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Leaf space of a certain Hopf r-foliation

Shinsuke YOROZU

Abstract

The Hopf r-foliation F” on S2 is a generalization of the classical Hopf fibration of
S3. When r is an integer and is greater than 1, we describe the leaf space S3/F" of the
Hopf r-foliation as a surface of revolution (S,,ds% ) in (R%,ds%,). Then the natural
projection p : (Sa,dsgs) — (S,.,dsgr) becomes a C™® Riemannian V-submersion.

1 Introduction

For a given positive number r, we consider a foliation F” defined on the unit 3-sphere
53 whose leaves are given by the flow

7 (z,w) = (2, e'tw), (z,w) €S teR

on S% C C?%([1,10]). We call = the Hopf r-foliation on S* ([10]). It should be remark
that the Hopf 1-foliation F* on S is the one given by the classical Hopf fiberation of S3.
If r is a rational number, then each leaf of 7 is closed and the canonical metric ds?, on
S? is a bundle-like metric with respect to F”. Thus the leaf space S3/F” becomes a C*
Riemannian V-manifold([7,8]). See Satake[9] for the notion of V-manifolds. When r is an
integer and is greater than 1, we can realize the leaf space S3/F™ as a surface of revolution
(Sr,ds%) in a Euclidean 3-space R®,where ds}_ is the metric induced from the canonical
metric ds%;, on R3. A parametrization of the surface S, is given explicitly in section 3.
Consequently, the natural projection p : S3 —s S3/F" induces a mapping § : 2 — S,.
Then our main theorem in this paper is

Theorem. Let r be an integer and suppose r > 1. Let F" be the Hopf r-foliation on S3.
Then the leaf space S®/F™ is homeomorphic to the surface of revolution S, in R®, and the
mapping p : (S°,ds%;) — (S,,ds% ) is a C* Riemannian V-submersion.

When r is a positive rational number and is not an integer, we can also construct a
surface of revolution (S,.,dszs ) and obtain a C* V-submersion p : $° — S, . However,

p: (S3,ds%) — (S,, ds% ) is not a C* Riemannian V-submersion (Remark in section 4)-
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We shall work in C* category. The author would like to thank Professor S. Nishikawa
for his helpful remarks. The author would like to thank the referee for the elimination for

€Irors.

2 Hopf r-foliation

The unit 3-sphere S® in R* is regarded as
5 = {(z,w) € C* | 32 + ful? = 1},

where |2|2 = 2 - Z, 7 beimg the complex conjugate of z. For a fixed positive number r, a
one-dimensional foliation ™ on S° is defined by the flow

Vi (2, w) = (€72, et w), (z,w) € §®, teR,

that is, the leaf of " through the point (z,w) € S is the orbit {y](z,w) | t € R} of
7. Since the classical Hopf fibration of S3 is regarded as the foliation F! ( the case of
r = 1), we call 7~ the Hopf r-foliation on S3([10]). Each foliation 7~ has two special
leaves Tp = {77(0,1) | t € R} and T3 = {77(1,0) | t € R} , which are great circles in S3.
Regarding the stucture of F”, we have the following facts:

(F.1) If r # 1, then the foliation F™ is not regular([1,5,7,8,10]).

(F.2) With respect to the canonical metric ds%, on 53, the vector field Z" generating the
flow ~} is a Killing vector field on $3([1,10]).

(F.3) The foliation F™ is a Riemannian foliation, and the metric dsZ, is a bundle-like
metric with respect to F7([3,7]).

(F.4) If r is a rational number, then the leaves of F™ are closed, and the leaf space S3/F"
is a C* Riemannian V-manifold([4,8]).

The vector field Z™ generating the flow v} is given by

Z(rz,w) = (irz,iw), (z,w) € s®.
We consider two vector fields X and Y on S* defined by

Xey = (|w]22, ~|2[?w),
Yiesw) = (ilwl2z, —ir|z?w).

Remark that X and Y vanish on Ty and T and that ,for example, the vector field Y has
the expression in the natural coordinates (z;, 3, z3,z4) of R* as follows:

Y(sz) = Y(ﬁl 122,23,24)

((23)? + (z4)?) (—xza% + :1:152—2-) — (22 + (22)?) ("“”a% + :c3-a—-).

3274

The following lemmas are easily proved.
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Lemma 1 It holds that
1 Xz l? = |21%w]?,
1YGuwl? = 21wl (r?]2]* + |w]?).
Lemma 2 The vector fields X andY on S* are infinisetimal automorphisms of F".

Lemma 3 The vector fields X, Y and Z" are orthogonal to each other on S3\ {T,,T1}.

The sectional curvature for the plane spanned by X and Y is called the basic Riemannian
sectional curvature of ", which is regarded as a real-valued function K, on S*\ {T,,T1},
since F7 is of codimension 2. The following lemma was proved in [1].

Lemma 4 For any (z,w) € S\ {To,T1}, it holds
3r?
(T2 + ol

K. (z,w)=1+

We regard the unit circle S! as the quotient set R/2nZ . A parametrization of S? is
then given by the mapping

x:(0,1) x §* x §* — §* c C?,
where x(u, 6,,0;) is defined by
(1) x(u,0y,0:) = (ue®, V1 — u2e™®).

We set x(0,6,,82) = (0,e') and x(1,6;,8;) = (¢**,0). Then we have a mapping X :
[0,1] x S x S? — S3. We notice that

x({0} x S* x S') =Ty,
x({1} x ' x S) =T,

and the mapping X |(o,1)xs1xs1 restricted on (0,1) x S* x S* is a diffeomorphism from
(0,1) x S x S! to S3\ {To, T1}. The foliation F~ on S3 induces a foliation F” on (0, 1) x
S! x S! via the mapping X |(o,1)xs1xs:- The metric ds; is given by

2) ds2s = (1 — )~ (du)? + u?(dhy)? + (1 — u?)(d8,)?
on X((O, 1) x St x Sl) =83 \ {To,Tl}.

In terms of the parametrization (1) of S3, we have the following expression of the vector
fields X, Y and Z7 :

0
Xox(u,,00) = u(1 — u?)x, (%) ,
0

0
= — 2 —_ ) — pry2 —
Yae(u,6,,8,) = (1 — u?)x. (801) ru‘x, 26, )’

o B ] i
x(wontn) = "X { 39, ) + - \ 30,
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on x((0,1) x S x §') = §3\ {To, T}, where x, denotes the differential of the mapping x.

Let L" denote the tangent bundle and Q" the normal bundle of ™. Let V(F") denote
the set of all infinitesimal automorphisms of 7. By the fact (F.3) , the normal bundle
Q" of F" is identified with the orthogonal complement (L™)* of the tangent bundle L™ of
F" , and the Riemannian metric induces the holonomy invariant metric go- on the normal
bundle Q" . Thus we can define the following notion. Let II : I'(T'S%) — I'(Q") be a
projection, where I'(T'S®) denotes the set of all sections of the tangent bundle of S3, and
I'(Q") the set of all sections of the normal bundle of F". Then the set

V(F)={(W) e T(Q") | W € V(F") CI(TS%)}

gives rise to the set of all transversal infinitesimal automorphisms of 7. Among V(F")
we have the set of transversal Killing field of 7™ , that is , II(W) € V(F7) is a transversal
Killing field of F~ if II(W) satisfies ©(W)go- = 0 . Here ©(W) denotes the transversal Lie
derivative operator with respect to II(W) ( See [2,3,5] for details ). The following theorem
was proved in [6].

Theorem 5 For the vector field Y on S, a transversal infinitesimal automorphism

1
I (r%t2 + (1 —u?) Y(""’))

of F" is a transversal Killing field of F~.

- . . 1
This is proved by direct calculation of © (r’u’ T A=) Y(z,w)) 9qr-

3 A surface of revolution

Roughly speaking, the basic Riemannian sectional curvature of " corresponds with the
” Gaussian curvature” of the leaf space S3/F ( This leaf space is a Riemannian V-manifold.
See (F.4) in section 2 ) . Thus, if we can construct a surface with corresponding Gaussian
curvature to the curvature in Lemm 4, we may describe the leaf space S3/F” as the surface.
We construct the surface as a surface of revolution.

Let r be a fixed real number and suppose r > 1. We define a function f on [0,1] by

(3) f(u) = u(1l — u?)V2(r2u® + (1 — u?))~ V2
Then f is of class C* on (0, 1), and the first derivative f’ of f on (0, 1) is given by
f'(uw) = (1= 2u® — (r® — D)u?)(r?u? + (1 — u?)) 7331 — u?)~1/2,
We notice that f(0) = f(1) = 0 ,f has the maximum value (r + 1)~! at u = (r 4 1)~1/2,

and
i T = £0) _

h—+40 h 1’
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L Ok - )

k—-—0 k

Then we have
0<(1—u?)1—(f(uw)?<(1—-u?), ue (0,1)

and

Jim (1 - )7 = (f(w)?) =
lim ((1-u®)"" = (f'(4))?) = +oo.

u—1-0
1 1
d
-/(; 1 —u? U

converges, so does the improper integral

Since the improper integral

— (f'(u))? du.

Thus we can define a function g on [0, 1] by

(4 ow) = [

Then we have

()2 ds.

0 =g(0) < g(u) < g(1), u € (0,1).

We set g, = g(1), the maximum value of g. The function g is of class C* on (0,1) and
the first derivative ¢’ of ¢ on (0, 1) is given by

g'(w) = (1 - w)™ = (F @)

Now, we construct a surface of revolution S, in the Euclidean (z;, 5, z3)-space R3. The
profile curve C of S, in (z,, z3)-plane is defined by

_ { z1 = f(u)
z3 = g(u)
for u € [0,1],where f and g are functions defined by (3) and (4), respectively. Since we
have

g'(uw) 1 .
i —1 =0
) f'(u) s ((1 — u?)(f'(u))? ) ’
the profile curve C is perpendicular to the zs-axis at the origin in (z;, zs)-plane. We also

have
(1—2u%— (r®—1u?)®  _

u—>1 0 (r2u?+(1-—u?))3

Jim (1—)(f/(w)? =
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By the above facts and

i, £ = oo

we have

lim M = lim (-1) ( L — 1) . = —(r2 —1)V2
BP0 fiw) ~ vl TN\ A=A P @)
Thus the angle 6 between the curve C and the z3-axis at the point (0, g.) is given by
tané = (7'2 - 1)_1/2.
Remark. If r =1, then we have

{ z; = f(u) = u(l — u?)'/?

r3 = g(u) = u?

for u € [0,1]. Thus the profile curve C is a half circle ( (z;)? + (z3 — 1/2)? = 1/4 and
z; > 0 ) so that S, is a sphere of radius 1/2.
A parametrization of S, is given by the mapping

y:(0,1) x S* — S, C R,
where y(u,7) is defined by
(5) y(u,7) = (f(u) cos, f(u) sin T, g(u)).

Setting y(0,7) = (0,0,0) and y(1,7) = (0,0, g.), we have a mapping y : [0,1] x S — S,.
The mapping y |(o,1)xs! restricted on (0,1) x S* is a diffeomorphism from (0,1) x S! to
S-\{(0,0,0),(0,0,g.)}. We notice that y({0} x S*) = (0,0,0) and y({1} x S*) = (0,0, g.).
It follows from the above facts that S, is a surface of class C? and S, \ {(0,0, g.)} is of class
C*. The metric ds} on S, induced from the canonical metric ds}s on R?® is given by

(6) ds = (1—u?)"!(du)? + u?(1 — u?){r?u® + (1 — u?)}~}(dr)?

on y((0,1) x S*) =S, \ {(0,0,0),(0,0,9.)}.
Lemma 6 The Gaussian curvature K of S, is given by

3r2
P+ (1= )P

K(u,7) =1+

on y((0,1) x S*) =S, \ {(0,0,0),(0,0,g.)}.
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Proof. Since the surface of revolution S, defined by
y(u,7) = (f(u) cos T, f(u)sin T, g(u)),

the Gaussian curvature K of S, has the following expression:

(f'(u)g"(u) — f"(u)g'(u))g'(v)
F)((F (W) + (g'(w)*)?

From the equality ¢'(u) = ((1 — u?)~! — (f'(u))?)'/? , we have
(f'(w)g"(u) — " (w)g'(v))g'(u) = u(1 — w*) 2 f'(u) — (1 — w*) 7 " (w).
Thus we see that K (u,7) = u(f(u))~* f(v) — (1 —u?)(f(u))~' f"(u). Now, by the definition

of f, we have

u(f ()7 ' (u) — (1 — w?) (£ ()7 f"(w)
_ (,’,2“2 + (1 _ u2))—2(1 _ u2)—1
x{(r?u® + (1 — u?))(1 — 2u® — (r? — 1)u?) — r?(=3 + 2u® — (v* — 1)u*)}
= (r®u® + (1 — u?)2(1 — u?) " (r?u® + (1 — v?))*(1 — u?) + 3r%(1 — u?)}.

K(u,7) =

2
Hence we have K(u,7) =1+ (r2u? +3(r1 —u?))?’ - "

4 Leaf space

In this section, we assume that r is an integer and is greater than 1. We fix r and the Hopf
r-foliation F"on S3. By identifying each leaf of F™ to a point, we then obtain the quotient
space S3/F" formed from S , which is called the leaf space of the foliation 7~ on S°. Let
p:S® — S3/F be the identification mapping. Since all leaves of F™ are closed and ds?, is
a bundle-like metric with respect to F* , the holonomy group H(L) of any leaf L of 7" is a
finite group and S3/F" is a connected metric space([7,8]). Then $*/F~ is a C*® Riemannian
V-manifold and the mapping p : S® — S3/F" is a C® Riemannian V-submersion. The
notion of Riemannian V-submersion is a version of Riemannian submersion in the theory
of V-manifold ([4,7,8], see [9] for the V-manifold category).

The holonomy group H(T}) of the leaf T} is a cyclic group of order r, and H(Tp) is
trivial.

The action of H(T}) on a flat neighborhood([7,8]) of (1,0) € T: C S* induces the action
of a finite group of rotations

G={(COS21r/r —SIn27r/r) lm=011)2’--"r_1}

sin2r/r  cos2w/r
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Ue = {(z3,24) € R? | (23)* + (z4)® < €7}

Thus an open neighborhood U of p(T}) in S3/F" is homeomorphic to the quotient space
U./G of the open disk in R? by G . The space U,/G is a cone with the angle 8 between
the axis and the generating line. Here @ satisfies the equation: sin® = r~', that is,
tand = (r? — 1)~!/2. Since the action of H(Tp) on a neighborhood of (0,1) € T C S® is
trivial, an open neighborhood V of p(T}) in S3/F™ is homeomorphic to an open disk

Ve = {(z1,22) € R?| (21)* + (22)* < €?}.
Now we consider a mapping
j:(0,1) x S* x S* — (0,1) x S*,
where j(u,6,,0;) is defined by
(7) 3(u,6,,62) = (u,6, — r6,).
Lemma 7 The mapping j is surjective.

Proof. Take an element 6; of S1. For any (u,7) € (0,1) x S, we have a real number
(61 — 7)/r. Then there exists an element 8, of S* satisfying

025(01—7')/1' (mod21r).

Thus, there exists an element (u,6;,8;) of (0,1) x S x S! satisfying j(u,61,62) = (u, 7).
Next, if we take another element 6] € S*, then we have an element ¢, € S* satisfying

=01 —7)/r  (mod2m),
that is, for an integer ¢
b — (6, — 7)/r = 2¢n.
Put ty = 6] — 6, . Then we have
1
0, — 0, = (61 + to) —r{;(91+to-—'r)+2£7r} =7 — 2rém.

Thus we have that j(u, 6}, 8,) = (u, 7). [

Lemma 8 If two elements (u,8,,0;) and (u,60;,8;) of (0,1) x S x S* satisfy

6, =0, +rt (mod 27)

~

=0+t (mod 27)
for t € R, then it holds that
3(u,601,62) = j(u,6,,6,).
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Proof. By the assumption, there exist two integers ¢, k such that
6, — (6y + rt) = 2¢m, 6y — (6, +1t) = 2km.
Since r is an integer, we have
6, — 16, = 6, — 18, (mod 27),
which implies that j(u, 8;,82) = j(u, 6;,6,). [
By Lemma 8, we have

Lemma 9 The mapping j maps each leaf of the foliation F™ on (0,1) x S* x S* to a point
of (0,1) x S™.

Lemma 10 The mapping j is a submersion.

Proof. It is obvious that the mapping j is of class C*°. The Jacobi matrix of j at any point
(u,61,02) € (0,1) x S x S! is given by

1 0 O
01 —r |

Thus the mapping j is a submersion. L]

We set j(0,6,,0;) = (0,6, — r6;) and j(1,6,,0;) = (1,6, — r6).

Let [(2,w)] denote the image of (z,w) € S® by the mapping p : S* — S3/F", that
is, p((2,w)) = [(2,w)]. For any [(z,w)] € (S3/F") \ {p(To),p(T1)}, we have the following
expression of (z,w) :

(z,w) = (ue‘a‘, v1-— uze‘o’) (u #0,1).
Thus, by (1),(5) and (7), we have

x1(z,w) = (u,6,02) € (0,1) x S* x S%,
i(x"Y(z,w)) = (u,6; — r6;) € (0,1) x S,

and

y (i (x7}(zw)))
= (f(u) cos(8; — r8;), f(u)sin(8; — r62), g(u)) € S, \ {(0,0,0),(0,0,4.)}.

If we take another element (2,w) € S3\ {Ty,T1} satisfying p((2, %)) = [(z,w)], then there
exists a real number ¢ such that

7 (2, w) = (2, d),
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that is, X
6 =6, +rt (mod 27),
0, =0, +1t (mod 27),
U =u,

where 2 = @€’ and W = V1 — u2e*®?. Thus we have

f(a) = f(u),

9(8) = g(u),
i(61—r) _ ,i(01-r83)

Therefore, y (j (x~* (p™1([(2, w)])))) is independent of the choice of an element (z,w) in

p~([(2, w))).
We set that
y (G (x7* (™ '([(0,w)])))) = (0,0,0),
y (G (x7t (7' ([(2,0)])))) = (0,0,4.)

for any (0, w) € Ty and (z,0) € Th.
Lemma 11 There exists a homeomorphism ¢ : S3/F" — S,.

Proof. We remark that p(T,) = [(0,1)] and p(Ty) = [(1,0)]) .
For any [(z,w)] € (§°/77) \ {[(0,1)},(1,0)]}, we define ¢([(z,w)]) by

o(l(zw))) =y (i (x7* (2722, w))))) -
Also we define ([(0,1)]) and ([(1,0)]) by

»([(0,1)]) = (0,0,0), #([(1,0)]) = (0,0, g.).

Thus we have a mapping ¢ : S3/F~ — S,. By the above lemmas, it is obvious that ¢ is
a homeomorphism. L

Since S*/F™ and S, are C* V-manifolds, we have the V-manifold version of the above
lemma. In fact, by the notion of V-manifold mapping ([9]), we have the following

Lemma 12 The mapping ¢ : S3/F" — S, is a bijective V-manifold mapping.

We consider a mapping
p:8*—S,,
where p(z, w) is defined by
#lz,w) = y(i(x™ (2, w))).

The mapping p : S — S3/F" is a C™ V-submersion, and so is the mapping 5. Namely,
we have '
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Lemma 13 The mapping p: S® — S, is a C>* V-submersion.

Now, by the parametrization (5) of S,, we have, on y((0, 1) x S1) = S,\{(0,0,0),(0,0,4.)},

v =3 (55) = () con, £/ sinr, /),

Y- =Y. (a%) = (—f(u)sin, f(u) cos 7, 0).

By the proof of Lemma 10, we have
. (o0Y_08 .(8\_o6 ,(O0)\__.0
I ou/ o’ I+ 88, — ar’ I 88, or

Pe(Xizy) = u(l — %) - yu,
Pe(Yizw) = {r’u® + (1 —u*)} - yr,
ﬁ*(Z(z,w)) =o

Thus we have

for (z,w) = (ue’®,v1 —u2e') € S (u # 0,1), where o denotes the zero vector.
Let || ® ||ss ( resp. || o ||s. ) be the norm with respect to the metric ds3, ( resp. ds} )
on S3 (resp. S, ). We have

Lemma 14 For infinitesimal automorphisms X and Y of F© on S*\ {T1}, it holds that

8. (X)ls, = I X]|s2,
8. (¥)lls. = lIY1lss.

1
Remark. For a transversal Killing field IT Y(zw) | of 7, the vector field
r2u2 + (1 —u?) ™
Ds (r2u2 T tl =) Y(,,w)) on S, \ {(0,0,4.)} is a Killing vector field with respect to dsj .

By Lemmas 13 and 14, we have

Lemma 15 The mapping p: S* — S, is a C™ Riemannian V-submersion.

Therefore, we have

Theorem 16 Let r be an integer and greater than 1. Let F" be the Hopf r-foliation on
S%. Then the leaf space S®/F" is homeomorphic to the surface of revolution S, in R® given
in the previous section, and the mapping p : (S3,ds%s) — (S,,ds} ) is a C™ Riemannian
V-submersion.
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Remark. We suppose that r is a positive rational number ¢/p, where two positive integers
p and q are relatively prime and p # 1. Then the action of H(Tp) induces the action of
group of rotations of order p on an open disk V,, and the action of H(T}) induces the action
of group of rotations of order ¢ on an open disk U,. We construct a surface of revolution
S, with profile curve C
{ z; = f(u)
I3 = g (u)’

where g is given by

o) = [ 1 — (e} ds
for any u € [0,1]. Then the angle 8, between the curve C and the zs-axis at the point
(0,0) is given by
ta.nﬂo = (p2 - 1)_1/2,

and the angle 6, between the curve € and the zs-axis at the point (0, §(1)) is given by
tan01 = (q2 - 1)-1/2.

For r is a positive rational number ¢/p ( two positive integers p and q are relatively prime
and p # 1 ), we consider a mapping

§:(0,1) x S* x S* — (0,1) x S*,
where j(u, 6;, ;) is defined by
i(u,61,05) = (u,p; — gb,).

And we set j(0,6,,6,) = (0,pb; — gf>) and j(1,6,,6,) = (1,p6; — q6,) . Then j maps each
leaf of the foliation F” on (0,1) x S* x S? to a point of (0,1) x S ( See Lemmas 7,8,9 ).
The Jacobi matrix of j at any point (u,6,,6,) € (0,1) x S! x S! is given by

[ 10 O ]
0 p —q)
Thus the mapping jisa submersion, and we have
s (2\_8 s(o)_. 8 (oY__ o
S \ou) "o 86, ) Por I 86, ) T
A parametrization of S, is given by the mapping
¥:(0,1) x S' — 8, c R?,
where y(u, 7) is defined by

¥(u,7) = (f(u) cos 7, f(u) sin 7, §(u)).
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And we set y(0,7) = (0,0,0) and y(1,7) = (0,0, (1)) .
Then we consider a mapping p : S® — S, defined by

p=yojoxt,
where x is a parametrization of S°® defined in section 2. For infinitesimal automorphisms
X and Y of " on S3\ {T,, T} , we have

a
~ _ Ca2) . S v
Pe(X(zw)) = u(l —v?) - 3. (au)

. 0
lYiaw) = (o1 =) + 0} 5. (57,

18+ (X)lls, = 1 X|se
1B8.(¥)ll, = PlIY |52,

for (z,w) = (ue’®,v1 —u2e) € S (u #0,1).
Therefore, we have a C* V-submersion p : §* — S,. But, p: (5% ds%:) — (S,,ds% )
is not a C*° Riemannian V-submersion.
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