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Regeneration in Quaternionic Analysis

Xiao Dong LI

In Complex Analysis of Several Variables, Matsugu [6] gave a necessaryand suffi-
cient condition that any pluriharmonic function $g$ on a Rieman domain $\Omega$ over a Stein
manifold is a real part of a holomorphic function on $\Omega$ . In Quaternionic Analysis.
N\^ono [8] gave a necessary and sufficient condition that any harmonic function $f_{1}$ on
a domain $\Omega$ in $C^{2}$ has a hyper-conjugate harmonic function $f_{2}$ so that the function
$f_{1}+f_{2}j$ is hyperholomorphic on $\Omega$ . Marinov [5] developped systematically a theory of
regenerations of regular functions. The main purpose of the present paper is to add a
regeneration in Quaternionic Analysis.

The author would like to express his hearty gratitude to the referee for many
valuable suggestions.

1. Regeneration

Let $\Omega$ be a complex manifold and $f$ be a holomorphic function on $\Omega$ . Then its real part
$f_{1}$ is a pluriharmonic function on $\Omega$ . Let $(\Omega, \varphi)$ be a Rieman domain over a Stein manifold
$S$ and $(\overline{\Omega},\overline{\varphi})$ be its envelope of holomorphy over $S$ . Then, Matsugu [6] proved that the
necessary and sufficient condition that, for any pluriharmonic function $f_{1}$ on $\Omega$ , there exists
a pluriharmonic function $f_{2}$ on $\Omega$ so that $f_{1}+f_{2}i$ is holomorphic on $\Omega$ is that there holds
$H^{1}(\tilde{\Omega}, Z)=0$ , where $Z$ is the ring of integers.

The field $\mathcal{H}$ of quaternions

(1) $z=x_{1}+ix_{2}+jx_{3}+kx_{4}$ , $x_{1},$ $x_{2},$ $x_{3},x_{4}\in R$

is a four dimensional non-commutative R-field generated by four base elements 1, $i,j$ and
$k$ with the following non commutative multiplication rule:

(2) $i^{2}=j^{2}=k^{2}=-1,$ $ij=-ji=k,jk=-kj=i,$ $ki=-ik=j$ .

$x_{1},$ $x_{2},$ $x_{3}$ and $x_{4}$ are called, respectively, the real, $i,$ $j$ and $k$ part of $z$ . In the papers N6no
[7], [8], [9], [10] and Marinov [5] loco citato, two complex numbers

(3) $z_{1}$ $:=x_{1}+ix_{2}$ , $z_{2}$ $:=x_{3}+ix_{4}\in C$

are associated to (1), regarded as

(4) $z=z_{1}+z_{2}j\in \mathcal{H}$ .

The quaternionic conjugate $z^{*}$ of $z=z_{1}+z_{2}j\in \mathcal{H}$ is defined by

(5) $z^{*}$ $:=\overline{z_{1}}-z_{2}j$ .
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Thcy idcntify $\mathcal{H}$ with $C^{2}\cong R^{1}$ . dcnotc a quaternion valucd function $f$ by $f=\int_{1}+f_{2}j$ and
usc fully thc theory of functions of several colnplcx variablcs. Concerning furthcr notations,
dcfinitions and citations. plcasc rcfer to a papcr [15] of a collcague of the author in a back
number of thc prcscnt Journal.

Using Laufer’s rcsults [4], N\^ono [8] provcd that thc neccssary and sufficicnt condition
that, for any colnplex valucd harlnonic function $\int_{1}$ on a domain $\Omega$ in $C^{2}$ , thcre cxists a
complex valued $har\iota nonic$ function $f_{2}$ on $\Omega$ so that $\int_{1}+f_{2}j$ is hyperhololnorphic on $\Omega$ is
that $\Omega$ is a dolnain of holomorphy.

Marinov [5] named those constructions of conjugate functions, regenarations and devel-
opped the theory of regenerations in Quaternionic Analysis using $\overline{\partial}$-analysis of H\"ormander

[3]. The main purpose of the present paper is to add a regeneration, using Dolbeault Iso-
morphism from resolution of sheaves. Because we use the results of Son[13], we adapt the
notations $x=x_{1}+x_{2}i+x_{3}j+x_{4}k$ for quaternions $x$ .

2. Main Theorems

Let $\Omega$ be a domain in $\mathcal{H}\times \mathcal{H}\cong R^{4}\times R^{4}=R^{8}$ of two quaternionic variables $x=$
$x_{1}+x_{2}i+x_{3}j+x_{4}k\cong(x_{1}, x_{2}, x_{3}, x_{4})$ and $y=y_{1}+y_{2}i+y_{3}j+y_{4}k\cong(y_{1}, y_{2}, y_{3}, y_{4})$ , and
$f=f_{1}+f_{2}i+f_{3}j+f_{4}k$ be a quaternion valued function of class $C^{\infty}$ in $\Omega$ . The differential
operators $D_{x}$ and $D_{y}$ are represented under the multiplication rule (2) as follows:

(6) $D_{x}f$ $:=(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}i+\frac{\partial}{\partial x_{3}}j+\frac{\partial}{\partial x_{4}}k)(f_{1}+f_{2}i+f_{3}j+f_{4}k)=$

$(\frac{\partial f_{1}}{\partial x_{1}}-\frac{\partial f_{2}}{\partial x_{2}}-\frac{\partial f_{3}}{\partial x_{3}}-\frac{\partial f_{4}}{\partial x_{4}})+(\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{3}}{\partial x_{4}}+\frac{\partial f_{4}}{\partial x_{3}})i+$

$(\frac{\partial f_{1}}{\partial x_{3}}+\frac{\partial f_{2}}{\partial x_{4}}+\frac{\partial f_{3}}{\partial x_{1}}-\frac{\partial f_{4}}{\partial x_{2}})j+(\frac{\partial f_{1}}{\partial x_{4}}-\frac{\partial f_{2}}{\partial x_{3}}+\frac{\partial f_{3}}{\partial x_{2}}+\frac{\partial f_{4}}{\partial x_{1}})k$ .

and
(7) $fD_{y}$ $:=(f_{1}+f_{2}i+f_{3}j+f_{4}k)(\frac{\partial}{\partial y_{1}}+\frac{\partial}{\partial y_{2}}i+\frac{\partial}{\partial y_{3}}j+\frac{\partial}{\partial y_{4}}k)=$

$(\frac{\partial f_{1}}{\partial y_{1}}-\frac{\partial f_{2}}{\partial y_{2}}-\frac{\partial f_{3}}{\partial y_{3}}-\frac{\partial f_{4}}{\partial y_{4}})+(\frac{\partial f_{1}}{\partial y_{2}}+\frac{\partial f_{2}}{\partial y_{1}}+\frac{\partial f_{3}}{\partial y_{4}}-\frac{\partial f_{4}}{\partial y_{3}})i+$

$(\frac{\partial f_{1}}{\partial y_{3}}-\frac{\partial f_{2}}{\partial y_{4}}+\frac{\partial f_{3}}{\partial y_{1}}+\frac{\partial f_{4}}{\partial y_{2}})j+(\frac{\partial f_{1}}{\partial y_{4}}+\frac{\partial f_{2}}{\partial y_{3}}-\frac{\partial f_{3}}{\partial y_{2}}+\frac{\partial f_{4}}{\partial y_{1}})k$ .

The conjugate operators $D_{x}$ and $\overline{D_{y}}$ of $D_{x}$ and $D_{y}$ are defined as follows:

(8) $\overline{D_{x}}:=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}i-\frac{\partial}{\partial x_{3}}j-\frac{\partial}{\partial x_{4}}k,\overline{D_{y}}:=\frac{\partial}{\partial y_{1}}-\frac{\partial}{\partial y_{2}}i-\frac{\partial}{\partial y_{3}}j-\frac{\partial}{\partial y_{4}}k$ .

Theorem 1. Let $\Omega$ be adomain in the space $R^{8}$ of 8real variables $x:=(x_{1}, x_{2}, x_{3}, x_{4})$

and $y$ $:=(y_{1}, y_{2}, y_{3}, y_{4}),$ $f_{1},$ $f_{2},$ $f_{3}$ be functions of class $C^{\infty}$ on $\Omega$ . If there exits a function
$f_{4}$ of class $C^{\infty}$ on $\Omega$ such that the quatemion valued function $f=f_{1}+f_{2}i+f_{3}j+f_{4}k$ is a
biregular function on $\Omega’$. the real valued functions $\int_{1},$ $f_{2},$ $f_{3}$ satisfies the integmbility condition

(9) $d\omega=0$

–64 –



on $\Omega$ . $whc7C$ thc ($ fiffcr\cdot cnti(\iota lfo\uparrow\gamma n\omega$ of ($fcg\prime c^{J}c1$ is giucn by

(10) $\omega=$

$(-\frac{\partial f_{1}}{\partial x_{4}}+\frac{\partial\int_{2}}{\partial x_{3}}-\frac{\partial\int_{3}}{\partial x_{2}})dx_{1}+(\frac{\partial f_{1}}{\partial x_{3}}+\frac{\partial.\int_{2}}{\partial x_{4}}+\frac{\partial\int_{\backslash }}{\partial x_{1}})d.c_{2}+(-\frac{\partial\int_{1}}{\partial_{\lambda_{2}}}-\frac{\partial\int_{2}}{\partial.c_{1}}+\frac{\partial f_{3}}{\partial x_{4}})dx:’+(\frac{\partial\int_{1}}{\partial x_{1}}-\frac{\partial\int_{2}}{\partial x_{2}}-\frac{\partial\int}{\partial.\iota_{3}})d.\mathfrak{r}_{4}+$

$(-\frac{\partial f_{1}}{\partial y_{4}}-\frac{\partial f_{2}}{\partial y_{3}}+\frac{\partial f_{3}}{\partial y_{2}})dy_{1}+(-\frac{\partial f_{1}}{\partial y_{3}}+\frac{\partial f_{2}}{\partial y_{4}}-\frac{\partial f_{3}}{\partial y_{1}})dy_{2}+(\frac{\partial f_{1}}{\partial y_{2}}+\frac{\partial f_{2}}{\partial y_{1}}+\frac{\partial f_{3}}{\partial y_{4}})dy_{3}+(\frac{\partial f_{1}}{\partial y_{1}}-\frac{\partial f_{2}}{\partial y_{2}}-\frac{\partial f_{3}}{\partial y_{3}})dy_{4}$ .

Conversely, if $f_{1},$ $f_{2},$ $f_{3}$ satisfies the integrability condition (9) $-(10)$ on $\Omega$ and if the domain
$\Omega$ satisfies $H^{1}(\Omega, Z)=0$ for the ring $Z$ of integers. then there exits a function $f_{4}$ of class
$C^{\infty}$ on $\Omega$ such that the quatemion valued function $f=f_{1}+f_{2}i+f_{3}j+f_{4}k$ is a biregular
function on $\Omega$ .

Proof. If there exists such a real valued function $f_{4}$ on $\Omega$ , by definition, its differential $\omega$

is given by

(11) $\omega$ $:=\frac{\partial f_{4}}{\partial x_{1}}dx_{1}+\frac{\partial f_{4}}{\partial x_{2}}dx_{2}+\frac{\partial f_{4}}{\partial x_{3}}dx_{3}+\frac{\partial f_{4}}{\partial x_{4}}dx_{4}+$

$\frac{\partial f_{4}}{\partial y_{1}}dy_{1}+\frac{\partial f_{4}}{\partial y_{2}}dy_{2}+\frac{\partial f_{4}}{\partial y_{3}}dy_{3}+\frac{\partial f_{4}}{\partial y_{4}}dy_{4}$ .

Solving $D_{x}f=0$ from (6) and $fD_{y}=0$ from (7) as linear equations with partial derivatives
of $f_{4}$ unknown and substituting them in (11), we have the representation (10) of $\omega$ by
$f_{1},$ $f_{2},$ $f_{3}$ . Since $\omega$ is the differential of $f_{4}$ , we have the integrability condition (9).

Let $p$ be a non negative integer, $R$ be the constant sheaf of real numbers over $\Omega,$ $\mathcal{E}^{p}$ be
the sheaf of germs of differential forms of degree $p$ with coefficients of class $C^{\infty}$ over the
domain $\Omega\subset R^{8},$ $d$ be the usual differential operator $d^{p}$ : $\mathcal{E}^{p}\rightarrow \mathcal{E}^{p+1}$ and $\iota$ : $R\rightarrow \mathcal{E}^{0}$ be
the canonical injection. Then, by the lemlna of Poincar\’e, the above operators give a fine
resolution
(12) $ 0\rightarrow R\rightarrow \mathcal{E}^{0}\rightarrow \mathcal{E}^{1}\rightarrow\cdots\rightarrow \mathcal{E}^{p}\rightarrow \mathcal{E}^{p+1}\cdots$ .

of the constant sheaf $R$ over $\Omega$ . By the theorem of Dolbeault [1], we have the following
Dolbeault’s isomorphism

(13) $H^{p}(\Omega, R)\cong H^{0}(\Omega, (d^{p})^{-1}(0))/d^{p-1}(H^{0}(\Omega, \mathcal{E}^{p-1}))$

for any positive integer $p$ . By the universal coefficient theorem [12], we have $H^{p}(\Omega, R)\cong$

$H^{p}(\Omega, Z)\otimes R$ and, hence, $H^{p}(\Omega, R)=0$ if and only if $H^{p}(\Omega, Z)=0$ , for any positive integer
$p$ . Therefore, from the assumptions $H^{1}(\Omega, Z)=0$ and (9), we have $\omega\in H^{0}(\Omega, (d^{1})^{-1}(0))=$

$d^{0}(H^{0}(\Omega, \mathcal{E}^{0}))$ and there exists $f_{4}\in H^{0}(\Omega, \mathcal{E}^{0})$ such that $\omega=d^{0}f_{4}$ . The quaternion valued
function $f$ $:=f_{1}+f_{2}i+f_{3}j+f_{4}k$ of class $C^{\infty}$ on $\Omega$ satisfies $D_{x}f=0$ by (6) and $\omega=d^{0}f_{4}$ ,
and $fD_{y}=0$ by (7) and $\omega=d^{0}f_{4}$ . Hence the function $f$ is the dcsired biregular function
on $\Omega$ with $\int_{4}$ as $k$ part for the real part $f_{1,}.i$ part $f_{2}$ and $j$ part $f_{3}$ givcn.

Corollary. Let $\Omega$ be a domain in $R^{8}$ with $H^{1}(\Omega, Z)=0$ for the $nngZ$ of intcgers,
$f_{1},$ $f_{2},$ $f_{3}$ be functions of class $C^{\infty}$ on $\Omega$ satisfying the integmbility condition (9)$-(10)$ . $Th,en$

$f_{1},$ $f_{2},$ $f_{3}$ are harmonic functions on $\Omega$ .
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Pt oof By thc thcorein. thcre exists a rcal valucd function $\int_{4}$ of class $ c^{Y}\infty$ on $\Omega$ such
that thc quatcrnion valucd function $f=f_{1}+f_{2}l+\int_{C1}j+\int_{4}A$. is biregular on $\Omega$ . Sincc wc
havc
(14) $\triangle_{J}\int;=\frac{\partial^{2}\int}{\partial x_{1}^{2}}+\frac{\partial^{2}\int}{\partial x_{2}^{2}}+\frac{\partial^{2}\int}{\partial x_{3}^{2}}+\frac{\partial^{2}f}{\partial x_{4}^{2}}=\overline{D_{x}}D_{x}\int=0$ ,

$f\Delta_{y}$ $:=\frac{\partial^{2}f}{\partial y_{1}^{2}}+\frac{\partial^{2}f}{\partial y_{2}^{2}}+\frac{\partial^{2}f}{\partial y_{3}^{2}}+\frac{\partial^{2}f}{\partial y_{4}^{2}}=\beta D_{y}\overline{D_{y}}=0$ ,

$f_{1},$ $f_{2},$ $f_{3},$ $f_{4}$ are harmonic on $\Omega$ . q.e.d.
An open set $\Omega$ in $R^{8}$ is said to be a Son domain if, for any pair of quaternion valued

functions $9=g_{1}+g_{2}i+g_{3}j+g_{4}k$ and $h=h_{1}+h_{2}i+h_{3}j+h_{4}k$ of class $ c\infty$ on $\Omega$ with
$gD_{y}=D_{x}h$ , there exists a quaternion valued function $f=f_{1}+f_{2}i+f_{3}j+f_{4}k$ of class $C^{\infty}$

on $\Omega$ with $D_{x}f=g$ and $fD_{y}=h$ . By Son [13], a product domain $\Omega$ of a simply connected
domain $\Omega_{x}$ in the space $R^{4}$ of variables $x:=(x_{1}, x_{2}, x_{3}, x_{4})$ and a simply connected domain
$\Omega_{y}$ in the space $R^{4}$ of variables $y:=(y_{1},y_{2}, y_{3},y_{4})$ is a Son domain.

Lemma. Let $\Omega$ be a Son domain in the space $R^{8}$ of 8 real variables $x$ $:=(x_{1}, x_{2}, x_{3}, x_{4})$

and $y$ $:=(y_{1}, y_{2}, y_{3}, y_{4})$ and $\mathcal{R}$ be the sheaf of gems of biregular functions $f=f_{1}+f_{2}i+$

$f_{3}j+f_{4}k$ over $\Omega$ . Then, there holds $H^{1}(\Omega, \mathcal{R})=0$ .

Proof. Let $\mathcal{Q}$ be the sheaf of germs of quaternion valued functions $q=q_{1}+q_{2}i+$

$q_{3}j+q_{4}k$ of class $C^{\infty}$ over $\Omega$ in the space $R^{8},$ $\mathcal{U}=\{U_{\lambda};\lambda\in\Lambda\}$ be an open covering of the Son
domain $\Omega$ and $C=\{f_{(\lambda_{1},\lambda_{2})}; \lambda_{1}, \lambda_{2}\in\Lambda\}$ be a l-cocycle of the covering $\mathcal{U}$ with coefficients in
the sheaf $\mathcal{R}$ . By the definition, the l-cocycle $C$ satisfies the condition of compatibility

(15) $f_{(\lambda_{1},\lambda_{2})}+f_{(\lambda_{2},\lambda_{3})}+f_{(\lambda_{3},\lambda_{1})}=0$

in $U_{\lambda_{1}}\cap U_{\lambda_{2}}\cap U_{\lambda_{3}}$ for any $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}\in\Lambda$ with non empty $U_{\lambda_{1}}\cap U_{\lambda_{2}}\cap U_{\lambda_{3}}$ . Since each $f_{(\mu,\nu)}$

is biregular in each $U_{\mu}\cap U_{\nu}$ for any $\mu,$
$\nu\in\Lambda$ , each $f_{(\mu,\nu)}$ is of class $C^{\infty}$ in each $U_{\mu}\cap U_{\nu}$ .

Hence the cocycle $C$ is a cocycle of the covering $\mathcal{U}$ with coefficients in the sheaf $\mathcal{Q}$ of germs of
quaternion valueA $f\uparrow\iota nctioo$ of claes $C^{\infty}$ . Since we have $H^{1}(\mathcal{U}, Q)=0$ by the partition of the
unity, there exists a O-cochain $\{f_{(\mu)};\mu\in\Lambda\}$ of the covering $\mathcal{U}$ with coefficients in the sheaf $Q$

such that its coboundary is the l-cocycle $C,$ $i$ . $e.$ , each $f_{(\mu)}$ is a function of class $C^{\infty}$ in each
$U_{\mu}$ and there holds $f_{(\mu,\nu)}=f_{(\nu)}-f_{\langle\mu)}$ in each $U_{\mu}\cap U_{\nu}$ . Since $f_{\{\mu,\nu)}$ is biregular in $U_{\mu}\cap U_{\nu}$ , we
have $0=D_{x}f_{\langle\mu,\nu)}=D_{x}f_{(\nu)}-D_{x}f_{(\mu)}$ and $0=f_{\langle\mu,\nu)}D_{y}=f_{(\nu)}D_{y}-f_{\langle\mu)}D_{y}$ in each $U_{\mu}$ . This
means that, if we put $g=D_{x}f_{(\mu)},$ $h=f_{(\mu)}D_{y}$ in each $U_{\mu}$ , the pair $(g, h)$ of the functions
$g$ and $h$ is a well-defined pair of quaternion valued functions of class $C^{\infty}$ on $\Omega$ satisfying
the condition of compatibility $gD_{y}=D_{x}h$ . Since $\Omega$ is a Son domain, there exits a function
$f$ of class $ c\infty$ on $\Omega$ such that $D_{x}f=g,$ $fD_{y}=h$ . We put $r_{(\mu)}=f_{\langle\mu)}-f$ on $U_{\mu}$ . Then,
the revised O-cochain $\{r_{\{\mu)} : \mu\in\Lambda\}\in\sigma(\mathcal{U}, \mathcal{R})$ has the l-cocycle $C$ as its coboundary. q.e. $d$ .

Theorem 2. Let $\Omega$ be a Son domain in the space $R^{8}$ of 8 real variables $x$ $:=$

$(x_{1}, x_{2}, x_{3}, x_{4})$ and $y$ $:=(y_{1}, y_{2}, y_{3}, y_{4})$ . Then, there holds $H^{1}(\Omega, Z)=0$ , if and only if,
for any functions $f_{1},$ $f_{2},$ $f_{3}$ of class $C^{\infty}$ on $\Omega$ satisfying the integmbility condition (9) $-$

(10), there exists a function $\int_{4}$ of class $C^{\infty}$ on $\Omega$ such that the quaternion valucd function
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$\int=f_{1}+f_{2}i+\int_{3}j+f_{4}h\cdot r,s$ a biregula7’ function on $\Omega$ .

Proof. Let $\mathcal{P}$ be the sheaf of gerlns of triples $(f_{1}, f_{2}, \int_{3})$ of functions $\int_{1)}f_{2},$ $f_{3}$ of
class $C^{\infty}$ ovcr $\Omega$ satisfying thc integrability condition (9) $-(10)$ . We consider thc shcaf ho-
lnolnorphisln $\mathcal{R}\ni f=\int_{1}+f_{2}l+f_{3}j+f_{\sim t}A\cdot\cdot\sim\tau_{1}(f)$ $:=(f_{1}, f_{2}, \int_{3})\in \mathcal{P}$ . Then, by (6) and
(7), the kernel of the homolnorphism $\pi$ is isolnorphic to the constant sheaf $R$ of real nulnber
field. So, we consider the inclusion $\iota$ associating, to each real nulnber $r\in R$ , the germ of
the constant functions $rk\in \mathcal{R}$ . By Theorem 1, the short exact sequence

(16) $0\rightarrow R\rightarrow \mathcal{R}\rightarrow \mathcal{P}\rightarrow 0$

of sheaves over $\Omega$ , given by the homomorphisms $\iota$ and $\pi$ , is exact and induces a long exact
sequence

(17) $H^{0}(\Omega, R)\rightarrow H^{0}(\Omega, \mathcal{R})\rightarrow H^{0}(\Omega, \mathcal{P})\rightarrow H^{1}(\Omega, R)\rightarrow H^{1}(\Omega, \mathcal{R})\rightarrow H^{1}(\Omega, \mathcal{P})$

of cohomology of $\Omega$ . Since we have $H^{1}(\Omega, \mathcal{R})=0$ by the above lemma, we have the isomor-
phism
(18) $H^{1}(\Omega, R)\cong H^{0}(\Omega, \mathcal{P})/\pi(H^{0}(\Omega, \mathcal{R}))$ .
By the universal coefficient theorem [12], $H^{1}(\Omega, R)=0$ if and only if $H^{1}(\Omega, Z)=0$ . Hence
we have the equivalence

(19) $H^{1}(\Omega, Z)=0\Leftrightarrow H^{0}(\Omega, \mathcal{P})=\pi(H^{0}(\Omega, \mathcal{R}))$ ,

what was to be proved.

3. Weak Solutions

Theorem 3. Let $\Omega$ be adomain in the space $R^{8}$ of 8real variables $x:=(x_{1}, x_{2}, x_{3}, x_{4})$

and $y:=(y_{1}, y_{2}, y_{3}, y_{4})$ with $H^{1}(\Omega, Z)=0,$ $f_{1},$ $f_{2},$ $f_{3}$ be distributions on $\Omega$ satisfying the in-
tegmbility condition (9)$-(10)$ in the sense of distribution. Then, the functions $f_{1},$ $f_{2},$ $f_{3}$ are
distributions defined by functions of class $C^{\infty}$ on $\Omega$ and there exits a function $f_{4}$ of class
$C^{\infty}$ on $\Omega$ such that the quatemion valued function $f=f_{1}+f_{2}i+f_{3}j+f_{4}k$ is a biregular
function on $\Omega$ .

Proof. In the proof of Theorem 1, we replace the sheaf $\mathcal{E}^{p}$ of germs of differential
forms of degree $p$ with coefficients real valued functions of class $C^{\infty}$ over the domain $\Omega$ by
the sheaf $\mathcal{D}^{p}$ of germs of differential forms of degree $p$ with coefficients distributions over
the domain $\Omega$ . Then, we have the other generalized Dolbeault’s isomorphism

(20) $H^{1}(\Omega, R)\cong H^{0}(\Omega, (d^{1})^{-1}(0))/d^{0}(H^{0}(\Omega, \mathcal{E}^{p}))$ ,

where $(d^{1})^{-1}(0)$ is the sheaf of germs of closed l-forms $\Sigma_{\nu=1}^{4}(g_{\nu}dx_{\nu}+h_{\nu}dy_{\nu})$ with coef-
ficients $g_{\nu},$

$h_{\nu}$ , which are distributions. By assulnption, we have $\omega\in H^{0}(\Omega, (d^{1})^{-1}(0))=$

$d^{0}(H^{0}(\Omega, \mathcal{D}^{0}))$ . Hence, there exists a distribution $f_{4}$ on $\Omega$ such that $\omega$ is its differential in
the sense of distribution. Then, we havc $\triangle_{x}\int=\overline{D_{x}}D_{x}f=0,$ $f\triangle_{y}=fD_{y}\overline{D_{y}}=0$ and each
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part $\int,$ , of $\int=\int_{1}+\int_{2}\dot{7}+\int,j+\int_{1}A$ . is a distribution on $\Omega$ which is a weak solution of thc
typical elliptic equation $(\triangle_{x}+\triangle_{y})\int_{l},$ $=$ $()$ of Laplacc. Directly by Thcoreln 7.2 of Yoshida
[14] writtcn in Japanesc or. $\iota rlorc$ prccisely. by $co\iota nbination$ of Sobolcv $s$ Lclnlna with thc
thcory of Fricdrichs [2] as is indicatcd there [14] in Japanesc. cach part $f_{l}$ , of $f$ is of class
$C^{\infty}$ on thc domain $\Omega$ and wc can apply Thcorcin 1. q.e. $d$ .
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