Leaf space of a certain Hopf r-foliation

Shinsuke YOROZU

Abstract

The Hopf r-foliation \mathcal{F}^r on S^3 is a generalization of the classical Hopf fibration of S^3 . When r is an integer and is greater than 1, we describe the leaf space S^3/\mathcal{F}^r of the Hopf r-foliation as a surface of revolution $(\mathbf{S}_r, ds_{\mathbf{S}_r}^2)$ in $(R^3, ds_{R^3}^2)$. Then the natural projection $\tilde{p}: (S^3, ds_{S^3}^2) \longrightarrow (\mathbf{S}_r, ds_{\mathbf{S}_r}^2)$ becomes a C^{∞} Riemannian V-submersion.

1 Introduction

For a given positive number r, we consider a foliation \mathcal{F}^r defined on the unit 3-sphere S^3 whose leaves are given by the flow

$$\gamma_t^r(z, w) = (e^{irt}z, e^{it}w), \qquad (z, w) \in S^3, \quad t \in R$$

on $S^3 \subset C^2([1,10])$. We call \mathcal{F}^r the Hopf r-foliation on S^3 ([10]). It should be remark that the Hopf 1-foliation \mathcal{F}^1 on S^3 is the one given by the classical Hopf fiberation of S^3 . If r is a rational number, then each leaf of \mathcal{F}^r is closed and the canonical metric $ds_{S^3}^2$ on S^3 is a bundle-like metric with respect to \mathcal{F}^r . Thus the leaf space S^3/\mathcal{F}^r becomes a C^∞ Riemannian V-manifold([7,8]). See Satake[9] for the notion of V-manifolds. When r is an integer and is greater than 1, we can realize the leaf space S^3/\mathcal{F}^r as a surface of revolution $(S_r, ds_{S_r}^2)$ in a Euclidean 3-space R^3 , where $ds_{S_r}^2$ is the metric induced from the canonical metric $ds_{R^3}^2$ on R^3 . A parametrization of the surface S_r is given explicitly in section 3. Consequently, the natural projection $p: S^3 \longrightarrow S^3/\mathcal{F}^r$ induces a mapping $\tilde{p}: S^3 \longrightarrow S_r$. Then our main theorem in this paper is

Theorem. Let r be an integer and suppose r > 1. Let \mathcal{F}^r be the Hopf r-foliation on S^3 . Then the leaf space S^3/\mathcal{F}^r is homeomorphic to the surface of revolution S_r in R^3 , and the mapping $\tilde{p}: (S^3, ds_{S^3}^2) \longrightarrow (S_r, ds_{S_r}^2)$ is a C^{∞} Riemannian V-submersion.

When r is a positive rational number and is not an integer, we can also construct a surface of revolution $(\hat{\mathbf{S}}_r, ds^2_{\hat{\mathbf{S}}_r})$ and obtain a C^{∞} V-submersion $\hat{p}: S^3 \longrightarrow \hat{\mathbf{S}}_r$. However, $\hat{p}: (S^3, ds^2_{S^3}) \longrightarrow (\hat{\mathbf{S}}_r, ds^2_{\hat{\mathbf{S}}_r})$ is not a C^{∞} Riemannian V-submersion (Remark in section 4).

We shall work in C^{∞} category. The author would like to thank Professor S. Nishikawa for his helpful remarks. The author would like to thank the referee for the elimination for errors.

2 Hopf r-foliation

The unit 3-sphere S^3 in R^4 is regarded as

$$S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\},\$$

where $|z|^2 = z \cdot \overline{z}$, \overline{z} being the complex conjugate of z. For a fixed positive number r, a one-dimensional foliation \mathcal{F}^r on S^3 is defined by the flow

$$\gamma_t^r(z,w) = (e^{irt}z, e^{it}w), \qquad (z,w) \in S^3, \quad t \in R,$$

that is, the leaf of \mathcal{F}^r through the point $(z,w) \in S^3$ is the orbit $\{\gamma_t^r(z,w) \mid t \in R\}$ of γ_t^r . Since the classical Hopf fibration of S^3 is regarded as the foliation \mathcal{F}^1 (the case of r=1), we call \mathcal{F}^r the Hopf r-foliation on $S^3([10])$. Each foliation \mathcal{F}^r has two special leaves $T_0 = \{\gamma_t^r(0,1) \mid t \in R\}$ and $T_1 = \{\gamma_t^r(1,0) \mid t \in R\}$, which are great circles in S^3 . Regarding the stucture of \mathcal{F}^r , we have the following facts:

- (F.1) If $r \neq 1$, then the foliation \mathcal{F}^r is not regular([1,5,7,8,10]).
- (F.2) With respect to the canonical metric $ds_{S^3}^2$ on S^3 , the vector field Z^r generating the flow γ_t^r is a Killing vector field on $S^3([1,10])$.
- (F.3) The foliation \mathcal{F}^r is a Riemannian foliation, and the metric $ds_{S^s}^2$ is a bundle-like metric with respect to $\mathcal{F}^r([3,7])$.
- (F.4) If r is a rational number, then the leaves of \mathcal{F}^r are closed, and the leaf space S^3/\mathcal{F}^r is a C^{∞} Riemannian V-manifold([4,8]).

The vector field Z^r generating the flow γ_t^r is given by

$$Z_{(z,w)}^r = (irz, iw), \qquad (z,w) \in S^3.$$

We consider two vector fields X and Y on S^3 defined by

$$X_{(z,w)} = (|w|^2 z, -|z|^2 w),$$

 $Y_{(z,w)} = (i|w|^2 z, -ir|z|^2 w).$

Remark that X and Y vanish on T_0 and T_1 and that for example, the vector field Y has the expression in the natural coordinates (x_1, x_2, x_3, x_4) of R^4 as follows:

$$\begin{array}{lcl} Y_{(z,w)} & = & Y_{(x_1,x_2,x_3,x_4)} \\ & = & \left((x_3)^2 + (x_4)^2 \right) \left(-x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2} \right) - r \left((x_1)^2 + (x_2)^2 \right) \left(-x_4 \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_4} \right). \end{array}$$

The following lemmas are easily proved.

Lemma 1 It holds that

$$||X_{(z,w)}||^2 = |z|^2 |w|^2,$$

 $||Y_{(z,w)}||^2 = |z|^2 |w|^2 (r^2 |z|^2 + |w|^2).$

Lemma 2 The vector fields X and Y on S^3 are infinisetimal automorphisms of \mathcal{F}^r .

Lemma 3 The vector fields X, Y and Z^r are orthogonal to each other on $S^3 \setminus \{T_0, T_1\}$.

The sectional curvature for the plane spanned by X and Y is called the basic Riemannian sectional curvature of \mathcal{F}^r , which is regarded as a real-valued function K_r on $S^3 \setminus \{T_0, T_1\}$, since \mathcal{F}^r is of codimension 2. The following lemma was proved in [1].

Lemma 4 For any $(z, w) \in S^3 \setminus \{T_0, T_1\}$, it holds

$$K_r(z,w) = 1 + \frac{3r^2}{(r^2|z|^2 + |w|^2)^2}.$$

We regard the unit circle S^1 as the quotient set $R/2\pi Z$. A parametrization of S^3 is then given by the mapping

$$\mathbf{x}:(0,1)\times S^1\times S^1\longrightarrow S^3\subset \mathbf{C}^2,$$

where $\mathbf{x}(u, \theta_1, \theta_2)$ is defined by

(1)
$$\mathbf{x}(u, \theta_1, \theta_2) = (ue^{i\theta_1}, \sqrt{1 - u^2}e^{i\theta_2}).$$

We set $\mathbf{x}(0,\theta_1,\theta_2)=(0,e^{i\theta_2})$ and $\mathbf{x}(1,\theta_1,\theta_2)=(e^{i\theta_1},0)$. Then we have a mapping $\mathbf{x}:[0,1]\times S^1\times S^1\longrightarrow S^3$. We notice that

$$\mathbf{x}(\{0\}\times S^1\times S^1)=T_0,$$

$$\mathbf{x}(\{1\}\times S^1\times S^1)=T_1,$$

and the mapping $\mathbf{x}\mid_{(0,1)\times S^1\times S^1}$ restricted on $(0,1)\times S^1\times S^1$ is a diffeomorphism from $(0,1)\times S^1\times S^1$ to $S^3\setminus \{T_0,T_1\}$. The foliation \mathcal{F}^r on S^3 induces a foliation F^r on $(0,1)\times S^1\times S^1$ via the mapping $\mathbf{x}\mid_{(0,1)\times S^1\times S^1}$. The metric $ds_{S^3}^2$ is given by

(2)
$$ds_{S^3}^2 = (1 - u^2)^{-1} (du)^2 + u^2 (d\theta_1)^2 + (1 - u^2) (d\theta_2)^2$$

on $\mathbf{x}((0,1) \times S^1 \times S^1) = S^3 \setminus \{T_0, T_1\}.$

In terms of the parametrization (1) of S^3 , we have the following expression of the vector fields X, Y and Z^r :

$$egin{aligned} X_{\mathbf{x}(u, heta_1, heta_2)} &= u(1-u^2)\mathbf{x}_*\left(rac{\partial}{\partial u}
ight), \ Y_{\mathbf{x}(u, heta_1, heta_2)} &= (1-u^2)\mathbf{x}_*\left(rac{\partial}{\partial heta_1}
ight) - ru^2\mathbf{x}_*\left(rac{\partial}{\partial heta_2}
ight), \ Z^r_{\mathbf{x}(u, heta_1, heta_2)} &= r\mathbf{x}_*\left(rac{\partial}{\partial heta_1}
ight) + \mathbf{x}_*\left(rac{\partial}{\partial heta_2}
ight) \end{aligned}$$

on $\mathbf{x}((0,1)\times S^1\times S^1)=S^3\setminus\{T_0,T_1\}$, where \mathbf{x}_* denotes the differential of the mapping \mathbf{x} . Let L^r denote the tangent bundle and Q^r the normal bundle of \mathcal{F}^r . Let $V(\mathcal{F}^r)$ denote the set of all infinitesimal automorphisms of \mathcal{F}^r . By the fact (F.3), the normal bundle Q^r of \mathcal{F}^r is identified with the orthogonal complement $(L^r)^\perp$ of the tangent bundle L^r of \mathcal{F}^r , and the Riemannian metric induces the holonomy invariant metric g_{Q^r} on the normal bundle Q^r . Thus we can define the following notion. Let $\Pi:\Gamma(TS^3)\longrightarrow \Gamma(Q^r)$ be a projection, where $\Gamma(TS^3)$ denotes the set of all sections of the tangent bundle of S^3 , and $\Gamma(Q^r)$ the set of all sections of the normal bundle of \mathcal{F}^r . Then the set

$$\overline{V}(\mathcal{F}^r) = \{\Pi(W) \in \Gamma(Q^r) \mid W \in V(\mathcal{F}^r) \subset \Gamma(TS^3)\}$$

gives rise to the set of all transversal infinitesimal automorphisms of \mathcal{F}^r . Among $\overline{V}(\mathcal{F}^r)$ we have the set of transversal Killing field of \mathcal{F}^r , that is, $\Pi(W) \in \overline{V}(\mathcal{F}^r)$ is a transversal Killing field of \mathcal{F}^r if $\Pi(W)$ satisfies $\Theta(W)g_{Q^r}=0$. Here $\Theta(W)$ denotes the transversal Lie derivative operator with respect to $\Pi(W)$ (See [2,3,5] for details). The following theorem was proved in [6].

Theorem 5 For the vector field Y on S^3 , a transversal infinitesimal automorphism

$$\Pi\left(\frac{1}{r^2u^2+(1-u^2)}Y_{(z,w)}\right)$$

of \mathcal{F}^r is a transversal Killing field of \mathcal{F}^r .

This is proved by direct calculation of $\Theta\left(\frac{1}{r^2u^2+(1-u^2)}Y_{(z,w)}\right)g_{Q^r}$.

3 A surface of revolution

Roughly speaking, the basic Riemannian sectional curvature of \mathcal{F}^r corresponds with the "Gaussian curvature" of the leaf space S^3/\mathcal{F}^r (This leaf space is a Riemannian V-manifold. See (F.4) in section 2). Thus, if we can construct a surface with corresponding Gaussian curvature to the curvature in Lemm 4, we may describe the leaf space S^3/\mathcal{F}^r as the surface. We construct the surface as a surface of revolution.

Let r be a fixed real number and suppose $r \geq 1$. We define a function f on [0, 1] by

(3)
$$f(u) = u(1-u^2)^{1/2}(r^2u^2 + (1-u^2))^{-1/2}.$$

Then f is of class C^{∞} on (0,1), and the first derivative f' of f on (0,1) is given by

$$f'(u) = (1 - 2u^2 - (r^2 - 1)u^4)(r^2u^2 + (1 - u^2))^{-3/2}(1 - u^2)^{-1/2}$$

We notice that f(0) = f(1) = 0, f has the maximum value $(r+1)^{-1}$ at $u = (r+1)^{-1/2}$, and

$$\lim_{h \to +0} \frac{f(h) - f(0)}{h} = 1,$$

$$\lim_{k\to -0}\frac{f(1+k)-f(1)}{k}=-\infty.$$

Then we have

$$0 < (1 - u^2)^{-1} - (f'(u))^2 < (1 - u^2)^{-1}, \qquad u \in (0, 1)$$

and

$$\lim_{u \to +0} ((1-u^2)^{-1} - (f'(u))^2) = 0,$$

$$\lim_{u \to 1-0} ((1-u^2)^{-1} - (f'(u))^2) = +\infty.$$

Since the improper integral

$$\int_0^1 \sqrt{\frac{1}{1-u^2}} \, du$$

converges, so does the improper integral

$$\int_0^1 \sqrt{\frac{1}{1-u^2} - (f'(u))^2} \, du.$$

Thus we can define a function g on [0,1] by

(4)
$$g(u) = \int_0^u \sqrt{\frac{1}{1-s^2} - (f'(s))^2} \, ds.$$

Then we have

$$0 = g(0) < g(u) < g(1), \qquad u \in (0,1).$$

We set $g_* = g(1)$, the maximum value of g. The function g is of class C^{∞} on (0,1) and the first derivative g' of g on (0,1) is given by

$$g'(u) = ((1-u^2)^{-1} - (f'(u))^2)^{1/2}.$$

Now, we construct a surface of revolution S_r in the Euclidean (x_1, x_2, x_3) -space R^3 . The profile curve C of S_r in (x_1, x_3) -plane is defined by

$$\begin{cases} x_1 = f(u) \\ x_3 = g(u) \end{cases}$$

for $u \in [0,1]$, where f and g are functions defined by (3) and (4), respectively. Since we have

$$\lim_{u\to+0}\frac{g'(u)}{f'(u)}=\lim_{u\to+0}\left(\frac{1}{(1-u^2)(f'(u))^2}-1\right)^{1/2}=0,$$

the profile curve C is perpendicular to the x_3 -axis at the origin in (x_1, x_3) -plane. We also have

$$\lim_{u\to 1-0} (1-u^2)(f'(u))^2 = \lim_{u\to 1-0} \frac{(1-2u^2-(r^2-1)u^4)^2}{(r^2u^2+(1-u^2))^3} = r^{-2}.$$

By the above facts and

$$\lim_{u\to 1-0}f'(u)=-\infty,$$

we have

$$\lim_{u\to 1-0}\frac{g'(u)}{f'(u)}=\lim_{u\to 1-0}\left(-1\right)\left(\frac{1}{(1-u^2)(f'(u))^2}-1\right)^{1/2}=-(r^2-1)^{1/2}.$$

Thus the angle θ between the curve C and the x_3 -axis at the point $(0, g_*)$ is given by

$$\tan \theta = (r^2 - 1)^{-1/2}.$$

Remark. If r = 1, then we have

$$\begin{cases} x_1 = f(u) = u(1-u^2)^{1/2} \\ x_3 = g(u) = u^2 \end{cases}$$

for $u \in [0,1]$. Thus the profile curve C is a half circle $((x_1)^2 + (x_3 - 1/2)^2 = 1/4$ and $x_1 \ge 0$) so that S_1 is a sphere of radius 1/2.

A parametrization of S_r is given by the mapping

$$y:(0,1)\times S^1\longrightarrow S_r\subset R^3$$
,

where $y(u, \tau)$ is defined by

(5)
$$\mathbf{y}(\mathbf{u},\tau) = (f(\mathbf{u})\cos\tau, f(\mathbf{u})\sin\tau, g(\mathbf{u})).$$

Setting $\mathbf{y}(0,\tau)=(0,0,0)$ and $\mathbf{y}(1,\tau)=(0,0,g_*)$, we have a mapping $\mathbf{y}:[0,1]\times S^1\longrightarrow \mathbf{S}_r$. The mapping $\mathbf{y}\mid_{(0,1)\times S^1}$ restricted on $(0,1)\times S^1$ is a diffeomorphism from $(0,1)\times S^1$ to $\mathbf{S}_r\setminus\{(0,0,0),(0,0,g_*)\}$. We notice that $\mathbf{y}(\{0\}\times S^1)=(0,0,0)$ and $\mathbf{y}(\{1\}\times S^1)=(0,0,g_*)$. It follows from the above facts that \mathbf{S}_r is a surface of class C^0 and $\mathbf{S}_r\setminus\{(0,0,g_*)\}$ is of class C^∞ . The metric $ds_{\mathbf{S}_r}^2$ on \mathbf{S}_r induced from the canonical metric $ds_{\mathbf{R}^2}^2$ on \mathbf{R}^3 is given by

(6)
$$ds_{S_r}^2 = (1 - u^2)^{-1} (du)^2 + u^2 (1 - u^2) \{ r^2 u^2 + (1 - u^2) \}^{-1} (d\tau)^2$$

on
$$\mathbf{y}((0,1) \times S^1) = \mathbf{S_r} \setminus \{(0,0,0), (0,0,g_*)\}.$$

Lemma 6 The Gaussian curvature K of S_r is given by

$$K(u, \tau) = 1 + \frac{3r^2}{(r^2u^2 + (1-u^2))^2}$$

on $\mathbf{y}((0,1) \times S^1) = \mathbf{S}_r \setminus \{(0,0,0), (0,0,g_*)\}.$

Proof. Since the surface of revolution S_r defined by

$$\mathbf{y}(u,\tau) = (f(u)\cos\tau, f(u)\sin\tau, g(u)),$$

the Gaussian curvature K of S_r has the following expression:

$$K(u,\tau) = \frac{(f'(u)g''(u) - f''(u)g'(u))g'(u)}{f(u)((f'(u))^2 + (g'(u))^2)^2}.$$

From the equality $g'(u) = ((1-u^2)^{-1} - (f'(u))^2)^{1/2}$, we have

$$(f'(u)g''(u)-f''(u)g'(u))g'(u)=u(1-u^2)^{-2}f'(u)-(1-u^2)^{-1}f''(u).$$

Thus we see that $K(u,\tau)=u(f(u))^{-1}f'(u)-(1-u^2)(f(u))^{-1}f''(u)$. Now, by the definition of f, we have

$$\begin{split} u(f(u))^{-1}f'(u) - (1-u^2)(f(u))^{-1}f''(u) \\ &= (r^2u^2 + (1-u^2))^{-2}(1-u^2)^{-1} \\ &\quad \times \{(r^2u^2 + (1-u^2))(1-2u^2 - (r^2-1)u^4) - r^2(-3+2u^2 - (r^2-1)u^4)\} \\ &= (r^2u^2 + (1-u^2))^{-2}(1-u^2)^{-1}\{(r^2u^2 + (1-u^2))^2(1-u^2) + 3r^2(1-u^2)\}. \end{split}$$

Hence we have $K(u, \tau) = 1 + \frac{3r^2}{(r^2u^2 + (1 - u^2))^2}$.

4 Leaf space

In this section, we assume that r is an integer and is greater than 1. We fix r and the Hopf r-foliation \mathcal{F}^r on S^3 . By identifying each leaf of \mathcal{F}^r to a point, we then obtain the quotient space S^3/\mathcal{F}^r formed from S^3 , which is called the leaf space of the foliation \mathcal{F}^r on S^3 . Let $p:S^3\longrightarrow S^3/\mathcal{F}^r$ be the identification mapping. Since all leaves of \mathcal{F}^r are closed and $ds_{S^3}^2$ is a bundle-like metric with respect to \mathcal{F}^r , the holonomy group H(L) of any leaf L of \mathcal{F}^r is a finite group and S^3/\mathcal{F}^r is a connected metric space([7,8]). Then S^3/\mathcal{F}^r is a C^∞ Riemannian V-manifold and the mapping $p:S^3\longrightarrow S^3/\mathcal{F}^r$ is a C^∞ Riemannian V-submersion. The notion of Riemannian V-submersion is a version of Riemannian submersion in the theory of V-manifold ([4,7,8], see [9] for the V-manifold category).

The holonomy group $H(T_1)$ of the leaf T_1 is a cyclic group of order r, and $H(T_0)$ is trivial.

The action of $H(T_1)$ on a flat neighborhood([7,8]) of $(1,0) \in T_1 \subset S^3$ induces the action of a finite group of rotations

$$G = \left\{ \left(\begin{array}{cc} \cos 2\pi/r & -\sin 2\pi/r \\ \sin 2\pi/r & \cos 2\pi/r \end{array} \right)^m \mid m = 0, 1, 2, \dots, r - 1 \right\}$$

$$U_{\varepsilon} = \{(x_3, x_4) \in \mathbb{R}^2 \mid (x_3)^2 + (x_4)^2 < \varepsilon^2\}.$$

Thus an open neighborhood U of $p(T_1)$ in S^3/\mathcal{F}^r is homeomorphic to the quotient space U_{ϵ}/G of the open disk in R^2 by G. The space U_{ϵ}/G is a cone with the angle θ between the axis and the generating line. Here θ satisfies the equation: $\sin \theta = r^{-1}$, that is, $\tan \theta = (r^2 - 1)^{-1/2}$. Since the action of $H(T_0)$ on a neighborhood of $(0,1) \in T_0 \subset S^3$ is trivial, an open neighborhood V of $p(T_0)$ in S^3/\mathcal{F}^r is homeomorphic to an open disk

$$V_{\varepsilon} = \{(x_1, x_2) \in R^2 \mid (x_1)^2 + (x_2)^2 < \varepsilon^2\}.$$

Now we consider a mapping

$$\mathbf{j}:(0,1)\times S^1\times S^1\longrightarrow (0,1)\times S^1,$$

where $\mathbf{j}(u, \theta_1, \theta_2)$ is defined by

(7)
$$\mathbf{j}(u,\theta_1,\theta_2) = (u,\theta_1 - r\theta_2).$$

Lemma 7 The mapping j is surjective.

Proof. Take an element θ_1 of S^1 . For any $(u,\tau) \in (0,1) \times S^1$, we have a real number $(\theta_1 - \tau)/r$. Then there exists an element θ_2 of S^1 satisfying

$$\theta_2 \equiv (\theta_1 - \tau)/r \pmod{2\pi}$$
.

Thus, there exists an element (u, θ_1, θ_2) of $(0, 1) \times S^1 \times S^1$ satisfying $\mathbf{j}(u, \theta_1, \theta_2) = (u, \tau)$. Next, if we take another element $\theta'_1 \in S^1$, then we have an element $\theta'_2 \in S^1$ satisfying

$$\theta_2' \equiv (\theta_1' - \tau)/r \qquad (mod 2\pi),$$

that is, for an integer ℓ

$$\theta_2' - (\theta_1' - \tau)/r = 2\ell\pi.$$

Put $t_0 = \theta_1' - \theta_1$. Then we have

$$heta_1'-r heta_2'=(heta_1+t_0)-r\left\{rac{1}{r}(heta_1+t_0- au)+2\ell\pi
ight\}= au-2r\ell\pi.$$

Thus we have that $\mathbf{j}(u, \theta_1', \theta_2') = (u, \tau)$.

Lemma 8 If two elements (u, θ_1, θ_2) and $(u, \hat{\theta}_1, \hat{\theta}_2)$ of $(0, 1) \times S^1 \times S^1$ satisfy

$$\hat{ heta}_1 \equiv heta_1 + rt \qquad \pmod{2\pi}$$

$$\hat{\theta}_2 \equiv \theta_2 + t \qquad (mod \, 2\pi)$$

for $t \in R$, then it holds that

$$\mathbf{j}(u,\hat{\theta}_1,\hat{\theta}_2) = \mathbf{j}(u,\theta_1,\theta_2).$$

Proof. By the assumption, there exist two integers ℓ, k such that

$$\hat{\theta}_1 - (\theta_1 + rt) = 2\ell\pi, \qquad \hat{\theta}_2 - (\theta_2 + t) = 2k\pi.$$

Since r is an integer, we have

$$\hat{\theta}_1 - r\hat{\theta}_2 \equiv \theta_1 - r\theta_2 \qquad (mod \ 2\pi),$$

which implies that $\mathbf{j}(u, \hat{\theta}_1, \hat{\theta}_2) = \mathbf{j}(u, \theta_1, \theta_2)$.

By Lemma 8, we have

Lemma 9 The mapping \mathbf{j} maps each leaf of the foliation F^r on $(0,1) \times S^1 \times S^1$ to a point of $(0,1) \times S^1$.

Lemma 10 The mapping j is a submersion.

Proof. It is obvious that the mapping \mathbf{j} is of class C^{∞} . The Jacobi matrix of \mathbf{j} at any point $(u, \theta_1, \theta_2) \in (0, 1) \times S^1 \times S^1$ is given by

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -r \end{array}\right].$$

Thus the mapping j is a submersion.

We set $\mathbf{j}(0, \theta_1, \theta_2) = (0, \theta_1 - r\theta_2)$ and $\mathbf{j}(1, \theta_1, \theta_2) = (1, \theta_1 - r\theta_2)$.

Let [(z,w)] denote the image of $(z,w) \in S^3$ by the mapping $p: S^3 \longrightarrow S^3/\mathcal{F}^r$, that is, p((z,w)) = [(z,w)]. For any $[(z,w)] \in (S^3/\mathcal{F}^r) \setminus \{p(T_0), p(T_1)\}$, we have the following expression of (z,w):

$$(z,w)=\left(ue^{i heta_1},\sqrt{1-u^2}e^{i heta_2}
ight) \qquad (u
eq 0,1).$$

Thus, by (1),(5) and (7), we have

$$\mathbf{x}^{-1}(z, w) = (u, \theta_1, \theta_2) \in (0, 1) \times S^1 \times S^1,$$

$$\mathbf{j}(\mathbf{x}^{-1}(z, w)) = (u, \theta_1 - r\theta_2) \in (0, 1) \times S^1,$$

and

$$y\left(\mathbf{j}\left(\mathbf{x}^{-1}(z,w)\right)\right) \\ = (f(u)\cos(\theta_1 - r\theta_2), f(u)\sin(\theta_1 - r\theta_2), g(u)) \in S_r \setminus \{(0,0,0), (0,0,g_*)\}.$$

If we take another element $(\hat{z}, \hat{w}) \in S^3 \setminus \{T_0, T_1\}$ satisfying $p((\hat{z}, \hat{w})) = [(z, w)]$, then there exists a real number t such that

$$\gamma_t^r(z,w)=(\hat{z},\hat{w}),$$

that is,

$$egin{aligned} \hat{ heta}_1 &\equiv heta_1 + rt & \pmod{2\pi}, \ \hat{ heta}_2 &\equiv heta_2 + t & \pmod{2\pi}, \ \hat{u} &= u, \end{aligned}$$

where $\hat{z} = \hat{u}e^{i\hat{\theta}_1}$ and $\hat{w} = \sqrt{1 - u^2}e^{i\hat{\theta}_2}$. Thus we have

$$f(\hat{u}) = f(u),$$

$$g(\hat{u}) = g(u),$$

$$e^{i(\hat{\theta}_1 - r\hat{\theta}_2)} = e^{i(\theta_1 - r\theta_2)}.$$

Therefore, $\mathbf{y}(\mathbf{j}(\mathbf{x}^{-1}(p^{-1}([(z,w)]))))$ is independent of the choice of an element (z,w) in $p^{-1}([(z,w)])$.

We set that

$$\mathbf{y}(\mathbf{j}(\mathbf{x}^{-1}(p^{-1}([(0,w)])))) = (0,0,0),$$

 $\mathbf{y}(\mathbf{j}(\mathbf{x}^{-1}(p^{-1}([(z,0)])))) = (0,0,g_*)$

for any $(0, w) \in T_0$ and $(z, 0) \in T_1$.

Lemma 11 There exists a homeomorphism $\varphi: S^3/\mathcal{F}^r \longrightarrow S_r$.

Proof. We remark that $p(T_0) = [(0,1)]$ and $p(T_1) = [(1,0)]$. For any $[(z,w)] \in (S^3/\mathcal{F}^r) \setminus \{[(0,1)],[(1,0)]\}$, we define $\varphi([(z,w)])$ by

$$\varphi([(z,w)]) = \mathbf{y}\left(\mathbf{j}\left(\mathbf{x}^{-1}\left(p^{-1}([(z,w)])\right)\right)\right).$$

Also we define $\varphi([(0,1)])$ and $\varphi([(1,0)])$ by

$$\varphi([(0,1)]) = (0,0,0), \ \varphi([(1,0)]) = (0,0,g_*).$$

Thus we have a mapping $\varphi: S^3/\mathcal{F}^r \longrightarrow S_r$. By the above lemmas, it is obvious that φ is a homeomorphism.

Since S^3/\mathcal{F}^r and S_r are C^∞ V-manifolds, we have the V-manifold version of the above lemma. In fact, by the notion of V-manifold mapping ([9]), we have the following

Lemma 12 The mapping $\varphi: S^3/\mathcal{F}^r \longrightarrow S_r$ is a bijective V-manifold mapping.

We consider a mapping

$$\tilde{p}: S^3 \longrightarrow S_r,$$

where $\tilde{p}(z, w)$ is defined by

$$\tilde{p}(z,w) = \mathbf{y}(\mathbf{j}(\mathbf{x}^{-1}(z,w))).$$

The mapping $p: S^3 \longrightarrow S^3/\mathcal{F}^r$ is a C^∞ V-submersion, and so is the mapping \tilde{p} . Namely, we have

Lemma 13 The mapping $\tilde{p}: S^3 \longrightarrow S_r$ is a C^{∞} V-submersion.

Now, by the parametrization (5) of \mathbf{S}_r , we have, on $\mathbf{y}((0,1)\times S^1) = \mathbf{S}_r \setminus \{(0,0,0),(0,0,g_*)\},$

$$\mathbf{y}_{u} = \mathbf{y}_{\star} \left(\frac{\partial}{\partial u} \right) = (f'(u) \cos \tau, f'(u) \sin \tau, g'(u)),$$

$$\mathbf{y}_{ au} = \mathbf{y}_{ullet} \left(rac{\partial}{\partial au}
ight) = (-f(u) \sin au, f(u) \cos au, 0).$$

By the proof of Lemma 10, we have

$$\mathbf{j}_{\bullet}\left(\frac{\partial}{\partial u}\right) = \frac{\partial}{\partial u}, \quad \mathbf{j}_{\bullet}\left(\frac{\partial}{\partial \theta_{1}}\right) = \frac{\partial}{\partial \tau}, \quad \mathbf{j}_{\bullet}\left(\frac{\partial}{\partial \theta_{2}}\right) = -r\frac{\partial}{\partial \tau}.$$

Thus we have

$$egin{aligned} & ilde{p}_*(X_{(z,w)}) = u(1-u^2) \cdot \mathbf{y}_u, \ & ilde{p}_*(Y_{(z,w)}) = \{r^2u^2 + (1-u^2)\} \cdot \mathbf{y}_{ au}, \ & ilde{p}_*(Z_{(z,w)}^r) = \mathbf{o} \end{aligned}$$

for $(z, w) = (ue^{i\theta_1}, \sqrt{1 - u^2}e^{i\theta_2}) \in S^3$ $(u \neq 0, 1)$, where o denotes the zero vector. Let $\| \bullet \|_{S^3}$ (resp. $\| \bullet \|_{\mathbf{S}_r}$) be the norm with respect to the metric $ds_{S^3}^2$ (resp. $ds_{\mathbf{S}_r}^2$) on S^3 (resp. \mathbf{S}_r). We have

Lemma 14 For infinitesimal automorphisms X and Y of \mathcal{F}^r on $S^3 \setminus \{T_1\}$, it holds that

$$||\tilde{p}_{*}(X)||_{\mathbf{S}_{r}} = ||X||_{S^{3}}, ||\tilde{p}_{*}(Y)||_{\mathbf{S}_{r}} = ||Y||_{S^{3}}.$$

Remark. For a transversal Killing field $\Pi\left(\frac{1}{r^2u^2+(1-u^2)}Y_{(z,w)}\right)$ of \mathcal{F}^r , the vector field $\tilde{p}_*\left(\frac{1}{r^2u^2+(1-u^2)}Y_{(z,w)}\right)$ on $\mathbf{S}_r\setminus\{(0,0,g_*)\}$ is a Killing vector field with respect to $ds^2_{\mathbf{S}_r}$.

By Lemmas 13 and 14, we have

Lemma 15 The mapping $\tilde{p}: S^3 \longrightarrow S_r$ is a C^{∞} Riemannian V-submersion.

Therefore, we have

Theorem 16 Let r be an integer and greater than 1. Let \mathcal{F}^r be the Hopf r-foliation on S^3 . Then the leaf space S^3/\mathcal{F}^r is homeomorphic to the surface of revolution S_r in R^3 given in the previous section, and the mapping $\tilde{p}:(S^3,ds_{S^3}^2)\longrightarrow (S_r,ds_{S_r}^2)$ is a C^∞ Riemannian V-submersion.

Remark. We suppose that r is a positive rational number q/p, where two positive integers p and q are relatively prime and $p \neq 1$. Then the action of $H(T_0)$ induces the action of group of rotations of order p on an open disk V_e , and the action of $H(T_1)$ induces the action of group of rotations of order q on an open disk U_e . We construct a surface of revolution \hat{S}_r with profile curve \hat{C}

$$\begin{cases} x_1 = f(u) \\ x_3 = \hat{g}(u), \end{cases}$$

where \hat{g} is given by

$$\hat{g}(u) = \int_0^u \sqrt{\frac{p^2}{1-s^2} - (f'(s))^2} ds$$

for any $u \in [0,1]$. Then the angle θ_0 between the curve \hat{C} and the x_3 -axis at the point (0,0) is given by

$$\tan \theta_0 = (p^2 - 1)^{-1/2},$$

and the angle θ_1 between the curve \hat{C} and the x_3 -axis at the point $(0, \hat{g}(1))$ is given by

$$\tan \theta_1 = (q^2 - 1)^{-1/2}.$$

For r is a positive rational number q/p (two positive integers p and q are relatively prime and $p \neq 1$), we consider a mapping

$$\hat{\mathbf{j}}: (0,1) \times S^1 \times S^1 \longrightarrow (0,1) \times S^1,$$

where $\hat{\mathbf{j}}(u, \theta_1, \theta_2)$ is defined by

$$\hat{\mathbf{j}}(u,\theta_1,\theta_2)=(u,p\theta_1-q\theta_2).$$

And we set $\hat{\mathbf{j}}(0,\theta_1,\theta_2) = (0,p\theta_1 - q\theta_2)$ and $\hat{\mathbf{j}}(1,\theta_1,\theta_2) = (1,p\theta_1 - q\theta_2)$. Then $\hat{\mathbf{j}}$ maps each leaf of the foliation F^r on $(0,1) \times S^1 \times S^1$ to a point of $(0,1) \times S^1$ (See Lemmas 7,8,9). The Jacobi matrix of $\hat{\mathbf{j}}$ at any point $(u,\theta_1,\theta_2) \in (0,1) \times S^1 \times S^1$ is given by

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & p & -q \end{array}\right].$$

Thus the mapping \hat{j} is a submersion, and we have

$$\hat{\mathbf{j}}_{\bullet}\left(\frac{\partial}{\partial u}\right) = \frac{\partial}{\partial u}, \quad \hat{\mathbf{j}}_{\bullet}\left(\frac{\partial}{\partial \theta_{1}}\right) = p\frac{\partial}{\partial \tau}, \quad \hat{\mathbf{j}}_{\bullet}\left(\frac{\partial}{\partial \theta_{2}}\right) = -q\frac{\partial}{\partial \tau}.$$

A parametrization of \hat{S}_r is given by the mapping

$$\hat{\mathbf{y}}:(0,1)\times S^1\longrightarrow \hat{\mathbf{S}}_r\subset R^3,$$

where $\hat{\mathbf{y}}(u, \tau)$ is defined by

$$\hat{\mathbf{y}}(u,\tau) = (f(u)\cos\tau, f(u)\sin\tau, \hat{g}(u)).$$

And we set $\hat{\mathbf{y}}(0,\tau) = (0,0,0)$ and $\hat{\mathbf{y}}(1,\tau) = (0,0,\hat{g}(1))$.

Then we consider a mapping $\hat{p}: S^3 \longrightarrow \hat{\mathbf{S}}_r$ defined by

$$\hat{p} = \hat{\mathbf{y}} \circ \hat{\mathbf{j}} \circ \mathbf{x}^{-1},$$

where x is a parametrization of S^3 defined in section 2. For infinitesimal automorphisms X and Y of \mathcal{F}^r on $S^3 \setminus \{T_0, T_1\}$, we have

$$egin{aligned} \hat{p}_{*}(X_{(z,w)}) &= u(1-u^2) \cdot \hat{\mathbf{y}}_{*}\left(rac{\partial}{\partial u}
ight) \ \hat{p}_{*}(Y_{(z,w)}) &= \{p(1-u^2) + rqu^2\} \cdot \hat{\mathbf{y}}_{*}\left(rac{\partial}{\partial au}
ight), \end{aligned}$$

and

$$\begin{split} ||\hat{p}_{*}(X)||_{\hat{\mathbf{S}}_{r}} &= ||X||_{S^{3}} \\ ||\hat{p}_{*}(Y)||_{\hat{\mathbf{S}}_{r}} &= p||Y||_{S^{3}}, \end{split}$$

for $(z, w) = (ue^{i\theta_1}, \sqrt{1 - u^2}e^{i\theta_2}) \in S^3 \quad (u \neq 0, 1).$

Therefore, we have a C^{∞} V-submersion $\hat{p}: S^3 \longrightarrow \hat{S}_r$. But, $\hat{p}: (S^3, ds_{S^3}^2) \longrightarrow (\hat{S}_r, ds_{\hat{S}_r}^2)$ is not a C^{∞} Riemannian V-submersion.

References

- [1] J.J. Hebda, An example relevant to curvature pinching theorems for Riemannian foliations, Proc. Amer. Math. Soc. 114 (1992), 195-199.
- [2] F.W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), 525-538.
- [3] F.W. Kamber and Ph. Tondeur, Foliations and metrics, Birkhäuser. Progress in Math. 32 (1983), 103-152.
- [4] H. Kitahara, On a parametrix form in a certain V-submersion, Springer Lecture Notes in Math. 792(1980), 264-298.
- [5] P. Molino, Feuilletages riemanniens sur les variétés compactes: champs de Killing transverses, C. R. Acad. Sc. Paris 289(1979), 421-423.
- [6] S. Nishikawa and S. Yorozu, Transversal infinitesimal automorphisms for compact Riemannian foliations, Preprint 1992.
- [7] B.L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69(1959), 119-132.
 - [8] B.L. Reinhart, Closed metric foliations, Michgan Math. J. 8(1961), 7-9.
- [9] I. Satake, On a generarization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42(1956), 359-363.

[10] P.D. Scofield, Symplectic and complex foliations, Thesis, Univ. of Illinois, 1990.

Department of Mathematics, Miyagi University of Education Aoba-ku, Sendai 980-0845 Japan

Received July 14, 1998

Revised March 11, 1999