer $(0\leq j\leq \ell)$. Since $\mathcal{M}(M_F)=H^\infty(D^n)$, $|b_j|=|c_j|\neq 0$ for any j $(0\leq j\leq \ell)$. For if there exists a j such that $|b_j|\neq |c_j|$, then $(b_jz_2-c_jz_1)^{-1}\notin H^\infty(D^n)$, and $(b_jz_2-c_jz_1)^{-1}\in \mathcal{M}(M_F)$. This contradicts that $\mathcal{M}(M_F)=H^\infty(D^n)$. By [8, (4) of Proposition 3], $\mathcal{M}(M_Q)=H^\infty(D^n)$ where $Q=\prod_{j=0}^{\ell}(b_jz_2-c_jz_1)^{\ell(j)}$. By (1), $\mathcal{M}(M_f)=H^\infty(D^n)$ because f=Qg and $Z(g)=\emptyset$.

(3) By Lemma 4, $f = F^j g$ and $g \in N(D^n)$. If Z(g) is not empty, $Z(g) \subseteq Z(F)$ and so by Lemma 4, $g = F^k g'$. We can repeat this process and get $f = F^{\ell} h$ for some positive integer ℓ where h and h^{-1} are in $N(D^n)$. We can prove (3) as in the proof of (1) and (2).

§4. Slice map

In this section, when $Z(M) = Z(\ker \Phi_{\alpha})$ and $Z_{\partial}(M) = 0$, we give a necessary and sufficient condition for that $\mathcal{M}(M) = H^{\infty}(D^n)$.

Theorem 3. Suppose $n \geq 3$. Let $\alpha = (\alpha_1, \dots, \alpha_n) \in \bar{D}^n$ and M be an invariant subspace in $H^2(D^n)$.

(1) If $M \supseteq \ker \Phi_{\alpha}$, then $\mathcal{M}(M) = H^{\infty}(D^n)$.

(2) If $Z(M) = Z(\ker \Phi_{\alpha})$ and $Z_{\partial}(M) = 0$, then $\mathcal{M}(M) = H^{\infty}(D^n)$.

Proof. If $\alpha = (\alpha_1, \dots, \alpha_n) = (0, \dots, 0)$, then $z_1 \in \ker \Phi_{\alpha}$ and $\ker \Phi_{\alpha} = \{f \in H^2(D^n) ; f(0, \dots, 0) = 0\}$. Hence $Z(\ker \Phi_{\alpha}) = \{(0, \dots, 0)\}$ and $Z_{\partial}(\ker \Phi_{\alpha}) = 0$. If $\alpha = (\alpha_1, \dots, \alpha_n) \neq (0, \dots, 0)$, then there exists some $\alpha_j \neq 0, \alpha_j z_i - \alpha_i z_j \in \ker \Phi_{\alpha}$ for $i \neq j$, and $Z(\ker \Phi_{\alpha}) = \{(\alpha_1 \lambda, \dots, \alpha_n \lambda) \in D^n ; \lambda \in C\}$. Therefore for any $\alpha \in \overline{D}^n$, $Z_{\partial}(\ker \Phi_{\alpha}) = 0$ and the real 2n - 2 dimensional Hausdorff measure of $Z(\ker \Phi_{\alpha})$ is zero. Now a theorem of R.G.Douglas and K.Yan [1, Theorem 1] shows (1) and (2).

Theorem 4. Suppose n=2. Let $\alpha=(\alpha_1,\alpha_2)\in \overline{D^2}$ and M be an invariant subspace in $H^2(D^2)$.

(1) If $M \supseteq \ker \Phi_{\alpha}$, then $\mathcal{M}(M) = H^{\infty}(D^2)$.

(2) Let ℓ be a finite positive integer. Suppose there exists a function f in M such that $1 \leq O(f,p) \leq \ell$ for each p in Z(M). When $Z(M) = Z(\ker \Phi_{\alpha})$ and $Z_{\partial}(M) = 0$, $\mathcal{M}(M) = H^{\infty}(D^2)$ if and only if $|\alpha_1| = |\alpha_2|$.

Proof. (1) is proved in [8, (6) of Proposition 3].

(2) We have that $Z(\ker \Phi_{\alpha}) = \{(\alpha_1 \lambda, \alpha_2 \lambda) \in D^2 ; \lambda \in C\}$. If $\alpha = (\alpha_1, \alpha_2) = (0,0)$, then $Z(M) = \{(0,0)\}$ and so $\mathcal{M}(M) = H^{\infty}(D^2)$ by [1, Theorem 1]. We assume $\alpha = (\alpha_1, \alpha_2) \neq (0,0)$. Since $M \subseteq \ker \Phi_{\alpha}$, if $|\alpha_1| \neq |\alpha_2|$ then $\mathcal{M}(\ker \Phi_{\alpha}) \neq H^{\infty}(D^2)$ by [8, (4) of Proposition 3] and so $\mathcal{M}(M) \neq H^{\infty}(D^2)$. Assuming $|\alpha_1| = |\alpha_2| > 0$, we will show that $\mathcal{M}(M) = H^{\infty}(D^2)$. Note that

$$Z(M) = \cap \{Z(f_{\beta}) ; f_{\beta} \in M\}.$$

Since $Z(M)=Z(\alpha_1z_2-\alpha_2z_1)$ and $f_{\beta}\in M, Z(f_{\beta})\supseteq Z(\alpha_1z_2-\alpha_2z_1)$. By Lemma 3,

$$f_{\beta} = (\alpha_1 z_2 - \alpha_2 z_1)^{\ell(\beta)} h_{\beta}$$

where $h_{\beta} \in N(D^2)$, $h_{\beta}(\alpha_1\lambda, \alpha_2\lambda) \not\equiv 0$ on D for each β and $\ell(\beta)$ is a positive integer. Since $Z(f_{\beta}) \supseteq Z(h_{\beta})$, $Z(M) \supseteq \bigcap_{\beta} Z(h_{\beta})$. If $\bigcap_{\beta} Z(h_{\beta})$ is not discrete, then $h_{\beta}(\alpha_1\lambda, \alpha_2\lambda) \equiv 0$ on D because $Z(h_{\beta}) \supseteq \bigcap_{\beta} Z(h_{\beta})$ and $Z(M) = Z(\alpha_1 z_2 - \alpha_2 z_1)$.

Suppose $\phi \in \mathcal{M}(M)$, then by definition $\phi f_{\beta} = (\alpha_1 z_2 - \alpha_2 z_1)^{\ell(\beta)} \phi h_{\beta}$ belongs to $H^2(D^2)$. Hence $(\alpha_1 z_2 - \alpha_2 z_1)^{\ell(\beta)} \phi$ is analytic on $D^2 \setminus Z(h_{\beta})$ and $\ell(\beta) \leq \ell$. Since $\bigcap Z(h_{\beta})$ is discrete, $\psi = (\alpha_1 z_2 - \alpha_2 z_1)^{\ell} \phi$ is analytic on D^2 . For a nonzero function f in $M, \psi f = (\alpha_1 z_2 - \alpha_2 z_1)^{\ell} \phi f \in H^2(D^2)$. By the proof of [1, Theorem 1], $\psi \in N(D^2) \cap L^{\infty}(T^2)$ and by Lemma 6 $d\sigma_{\psi} \leq Z_{\partial}(M) = 0$. By [1, Proposition 2] ψ belongs to $H^{\infty}(D^2)$. Thus, since $F = (\alpha_1 z_2 - \alpha_2 z_1)^{\ell}$ is weakly outer and $\phi \in \mathcal{M}(M_F)$, ϕ belongs to $H^{\infty}(D^2)$ because $\mathcal{M}(M_F) = H^{\infty}(D^2)$ by Theorem 4.

In the previous paper, (2) of Theorem 4 was proved under the condition $\ell = 1$. When $Z(M) = \bigcap_{j=1}^{N} \{Z(f_j) : f_j \in M\}$ and $N < \infty$, it is clear that there exists a function f in M such that $1 \leq O(f, p) \leq \ell$ for each p in Z(M).

§5.
$$\mathcal{M}(M) = H^{\infty}(D^n)$$
.

When F is a nonzero function in $H^2(D^n)$, it is interesting to study the set of multipliers of an invariant subspace M of $H^2(D^n)$ whose common zero set of M is just a zero set of F. In Section 3 and 4, we studied such a problem in very special cases. In Theorem 2, it was studied when M has a single generator. In (2) of Theorem 4, it was studied when M is finitely generated, n=2 and F is a Weierstrass polynomial of degree 1

such that $F(z) = \alpha_2 z_1 - \alpha_1 z_2$. In this section, we are interested in when F is an arbitrary Weierstrass polynomial.

Theorem 5. Suppose F is a Weierstrass polynomial of degree ℓ and M is an invariant subspace of $H^2(D^n)$ such that Z(M) = Z(F) and $Z_{\partial}(M) = 0$. If for each p in Z(M), there exists a function f in M such that $f_p(z_1, 0')$ has a zero of order ℓ at $z_1 = 0$, then the following (1) and (2) are true.

(1) $F\mathcal{M}(M) \subseteq H^{\infty}(D^n)$.

(2) If $\mathcal{M}(M_F) = H^{\infty}(D^n)$, then $\mathcal{M}(M) = H^{\infty}(D^n)$.

Proof. It is necessary to show only (1). Suppose $F(z) = z_1^{\ell} + a_{\ell-1}(z_1^{\ell})z_1^{\ell-1} + \cdots + a_1(z_1^{\ell})z_1 + a_0(z_1^{\ell})$ is a Weierstrass polynomial, then for each $z_1^{\ell} \in D^{n-1}$,

$$F(z)=\prod_{j=1}^{\ell}(z_1-\alpha_j(z_1')).$$

Let Δ_1 an Δ_1' be polydiscs in C and C^{n-1} , respectively such that $\Delta = \Delta_1 \times \Delta_1'$. Suppose p is arbitrary point in Z(M) and f is a function in M such that $f_p(z_1, 0, \dots, 0)$ has a zero of order ℓ at $z_1 = 0$, by the Weierstrass preparation theorem, there exists a polydisc Δ in C^n , center at $(0, \dots, 0)$, such that $f_p(z) = W(z)h(z)$ for $z \in \Delta$, where h is analytic in Δ , h has no zero in Δ ,

$$W(z_1,z_1')=z_1'+b_{\ell-1}(z_1')z_1^{\ell-1}+\cdots+b_1(z_1')z_1+b_0(z_1')$$

where $z = (z_1, z_1'), \{b_j\}_{j=0}^{\ell-1}$ are analytic on \triangle' and $b_j(0, \dots, 0) = 0$ for $0 \le j \le \ell-1$. Since F(p) = 0, we may assume that $p = (p_1, p_1')$ and $p_1 = \alpha_1(p_1')$. Let $\beta_1(z_1'), \dots, \beta_\ell(z_1')$ be the zeros of $f_p(\cdot, z_1')$ in \triangle' , counted according to multiplicities. Then $W(z) = \prod_{j=1}^{\ell} (z_1 - \beta_j(z_1'))$ $(z \in \mathbb{C} \times \triangle')$ (see[10, p.11]). If $z_1 + p_1 - \alpha_j(z_1' + p_1') = 0$ and $z \in \triangle$, then f(z+p) = 0. Hence we can assume that $\beta_j(z_1') = \alpha_j(z_1' + p_1') - p_1$. Thus W(z) = F(z+p) on \triangle because O(W,0) = O(f,p) = O(F,p). Suppose $\phi \in \mathcal{M}(M)$, then ϕf belongs to $H^2(D^n)$ and so

$$\phi(z+p)f(z+p) = \phi(z+p)F(z+p)h(z)$$

on $\tilde{\Delta}_p$ by what was just proved. Hence ϕF is analytic on $\tilde{\Delta}_p + p$. Since p is arbitrary point in $Z(M), \phi F$ is analytic on D^n . ϕF belongs to $\mathcal{M}(M)$ because $F \in H^{\infty}(D^n)$ and $\phi F \in N(D^n) \cap L^{\infty}(T^n)$. Now Lemma 6 and $Z_{\partial}(M) = 0$ imply (1).

The author would like to thank the referee for several suggestions.

References

- 1. R.G.Douglas and K.Yan, On the rigidity of Hardy submoduls, Integral Eq.Op.Th. 13(1990), 350-363.
- 2. K.Izuchi, Unitary equivalence of invariant subspaces in the polydisk, Pacific J. Math. 130(1987), 351-358.
- 3. K.Izuchi and Y.Matsugu, Outer functions and invariant subspaces on the torus, Acta Sci.Math. 59(1994), 429-440.
- 4. Y.Matsugu, On determining sets for $N(B_n)$ and $H^p(B_n)$, J.Fac.Sci., Sinshu Univ. 18(1983), 55-62.
- 5. R.O.Kujala, Generalized Blaschke conditions on the unit ball in C^p, Value Distribution Theory, Part A, Marcel Dekker, New York, (1974), 250-261.
- 6. T.Nakazi, Extended weak-*Dirichlet algebras, Pacific J. Math. 81(1979), 493-513.
- 7. T.Nakazi, Multipliers of invariant subspaces in the bidisc, Proc.Edinburgh Math. Soc. 37(1994), 193-199.
- 8. T.Nakazi, Slice maps and multipliers of invariant subspaces, Canad.Math.Bull. 39(1996), 219-226.
- 9. T.Nakazi, An outer function and several important functions in two variables, Arch. Math. 66(1996), 490-498.
- 10. W.Rudin, Function Theory in Polydisks, Benjamin, New York (1969).

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060-0810, Japan

Received December 11, 1998 Revised December 20, 1999