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LAPLACE OPERATOR
ON COMPACT GLUED MANIFOLDS

HIROYUKI SAKAI

1. INTRODUCTION

Various studies are developed on the property of the Laplace operator
on Riemannian manifolds. In this paper we introduce the concept of glued

manifold (\S 2) as an extension of smooth Riemannian manifolds and develop
fundamental properties of the Laplace operator on it. Roughly speaking, a
glued manifold is a manifold which consists of several pieces of Riemannian
manifolds with boundary glued together by isometric mappings between
boundaries. For instance, this kind of manifold naturally appears as surface
of an object placed in Euclidean space $E^{3}$ (See FIGURE 1). On a glued
manifold $M$ the Riemannian metric $g$ is thought to be continuous on $M$ but
it is thought not to be differentiable on each point of boundaries on which
two pieces of Riemannian manifolds are glued together. A glued manifold
is an elementary example of a Lipschitz manifold [CP89] [Te183].

We find that the Laplace operator on functions can be defined on a com-
pact glued manifold (\S 3). And we find that $L^{2}$-space of functions has a
orthogonal decomposition into eigen spaces of the Laplace operator just
same as on compact smooth Riemannian manifolds (Theorem 1). These re-
sults are shown in [CP89] for general compact Lipschitz manifolds, however,
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our methods for compact glued manifolds are straightforward extension of
the compact smooth Riemannian manifold case. And we find that the eigen
function $f$ of the Laplace operator is smooth (Theorem 2) in the sense that

1. $f$ is continuous on $M$ and the restriction of $f$ to each piece of smooth
Riemannian manifold is infinitely differentiable.

2. grad$f$ is continuous even on each point of boundaries on which two
pieces of Riemannian manifolds are glued together.

Finally we prove (Theorem 3) that the inequality known as Lichnerowicz
inequality [Lic58] which states the lower bounds for the first non-zero eigen-
value of the Laplace operator on compact smooth Riemannian manifolds
still holds on our compact glued manifold in the following form.

We prove that if a compact n-dimensional glued manifold $M$ satisfies,
1. there exists a constant $\delta>0$ such that Ricci. curvature is bounded

below by $(n-1)\delta$ on $M$ ,
2. pieces of Riemannian manifolds are non-negatively glued together (the

precise meaning of this condition is explained later),
then the first non-zero eigenvalue $\lambda_{1}(M)$ of the Laplace operator satisfies
(1) $\lambda_{1}(M)\geq n\delta$,
And we prove that a result of Obata [Oba62] for compact smooth Riemann-
ian manifolds which states that equality holds in inequality (1) if and only if
$M$ is isometric to an n-sphere of constant sectional curvature $\delta$ is stil true
for our glued manifold and that, consequently, $M$ is a smooth Riemannian
manifold.

2. GLUED MANIFOLDS

2.1. Definition of glued manifold. Let $M$ be a connected topological
manifold with dimension $n$ without boundary. We say that $(M,g)$ is a
complete glued manifold having a decomposition $\Gamma$ : $M=\bigcup_{\alpha\in\Lambda}M_{\alpha}$ if the
decomposition $\Gamma$ satisfies the following.

1. Each $(M_{\alpha},g_{\alpha}),g_{\alpha}=g|M_{\alpha}$ is a smooth complete Riemannian manifold
with smooth boundary $B_{\alpha}$ and dimension $n$ .

2. $(IntM_{\alpha})\cap M_{\beta}=\emptyset$ for $\alpha\neq\beta\in\Lambda$ , where $IntM_{\alpha}$ implies the interior of
$M_{\alpha}$ .

3. If $M_{\alpha}$ and $M_{\beta}$ are glued at $p\in B_{\alpha}\cap B_{\beta}$ , and ther exists a neighborhood
$U$ of $p\in M$ such that $U=(U\cap M_{\alpha})\cup(U\cap M_{\beta})$ . $T_{p}B_{\alpha}=T_{p\beta}B$ and
$g_{\alpha}=g_{\beta}$ on $T_{p}B_{\alpha}$ .

Let $B$ denote $\bigcup_{\alpha\in\Lambda}B_{\alpha}$ . Note that for each $p\in B$ the number of pieces
of Riemannian manifolds which are glued together on the point $p$ is always
two.

Throughout this paper, we assume further $M=\bigcup_{\alpha\in\Lambda}M_{\alpha}$ is a compact
glued manifold, which satisfies the following in addition to the conditions
above.

1. The index set $\Lambda$ is a finite set.
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2. Each $(M_{\alpha}, g_{\alpha})$ is a compact Riemannian manifold with boundary $B_{\alpha}$ .

Example 1. The glued manifold of FIGURE 1 is described as follows. Let
$M=M_{1}\cup M_{2}\cup M_{3}$ be a union of the following three surfaces in the Euclidean
space $E^{3}$ :

$M_{1}$ $:=\{(x, y, 0)\in E^{3}|x^{2}+y^{2}\leq 1\}$ ,

$M_{2}$ $:=\{(x, y, z)\in E^{3}|x^{2}+y^{2}=1,0\leq z\leq 1\}$ ,
$M_{3}$ $:=\{(x, y, 1)\in E^{3}|x^{2}+y^{2}\leq 1\}$ ,

and $g_{\alpha},$ $\alpha=1,2,3$ are induced Riemannian metrics from the natural Eu-
clidean metric of $E^{3}$ . Then, we see that

$B_{1}=\{(x, y, 0)\in E^{3}|x^{2}+y^{2}=1\}$ ,
$B_{2}=\{(x, y, 1)\in E^{3}|x^{2}+y^{2}=1\}$ ,
$B=B_{1}\cup B_{2}$ .

2.2. $0\infty$ structure. We denote Levi-Civita connection on $(M_{\alpha}, g_{\alpha})$ by $\nabla^{\alpha}$ .
Let $n_{\alpha}$ be the inward unit normal vector field to $B_{\alpha}$ .

For a glued manifold $M$ , we can introduce a canonical $ c\infty$-manifold struc-
ture on $M$ , which we describe below. It is sufficient to introduce an appro-
priate coordinate neighborhood of each point of $p\in B$ . Let $p\in M_{\alpha}\cap M_{\beta}$ .
And let $U_{p}$ be a neighborhood of $p$ in hypersurface $B$ which is diffeomorphic
to a open set $V\subset R^{n-1}$ by a diffeomorphism $\Phi$ : $V\rightarrow U_{p}$ . We define a map
$\Psi$ : $V\times(-\epsilon, \epsilon)\rightarrow M$ as follows.
(2) $\Psi(x, x_{n})$ $:=\exp_{\Phi(x)}^{\alpha}(x_{n}n_{\alpha})$ (for $x_{n}\geq 0$ )

$\Psi(x, x_{n})$ $:=\exp_{\Phi(x)}^{\beta}(-x_{n}n_{\beta})$ (for $x_{n}<0$ )

For sufficiently small $\epsilon>0,$ $\Psi$ defines a homeomorphism between $ V\times$

$(-\epsilon, \epsilon)$ and some open neighborhood $W$ of $p$ in $M$ . Thus $(W, \Psi^{-1})$ defines a
coordinate neighborhood of$p\in M$ and $\Psi^{-1}|(W\cap M_{\alpha})$ and $\Psi^{-1}|(W\cap M_{\beta})$ are
$ c\infty$-maps. Hence this coordinate neighborhood defines a $C^{\infty}$-differentiable
structure around a point $p\in M_{\alpha}\cap M_{\beta}$ so that $M$ should be a $ c\infty$-manifold.
As a coordinate neighborhood of a point $p\in M_{\alpha}\cap M_{\beta}$ , we always use this
coordinate neighborhood. We judge the differentiability of functions and
several tensors on $M$ relative to this $C^{\infty}$ structure. The Riemannian metric
$g$ is continuous but it may not be $C^{1}$-differentiable at each point $p\in B$

2.3. discrepancy tensor. We define the second fundamental form $h^{\alpha}$ and
the shape operator $L^{\alpha}$ on $TB_{\alpha}$ as usual. For $V,$ $W\in T_{p}B_{\alpha}$ ,

(3) $h^{\alpha}(V, W)$ $:=g_{\alpha}(\nabla_{V}^{\alpha}\tilde{W}, n_{\alpha})$

(4) $L^{\alpha}(V)$ $:=-\nabla_{V}^{\alpha}n_{\alpha}$

Where above $\tilde{W}$ is an arbitrary vector field on $B_{\alpha}$ such that $\tilde{W}_{p}=W$ . It is
well-known that $h^{\alpha}$ and $L^{\alpha}$ are symmetric and that they satisfy the relation

(5) $h^{\alpha}(V, W)=g_{\alpha}(V, L^{\alpha}(W))$ .
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On each point $p\in B_{\alpha}$ the tangent space $T_{p}M_{\alpha}$ has the following orthog-
onal decomposition.

(6) $T_{p}M_{\alpha}=T_{p}B_{\alpha}\oplus Rn_{\alpha}$

According to this decomposition, we often use the following decomposition
of a vector $X\in T_{p}M_{\alpha}$ .
(7) $X=X_{\tau}+X_{n}n_{\alpha}$

Where above $X_{\tau}\in T_{p}B_{\alpha}$ and $X_{n}=g_{\alpha}(X, n_{\alpha})$ .
On each point $p\in M_{\alpha}\cap M_{\beta}$ we investigate the discrepancy of two con-

nections $\nabla^{\alpha}$ and $\nabla^{\beta}$ . For a smooth vector field $X$ on $M$ and for a vector
$A\in T_{p}B_{\alpha}$ ,
(8) $\nabla_{A}^{\alpha}X=\nabla_{A}^{\alpha}X_{\tau}+\nabla_{A}^{\alpha}(X_{n}n_{a})$

$=D_{A}X_{\tau}+h^{\alpha}(A, X_{\tau})n_{\alpha}+dX_{n}(A)n_{\alpha}-X_{n}L^{\alpha}(A)$

Where above $D$ denotes Levi-Civita connection on $TB$ . Thus, for $\alpha\neq\beta\in\Lambda$ ,
the difference $\nabla_{A}^{\alpha}X-\nabla_{A}^{\beta}X$ is computed as folows.

(9) $\nabla_{A}^{\alpha}X-\nabla_{A}^{\beta}X=(h^{\alpha}(A, X_{\tau})+h^{\beta}(A, X_{\tau}))n_{\alpha}-X_{n}(L^{\alpha}(A)+L^{\beta}(A))$

One can see that the right hand side of the equality above is tensorial about
$A$ and $X$ .
Definition 1. For each point $p\in M_{\alpha}\cap M_{\beta}$ , we define a tensor $ S_{\alpha\beta}\in$

$Hom(T_{p}B, End(T_{p}M))$ as folows.

(10) $S_{\alpha\beta}(A)X:=\nabla_{A}^{\alpha}X-\nabla_{A}^{\beta}X$

$=(h^{\alpha}(A,X_{\tau})+h^{\beta}(A, X_{\tau}))n_{\alpha}-X_{n}(L^{\alpha}(A)+L^{\beta}(A))$

We cal $S_{\alpha\beta}$ discrepancy tensor.

One can see that $S_{\alpha\beta}=0$ if and only if $h^{\alpha}+h^{\beta}=0$ . And in the case
that $h^{\alpha}+h^{\beta}=0$ , one can see that Riemannian metric $g$ is $C^{1}$-differentiable
even on a point $p\in M_{\alpha}\cap M_{\beta}$ .
Definition 2. For each point $ p\in M_{\alpha}\cap M\rho$ , we define a symmetric tensor
$T$ on $T_{p}M$ as folows. Let $\{e_{i}\}$ be an orthonormal frame of $T_{p}B$ .

(11) $T(X,Y)$ $:=g(S_{\alpha\beta}(X_{\tau})Y_{\tau}, n_{\alpha})-X_{n}Y_{n}\sum_{i=1}^{n-1}g(S_{\alpha\beta}(e_{i})n_{\alpha}, e_{i})$

$=(L^{\alpha}+L^{\beta})(X_{\tau}, Y_{\tau})+tr.(h^{\alpha}+h^{\beta})X_{n}Y_{n}$

We call $T$ contracted discrepancy tensor.

One can see that $T$ is non-negative if and only if $h=h^{a}+h^{\beta}$ is non-
negative. We regard $M$ as non-negatively glued together if $T$ is non-negative
on every point on $B$ .
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2.4. geodesic curve. On a glued manifold a geodesic curve is not neces-
sarily be able to be defined for an arbitrary initial vector. Consider the
following example.

Example 2. Let $U$ be the following compact Riemannian manifold with
boundary $B$ , the Riemannian metric of which is induced from Euclidean
space $E^{2}$ .
(12) $U:=\{(x, y)\in E^{2}|1\leq x^{2}+y^{2}\leq 4\}$

$B=\partial U=\{(x,y)\in E^{2}|x^{2}+y^{2}=1, x^{2}+y^{2}=4\}$

Let $M_{1}$ and $M_{2}$ be two copies of $U$ . And let $M$ be a glued manifold which
consists of $M_{1}$ and $M_{2}$ glued together by the identity map on the boundary
$B$ . A geodesic curve on $M$ is a straight line on the coordinate system induced
$homE^{2}$ . Then one can see that no geodesic curve exists for an initial vector

(13) $v_{1}=\frac{\partial}{\partial x}$ $\in T_{(0,2)}M$

And one can see that two geodesic curves could exist for an initial vector

(14) $v_{2}=\frac{\partial}{\partial x}$ $\in T_{(0,1)}M$

According to this situation, a geodesic curve is not necessarily be extend-
able infinitely even on a compact glued manifold.

3. LAPLACE OPERATOR

The analytic theory of the Laplace operator and the Green operator on
compact glued manifolds proceeds in just the same way as on compact
smooth Riemannian manifolds.

Definition 3. We define the Laplace operator $\triangle$ for a function $f\in C^{\infty}(M)$

as usual.

(15) $\triangle f$ $:=$ -div grad$f$ .

Remark 1. For $f\in C^{\infty}(M)$ , the function $\triangle f$ is bounded on $M$ but it may
be discontinuous at points $p\in M_{\alpha}\cap M_{\beta}$ .

Let $dM_{\alpha}$ (resp. $dB_{\alpha}$ ) denote the natural measure on $M_{a}$ (resp. $B_{\alpha}$ )
induced from the Riemannian metric $g$ . We define $L^{2}$-inner product on
functions and l-forms on $M$ as follows.

(16) $\langle\phi, \psi\rangle_{L^{2}}$
$;=\sum_{\alpha\in\Lambda}\int_{M_{\alpha}}\phi_{\alpha}\psi_{\alpha}dM_{a}$

(17) $\langle\eta, \xi\rangle_{L^{2}}$
$;=\sum_{\alpha\in\Lambda}\int_{M_{\alpha}}g_{\alpha}(\eta_{\alpha}, \xi_{\alpha})dM_{\alpha}$

Proposition 1. For any $\phi,$ $\psi\in C^{\infty}(M)$ , the following identity holds.

(18) $\langle d\phi, d\psi\rangle_{L^{2}}=\langle\phi, \triangle\psi\rangle_{L^{2}}$
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Proof. By Green’s formula, the following identity holds on each $M_{a}$ .

(19) $\int_{M_{\alpha}}g_{\alpha}(d\phi, d\psi)dM_{\alpha}=-\int_{B_{\alpha}}\phi\frac{\partial\psi}{\partial n_{\alpha}}dB_{\alpha}$

$+\int_{M_{\alpha}}\phi\triangle\psi dM_{\alpha}$

We sum up the equalities (19) for all $\alpha\in\Lambda$ . Since $\psi$ is $C^{1}$ ,

(20) $\frac{\partial\psi}{\partial n_{a}}+\frac{\partial\psi}{\partial n_{\beta}}=0$

holds for $\alpha\neq\beta\in\Lambda$ which satisfy $ M_{\alpha}\cap M_{\beta}\neq\emptyset$ . Thus the first term of
the right hand side of the equality (19) cancels for $\alpha\neq\beta\in\Lambda$ which satisfy
$ M_{\alpha}\cap M_{\beta}\neq\emptyset$ . Then we get
(21) $\langle d\phi, d\psi\rangle_{L^{2}}=\langle\phi, \triangle\psi\rangle_{L^{2}}$

$\square $

We define the Sobolev space $W^{1,2}(M)$ as usual. It is well-known that the
inclusion $W^{1,2}(M)bL^{2}(M)$ is compact on a compact manifold $M$ . And
we denote the dual space of $W^{1,2}(M)$ by $(W^{1,2}(M))^{*}$ .
Definition 4. The Laplace operator $\triangle$ is defined as an operator with do-
main $W^{1,2}(M)$ and with range $(W^{1,2}(M))^{*}$ as usual. For $\phi\in W^{1,2}(M)$ ,
(22) $\langle\triangle\phi, \psi\rangle$ $:=\langle d\phi, d\psi\rangle_{L^{2}}$ for any $\psi\in W^{1,2}(M)$

(The bracket ( $\cdot,$

$\cdot\rangle$ in the left hand side of the equality above denotes the
natural pairing $(W^{1,2}(M))^{*}\otimes W^{1,2}(M)\rightarrow R.)$

Remark 2. For $0\infty$ functions, the definition of the Laplace operator above
coincides with the preceding definition in Definition 3 by the property of
Proposition 1.

Since the bi-linear form
(23) $\langle\phi, \psi\rangle_{L^{2}}+\langle d\phi, d\psi\rangle_{L^{2}}$

is equivalent to the $W^{1,2}$-inner product just same as on the smooth Rie-
mannian manifold case, the Laplace operator and Green operator theory
works also on our glued manifold without any modification. Then we get
the following theorem.

Theorem 1. There is a direct sum decomposition of $L^{2}(M)$ into a sum of
countably many orthogonal subspaces $H_{\lambda}$ . Each $H_{\lambda}$ is a finite dimensional
vector space, and is an eigen space for the Laplace operator $\triangle$ with eigen-
value $\lambda$ . The eigenvalues $\lambda$ form a discrete subset of $R$ and they satisfy
$\lambda\geq 0$ .

Theorem 1 is shown in [CP89] for general Lipschitz manifolds.
As for the regularity of the eigen function of the Laplace operator, we

find the following theorem.
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Theorem 2. The eigen function of the Laplace operator is $C^{1}$ -differentiable
on $M$ and the restriction of the function to each $M_{\alpha}$ is $ c\infty$ -differentiable.
Proof. Let $f$ be an eigen function with eigenvalue $\lambda$ . We shall prove the
regularity of the weak solution of the equation

(24) $L(f)=(\triangle-\lambda)f=0$ .

By the local property of the differential operator $L$ , one can easily get the
regularity of the weak solution in the interior of each $M_{\alpha}$ by using standard
elliptic differential operator theory. (c.f. [GT77])

The point is the regularity in the neighborhood of each point of $M_{\alpha}\cap M_{\beta}$ .
The regularity in problem is shown in Proposition 9 in Chapter II, \S 8
from [DL90] for more general divergence form differential operators. Our
assertion is a direct result of the proposition. $\square $

Corollary 1. A function $f\in W^{1,2}(M)$ is harmonic (i.e. $\triangle f=0$ ) if and
only if $f$ is a constant function on $M$ .

Proof. If $f$ is a constant function on $M$ , it is obvious that $f$ satisfies $\triangle f=0$ .
Conversely, if $\triangle f=0$ , one gets $\langle df, df\rangle_{L^{2}}=0$ . This implies $\langle df_{\alpha}, df_{\alpha}\rangle_{L^{2}(M_{\alpha})}=$

$0$ for each $\alpha\in\Lambda$ . Thus $f$ is constant on each $M_{a}$ . Furthermore, since $f$ is an
eigen function of the Laplace operator with eigenvalue zero, $f$ is continuous
on $M$ by Theorem 2. Hence $f$ is globally constant on M. $\square $

4. LICHNEROWICZ $S$ INEQUALITY AND OBATA $S$ RESULT

We conclude the paper by proving the analogue of Lichnerowicz’s in-
equality about the first non-zero eigenvalue of the Laplace operator and by
proving that Obata’s result is stil true on our compact glued manifold $M$ .
We first prove a lemma which is needed in the proof of the theorem.

Lemma 1. For $f\in C^{\infty}(M)$ let $X=gradf$ and $F=g(X, X)$ . And assume
divX is continuous on M. Then the following identity holds on each point
$p\in M_{\alpha}\cap M_{\beta}$ .

(25) $\frac{1}{2}((\frac{\partial F}{\partial n_{\alpha}})_{p}+(\frac{\partial F}{\partial n_{\beta}})_{p})=T(X_{p}, X_{p})$

Proof.

(26) $\frac{1}{2}\frac{\partial}{\partial n_{\alpha}}g(X, X)=g(\nabla_{n_{\alpha}}^{\alpha}X, X)$

$=g(\nabla_{n_{\alpha}}^{\alpha}X, X_{\tau})+X_{n}g(\nabla_{n_{\alpha}}^{\alpha}X, n_{\alpha})$

First we investigate the first term $g(\nabla_{n_{\alpha}}^{\alpha}X, X_{\tau})$ of the right hand side of
equality (26). We get

(27) $g(\nabla_{n_{\alpha}}^{\alpha}X, X_{\tau})=Hessf(n_{\alpha}, X_{\tau})=Hessf(X_{\tau}, n_{\alpha})=g(\nabla_{X_{\tau}}^{\alpha}X, n_{a})$ .
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Next we investigate the second term $X_{n}g(\nabla_{n_{\alpha}}^{\alpha}X, n_{a})$ of the right hand side
of the equality (26). Let $\{e_{i}\}$ be an orthonormal frame of $T_{p}B_{a}$ . Then
$div^{\alpha}X$ is expressed as follows.

(28) $div^{\alpha}X=\sum_{i=1}^{n-1}g(\nabla_{e_{1}}^{\alpha}X, e_{i})+g(\nabla_{n_{\alpha}}^{\alpha}X, n_{\alpha})$

The continuity of div$X$ implies that, for $\alpha\neq\beta\in\Lambda$ ,

(29) $0=div^{\alpha}X-div^{\beta}X$

$=\sum_{i=1}^{n-1}g(\nabla_{e_{1}}^{\alpha}X-\nabla_{e_{1}}^{\beta}X, e_{i})+g(\nabla_{n_{\alpha}}^{a}X+\nabla_{n_{\beta}}^{\beta}X, n_{a})$ .

Thus we get the folowing identity.

(30) $g(\nabla_{n_{\alpha}}^{\alpha}X+\nabla_{n_{\beta}}^{\beta}X,n_{\alpha})=-\sum_{i=1}^{n-1}g(S_{\alpha\beta}(e_{i})X, e_{i})$

Finally we get
(31)

$\frac{1}{2}((\frac{\partial F}{\partial n_{\alpha}})_{p}+(\frac{\partial F}{\partial n_{\beta}})_{p})=g(S_{\alpha\beta}(X_{\tau})X, n_{\alpha})-X_{n}\sum_{i=1}^{n-1}g(S_{\alpha\beta}(e_{i})X, e_{i})$

$=T(X, X)$ .
$\square $

Theorem 3. Let $M$ be a compact n-dimensional glued manifold which sat-
isfies following.

1. There exists a constant $\delta>0$ such that Ricci curvature is bounded
below by $(n-1)\delta$ on $M$ .

2. The contracted discrepancy tensor $T$ is non-negative on $B$ .
Then the first non-zero eigenvalue $\lambda_{1}(M)$ of the Laplace operator satisfies
(32) $\lambda_{1}(M)\geq n\delta$.
And equality holds if and only if $M$ is isometric to an n-sphere of constant
sectional curvature $\delta$ and consequently the Riemannian metric $g$ is $C^{\infty}-$

differentiable.
Proof. Let $f\in C^{1}(M)$ and let $X=gradf$ . Then direct computation shows
that the following Lichnerowicz formula [Lic58] holds on each $M_{\alpha}$ .

(33) $-\frac{1}{2}\triangle g(X, X)=|Hessf|^{2}-g(X,grad(\triangle f))+Ric(X,X)$

One can see that the inequality

(34) $|Hessf|^{2}\geq\frac{1}{n}(tr.(Hessf))^{2}=\frac{1}{n}(\triangle f)^{2}$
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holds on each point of $M_{\alpha}$ and that equality holds if and only if $Hessf$

is scalar multiple of the Riemannian metric $g$ on each point. And by the
assumption Ric(X, $X$ ) $\geq(n-1)\delta g(X, X)$ , we get the following inequality.

(35) $-\frac{1}{2}\triangle g(X, X)\geq\frac{1}{n}(\triangle f)^{2}-g(X, grad(\triangle f))+(n-1)\delta g(X, X)$

If $f$ is an eigen function with eigenvalue $\lambda$ (i.e. $\triangle f=\lambda f$ ), we get

(36) $-\frac{1}{2}\triangle g(X, X)\geq\frac{\lambda^{2}}{n}f^{2}-\lambda g(X, X)+(n-1)\delta g(X, X)$ .

Integrating the inequality (36) over $M_{\alpha}$ , we get

(37) $-\frac{1}{2}\int_{B_{\alpha}}\frac{\partial}{\partial n_{\alpha}}g(X, X)dB_{\alpha}\geq\frac{\lambda^{2}}{n}||f||_{L^{2}(M_{\alpha})}^{2}$

$-(\lambda-(n-1)\delta)\int_{M_{\alpha}}g(X, X)dM_{a}$ .

Since

(38) $\int_{M_{\alpha}}g(X,X)dM_{\alpha}=-\int_{B_{\alpha}}f\frac{\partial f}{\partial n_{\alpha}}dB_{a}+\int_{M_{\alpha}}f\triangle fdM_{\alpha}$ ,

we get
(39)

$-\frac{1}{2}\int_{B_{\alpha}}\frac{\partial}{\partial n_{\alpha}}g(X, X)dB_{\alpha}\geq\frac{\lambda^{2}}{n}||f||_{L^{2}(M_{\alpha})}^{2}-(\lambda-(n-1)\delta)\lambda||f||_{L^{2}(M_{\alpha})}^{2}$

$+(\lambda-(n-1)\delta)\int_{B_{\alpha}}f\frac{\partial f}{\partial n_{\alpha}}dB_{\alpha}$ .

Summing up the inequalities (39) for all $\alpha\in\Lambda$ , we get the following inequal-
ity by using Lemma 1.

(40) $-\int_{B}T(X, X)dB\geq-\lambda\frac{n-1}{n}(\lambda-n\delta)||f||_{L^{2}(M)}^{2}$

By the assumption $T(X, X)\geq 0$ , we get

(41) $0\geq-\lambda\frac{n-1}{n}(\lambda-n\delta)||f||_{L^{2}(M)}^{2}$

Then, if $\lambda>0$ , we get

(42) $\lambda\geq n\delta$ .
If equality holds in the inequality (42), all the inequalities of the argument
above must be equalities. In particular Hess $f$ must be scalar multiple of
Riemannian metric $g$ on each point of $M$ . Since $tr.(Hessf)=-\triangle f=-\lambda f$ ,
we get

(43) Hess$f=-\delta fg$ .

Once the equality (43) is established, one can see that the Obata’s result is
still true on our glued manifold, as we explain below.
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Note that the equality (43) indicates that the Hessian of $f$ is continuous
even on each point of $p\in B$ .

First we prove that the function $f$ is $C^{\infty}$-differentiable. Let $W$ be the
coordinate neighborhood of a point $p\in M_{\alpha}\cap M_{\beta}$ which we mentioned in
subsection (2.2) and let $(x_{1}, x_{2}, \cdots , x_{n})$ denote the coordinate functions on
$W$ . And let $e_{n}$ denote $\frac{\partial}{\partial x_{\mathfrak{n}}}$ Since $f$ is continuous and the restriction of $f$ to
each $M_{\alpha}$ is $ c\infty$ , it is sufficient to prove

(44) $\frac{\partial^{k}f}{\partial x_{n}^{k}}$

is continuous in $W$ . Since $\nabla_{e_{\mathfrak{n}}}e_{n}=0$ in $W$ , the following identity holds.

(45) $\nabla^{k}f(e_{n}, e_{n}, \cdots e_{n})=\frac{\partial^{k}f}{\partial x_{n}^{k}}$

Where above $\nabla^{k}f$ denotes the k-times covariant derivative tensor of $f$ ,
which, one can see by using the equality (43) inductively, is continuous.
Since the left hand side of the equality (45) is continuous, so is the right
hand side. Similarly one can check that $X=gradf$ is $ c\infty$-differentiable.

Next we explain that on each point $p\in M_{\alpha}\cap M_{\beta}$ the continuity of the
Hess $f$ implies that the covariant derivative of the vector field $X=$ grad$f$

and the covariant derivative by $X$ are independent of the choice of the
connections $\nabla^{\alpha}$ or $\nabla^{\beta}$ . For any vector $V\in T_{p}B$ ,

(46) $\nabla_{V}^{\alpha}X=Hessf(V, \cdot)$

$=\nabla_{V}^{\beta}X$ .

Thus the covariant derivative of the vector field $X$ is independent of the
choice of connections $\nabla^{\alpha}$ or $\nabla^{\beta}$ . And for any smooth vector field $Y$ ,

(47) $\nabla_{X}^{a}Y=\nabla_{Y}^{\alpha}X+[X, Y]$

$=Hessf(Y, \cdot)+[X, Y]$

$=\nabla_{Y}^{\beta}X+[X, Y]$

$=\nabla_{X}^{\beta}$ Y.

Thus also the covariant derivative by the vector field $X$ is independent of
the choice of connections $\nabla^{\alpha}$ or $\nabla^{\beta}$ .

Since

(48) $\nabla_{X}X=-\delta fX$ ,

an integral curve of $X$ is a reparameterazation of a geodesic curve. As we
mentioned in subsection (2.4), a geodesic curve on a compact glued manifold
is not necessarily be extendable infinitely in general. However, the integral
curve of a $ c\infty$-vector field is uniquely determined and extendable infinitely
also on our glued manifold.
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Based on the facts explained above, one can see that Obata’s original
proof [Oba62] works also on our glued manifold to prove that $M$ is iso-
metric to an n-sphere of constant sectional curvature $\delta$ if one replaces the
argument $s$ there using geodesic curves with those using integral curves of
X. Consequently the Riemannian metric $g$ is $ c\infty$ -differentiable.

$\square $
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