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1. Preliminary

Let 2 be a compact Hausdorff space and let C(Q2) be the space of complex valued
continuous functions on ). With the supremum norm, C(2) is a unital commutative C*-
algebra. Let S be a unital C*-subalgebra of C(£2). A bounded linear operator P on C(Q)
is called a projection onto S if Ph = h for every h € S and the range of P equals to
S. A bounded linear operator @ on C(Q) is called a weak projection for S if Qh = h for
every h € §. If P is a projection onto S, then P is a weak projection for S. Converse
of this assertion is not true. A counterexample is S = {f € C([0,1]); f(1/3) = f(z) for
1/3 < z < 2/3}. For a unital C*-subalgebra S of C(f2), there may not exist a weak
projection for S. Our problem in this paper is to find which conditions on S there exists
a weak projection for S.

A motivation of this study comes from Korovkin type approximation theorems. A subset
E of C(Q) is called a Korovkin set if for every sequence of bounded linear operators {T,.}»
on C(f) such that ||T,|| < 1 for every n and T,k — h for each h € E, it holds T,,f — f
for every f € C(Q). Korovkin [4] (see also [6]) proved that {1,z,z%} is a Korovkin set of
C([0,1]). There are many researches on Korovkin type approximation theorems, see [1, 3,
5].

By the definitions, if S is a unital C*-subalgebra of C'(2) and S is a Korovkin set, then
there are no weak projections @ for S such that @ # I and ||Q]| = 1.

Let S be a unital C*-subalgebra.of C(Q). For z € §, put

E(z) = {y € & f(y) = f(x) for every f € S}.

Then E(z) is a closed subset of 2, and it holds E(z) = E(y) or E(z) N E(y) = 0. We call
the family {E(z)}seq the Shilov decomposition for S. We have the following proposition.

Proposition. Let S be a unital C*-subalgebra of C(Y) and let { E(z)}zeq be the Shilov
decomposition for S. Assume that there ezist a non-empty open subset U of Q and a
continuous map ¢ from U to Q) such that ‘

i) o(z) € E(z) forz e U,
i) ¢(z)#x forzel.
Then there exists a weak projection @ for S such that Q # I and ||Q|| = 1.

Proof. Let ¢ be a continuous map satisfying i) and ii). We shall prove the existence of a
weak projection @ for S with  # I and ||@]| = 1. Take a point zo in U and a continuous
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function % on € such that 0 <% <1 on Q,
(1) ¥ =0 on Q\U and ¢(z)=1.
We define an operator @ on C(Q) as

(2) (Q9)(2) = Y(2)g9(#(2)) + (1 — (z))g(z) for g € C(R),z € Q.

Then it is not difficult to see that Q is a bounded linear operator on C(f2) with Q] = 1.
Let h € S. Then by i), h(¢(z)) = h(z) for z € U. Hence by (2), (Qh)(z) = h(z)forz € U.
For z € @\ U, by (1) we have ¢(z) = 0, so that (Qk)(z) = h(z). Thus we get Qh = h for
hes.

Since zo € U, by ii) we have ¢(zo) # zo, so that there exists g, € C(Q) such that

go(#(z0)) # go(zo). Hence by (1) and (2), (Qgo)(zo) # go(zo). Therefore Q is a weak
projection for S with @ # I and ||Q|| = 1.

We conjecture that the converse of Proposition is affirmative.

Conjecture. Let S be a unital C*-subalgebra of C(2) and let {E(z)},eq be the Shilov
decomposition for S. If there exists a weak projection Q for S such that Q # I and
Q]| = 1, then there exist a non-empty open subset U of £ and a continuous map ¢ from
U to € such that

i) ¢(z) € E(z) for z € U,
i) p(z)#zforzeU.

In the next section, we study this conjecture under some additional conditions.

2. Weak projections
In this section, we shall prove the following theorem.

Theorem 1. Let S be a unital C*-subalgebra of C(2) and let {E(z)},cq be the Shilov

decomposition for S. Suppose that E(z) is a countable set for every z € Q. If there ezists
a weak projection Q for S such that Q@ # I and ||Q|| = 1, then there exist a non-empty
open subset U of Q and a continuous map ¢ from U to Q such that

i) ¢(z) € E(z) forz e U,
) e(z)#z forzel.

Let 2 and T' be compact Hausdorff spaces, and let u, be a positive Borel measure on
for every « € I'. Further we assume that
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(a)  sup{ps(Q);z €T} < oo,
iz has an atom for every =z € T', that is,
() forevery z € I, ({¢}) > 0 for some { € Q,

and
(c) fq f duy is continuous in z € T for every f € C(Q).

Lemma 1. Let V be an open subset of Q. Suppose that 0 < 1 < pz, (V) < g, (V) < 12
for a point z, € I'. Then there exists an open neighborhood U of x; such that ry < (V) <
pz(V) < 1y for everyz € U.

Proof. By the regularity of the measure u,,, there exist a compact subset K of V and
an open subset V; such that K C V. Cc V C Vi and r; < gy (K) < pz (Vi) < 2. Then
there exist continuous functions f; € C(Q),7 = 1,2, with 0 < f; <1 such that

fi=1lon K and fi=0on Q\V,

f=1onV and f,=0 on Q\V;.
By our assumption (¢), fq fi dus — [q fidpz, as * — ;. We note that
™ < I‘xz(K) < /Qfl d#m < /nf2 dpg, < /-"xl(Vl) < 7.

Since
[ frdue < uoV) < (@) < [ fadp,

we have our assertion.
For a closed subset E of §, put

(1) Ap(x) = sup {u-({¢});( € E}, z€T.

By condition (a), sup in (1) is attained, and
(2) AE'(:z") < #I(E)) zel.

For an open subset U of I', put

(3) a(E,U) =sup{Ag(z);z € U} and B(E,U)=inf{dg(z);z € U}.
Then
(4) | B(E,U) < Ag(z) < a(E,U), z€U.

Lemma 2. Let E be a closed subset of  and let U be an open subset of I' such that
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(1) p(E) <4a(E,U)/3  for everyz € U,

(i) 0<2a(E,U)/3 < B(E,U).
Then there exists a continuous map ¢ from U to E such that pz({p(z)}) > 0 for every
zeU.

Proof. By (1), for each z € U there exists ((z) such that

(5) ((z) € E and Ag(z) = pus({¢(2)}).

Then by (ii) and (4),
(6) 0 <2a(E,U)/3 < Ap(z) = p:({¢(2)}), z€U.

Here we note that for each « € U, { € F satisfying 2a(E,U)/3 < p,({¢}) is unique. For,

suppose that z € U, (,(' € E, ( # (, 2a(E,U)/3 < po({(}), and 2a(E,U)/3 < p-({¢'}).
Then

4a(E,U)/3 < p=({¢}) + 1({C'}) < pa(E).
This contradicts (i). Hence {(z) satisfying (5) is unique for each z € U.

Now we shall prove that {(z) is continuous in z € U. Then the map p(z) = ((z),z € U,
satisfies our assertion. To prove this, suppose that ((z) is not continuous at zo € U. Then
there exist two nets {«;}; and {y;}; in U which converge to zq,

(7) C(zi) = a, C(yi) — ¢, and ¢; # c,.

By (5), ¢; and c; are contained in E.
Take € > 0 arbitrary. Then there exists a function k € C(£2) such that 0 < A <1 on 0,

(8) h(a) =1,
and
9) [ B ey < p({er}) +e.

Now we have

[ hdusy = limin [ hdp., by ()
2 liminf pg, ({¢(2:)})R({(2:))
= li{ﬂiglfl‘z.'({C(xi)}) by (7) and(8)
> 2a(B,U)/3 by (6).
Hence by (9),
2a(E,U)/3 < pro({c1}) + & for every e > 0.
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Thus we get
0 <2a(E,U)/3 < pay({c1})-
In the same way, we have

0 <2a(E,U)/3 < pr({c2}).
By the first paragraph of the proof, we have ¢; = ¢;. This contradicts (7).

Lemma 3. For a closed subset E of Q, Ag(z) is upper semicontinuous in z € I.

Proof. Let {z;}; be a net in T such that z; — zo € T as 1 — co. It is sufficient to prove
that '
limsup Ag(z;) < Ag(zo).

i—00

To prove this, suppose that

(10) 11_{{(1)10 Ap(z;) = a.

We shall prove that a < Ag(zo). By (1), there exists (; € E such that

(11) | pz({G}) = Ag(e:).

We may assume moreover that (; — (o € E. Take a function A in C(2) such that
(12) 0<h<1 and h(() = 1.

Then
h(G)pas ({G)) < /Q hdpg, — /Q hdu,, asi— oo.

Since h((;) — h({o) =1, by (10) and (11) we have a < [g h dp,,. Since this holds for every
h € C(Q) satisfying (12), we have a < p,, ({(o}) < Ae(zo).

For a subset E of ', we denote by int E the interior of E. To .prove Theorem 1, we use
the following theorem.

Theorem 2. Let Q and I be compact Hausdorff spaces. Suppose that u,,x € T, is a
positive Borel measure on §) such that sup {u;(02);z € T'} < 0o, p, has an atom for every
z € T, and [ fdu, is continuous in z € T for every f € C(2). Then there exists a
continuous map @ from some non-empty open subset U of I' to Q such that p.({p(z)}) >0
for everyz € U.

Proof. By our assumption and (1), Aq(z) > 0 for every z € I'. Then by the Baire category
theorem (see (2, pp.196-197]),there exists ¢ > 0 such that {z € T';3¢c/4 < Aq(z) < ¢} has
an interior point. Also by Lemma 3, {z € T';3¢/4 < Aq(z)} is a closed subset of I' and
{z € T;)a(z) < ¢} is an open subset of I'. Therefore {z € I';3¢c/4 < Aq(z) < ¢} has
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also an interior point and so contains a non-empty open subset U; of I'. We may assume
moreover that

(13) Up C {z € 9;3¢/4 < Aq(z) < c}.
For an open subset V of Q, put
(14) Wy = {z € Uh;3c/4 < My(z)}.

Let U(() be the family of open neighborhoods of { € 2. We shall prove the existence of a
point (o in Q such that

(15) int Wy # 0 for every V € U((o),

where int Wy denotes the interior of Wv.. To prove this, suppose not. Then for each ¢ in §,
there exists V; € U(() such that int Wy, = 0. Since Q is compact, there exist (;,...,(, € Q
such that @ =V, U...UV,,. Then by (1),

Aa(z) = ma.x{/\vc‘(m);l <j<n} for zel,,
J

so that by (13) and (14) we have

Ti=0 Wy, .

i=1 3]
By Lemma 3, WVc,' is a closed subset of U;. Hence for some 7, int WV(J, # 0. This is a
desired contradiction.

For V1, V2 € U((o) such that Vi C V;, we have Ay(z) < Ap(z), so that by (14) Wy, C Wy,
and int Wy, C int Wy,. Hence by (15), there exists a point zo € U; such that

(16) zo € int Wy C Wy C U, for every V € U((o).
Then by (13),
(17) Hzo({Co}) < Ap(2o) < Aa(zo) < ¢

for V € U((o). Since pa,({Co}) = inf {4, (V); V € U({o)}, by (17) there exists V, € U((o)
such that p,,(Vo) < c¢. Then by Lemma 1, there exists an open subset U, such that

zg € Uy C T such that

(18) sup (Vo) < c.
z€U>

By (16), zo € int Wy, so that there exists an open subset U of I such that

UcCUn int Wy,.
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Then by (2), (3), (4), (14), and (18),

3¢/4 < B(Vo,U) < a(Vo,U) < a(Vo,Us) < sup (Vo) < c.
rel,

Hence we have

0 < 2a(Vo,U)/3 <3a(Vo,U)/4 < 3c/4 < B(Vo,U)

and
p:(Vo) < ¢ < 4a(Vp,U)/3 for every z € U.

Now we can apply Lemma 2. Then there is a continuous map ¢ from U to Q such that
pz({e(z)}) > 0 for every z € U.

As an application of Theorem 2, we prove Theorem 1.

Proof of Theorem 1. Assume the existence of a weak projection @) for S such that Q # I

and ||@]| = 1. For each z € 2, by the Riesz representation theorem there exists a bounded
Borel measure v, on 2 such that

(19)  (Qo)(z) = /ﬂ gdv, for every g € C(9).

Since @1 =1 and ||Q|| = 1, v, is a probability measure. Since @ is a weak projection for

S, Qh = h for every h € S. Since S is a C*-subalgebra, by (19) we have
(20) supp ¥z C E(z),

where supp v, is a closed support set of v,. Hence by our assumption, v, is a discrete
measure for every z. Since @ # I, there exists g € C(2) such that [, gdv,, # g(zo)
for some zo € Q. Then there exists (o in Q such that zo # (o and v;,({{o}) > 0. Take
Vi, Va € U((o) such that Vi C V; and zo ¢ V. Since 0 < v, ({(o}) < V4 (Vi), by Lemma
1 there exists an open subset W of Q such that zo € W, V; N W = 0, and v,(V}) > 0 for
every z € W. We note that

(21) (z,z) ¢ W x V, for every z € Q.

Take a function go € C(Q2) such that 0 < go < 1,

(22) go=1onV, and go =0 on Q\ V,.
Put
(23) dpz = godve, z€W.

Then p, and I' = W satisfy assumptions of Theorem 2. Hence there is a continuous map
¢ from some non-empty open subset U of W to  such that p,({p(z)}) > 0 for every
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x € U. By (22) and (23), ¢(z) € V; and v ({¢(z)}) > 0 for every z € U. Then by (20),
w(z) € E(z) for every z € U. Since U C W, (z,0(z)) € U x Vo C W x V, for every z € U.
Hence by (21), we obtain ¢(z) # z for z € U. This completes the proof.
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