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A Discrete Analog of Laplace’s Differential Equations

SHIN Tong Tvu

1. Intoduction

A differential equation of the form
(azt +ba)y"(t) + (a1t + b1)y'(t) + (aot + bo)y(t) = 0 (1.1)

was studied by Laplace in his treatise "Theorie analytique des probabilities”(cf. Yosida
[4,p.53]), so that (1.1) may be called the Laplace differential equations. In a recent mono-
graph [4],Yosida gives a new treatment of (1.1) by his operational calculus method. In the
present paper, we shall study a discrete analog of the Laplace differential equation (1.1),
namely, the monodiffric difference equation of the form

2

K(z)o % + (a1 H(2) + b1) 0 % + (a0G(2) + bo) © £(2) = 0. (1.2)

We shall use the formal series method to find the general solution of (1.2). Our main
result is Theorem 2. And Theorem 2 can be applied to solve Bessel, Laguerre and Gauss
monodffric difference equations which will be introduced in Section 6.

2. Definition and Notation

For the sake of convenience,we give some definitions and notations which are mentioned
in [3]. Let C be the complex plane,

D={z € C|z=2+1iy,z and y are integers }.
DEFINITION 1. The function f: D — C is said to be monodiffric at z if
(G-1)f(z)+ f(z+13)—if(z+1)=0. (2.1)

The function f is said to be monodiffric in D if it is monodiffric at any point in D.
DEFINITION 2. The monodiffric derivative f' of f is defined by

£1() = 316 = D) + £z +1) = if(z + ). (22)

We also use the symbol “—:{- to represent f'.

DEFINITION 3. Suppose that f and g are complex-valued functions defined on D.
Letz € Dand h € {1,i,—1, —i}. The line integrals from z to z+h are defined respectively
by



z+h
/ ' f(t)dt = hf(z) ifh=1ori
’ . (2.3)
= — f(t)dt ifh=-lor —i
z+h

/”h f(t): g(t)dt = f(z + h)[g(z + h) — g(2)] ifh=1o0r1i

= - F(t) : g(t)dt ifh=-1or —1.
z+h

(2.4)

DEFINITION 4. For every z € D,the *-convolution product of monodiffric functions
f and g is defined by

(£+a)e)= [ " f(e - 1) g(t)dt. (2.5)

DEFINITION 5. A sequence of monodiffric polynomial {2(™)} is defined by

) =n [ 2D =1,2,..
z nA z z n y 2, (2.6)

= 1 n = 0.
The following definitions and notations of a formal power series will be needed in our

discussion of the solutions of (1.2).
The class of formal power series

©0
Roy ={) amn2™y";amn € C}

m=0
n=0

endowed with the usual addition and multiplication

(Z amnzmyn) + (Z bmnzmyn) = Z(amn + bmn)zmyn
(Z amnzmyn)(z bmnzmyn) = Z (Z E ak,'r bm—k,n—r )zm'y"

m=0 k=0r=0
n=0

is a ring. More precisely R,, is an integral domain. The classes of formal power series of
one variable

R, ={Z amz™;am € C}, R, ={any";bn € C}
m=0 n=0

are subrings of R,,.

Let f : 2t x zt — C and let f determined by the formal power series F(z,y) =
Y mn=o f(m,n)2™y". The relation between a formal power series and a monodiffric func-
tion,we have the following.
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THEOREM 1 [3]. Suppose
(1) f(m,n) is monodiffric at z = m + ni
(2) $1(2) = Do F(m, 0)e™
(3) ’¢f (y) = En:ﬂ f(o’ n)yn‘
Then
244 (2) — iyys(v)

z — 2y +izy —iy

F(z’y) =

Moreover,

z¢4(2) — 1+(::£1)y ¢4( 1+(::1il)y)
= . 2,
F(=,9) z— 2y +izy — 1y (2.7)

Since a monodiffric function f is uniquely determined by ¢; and evidently each monod-
iffric function determines such a ¢;,there is a one-to-one correspondence between monod-
iffric functins and the elements of the set R,.

We also need the following table (cf. Tu [3]).

Table 1

Monodiffric Functions Formal Power series
1. f(z,y)=c Ge = 7=
2. f ¢s = M’;’i@z
3. f(m) $rm = ={(1—2)"¢;

_Spn e ()1 - 2) 1)
4. fxg | $1s0 = (1= 2)bgs — 9(0)8;
5. 2(") 4 By(m) = ﬁ'—’%‘ﬁ n=0,1,2,..
6. e»* = (1+a)*(1+ ia)? Pears = T:Tl—lm |

where z =z +iy,a € C and 0 = (0,0).

3. o-convolution product of monodiffric functions

Before we solve the generalized Laplace monodiffric difference equation (1.2), we need
the following definition and results of Berzsenyi [2]. For the completeness, here, we give dif-

ferent proof which is much simpler than Berzsenyi’s proof by use of the method introduced
by the author [3].



DEFINITION 6 [2]. If f,g € M(z* x zt), then the functionf o g is given by
(fog)(z) = (f*g)(2z) +9(0)f(z), where 0 =(0,0), and fog is called the o-convolution
product of f and g. It is easy to see that (f o g)(z) is monodiffric if f(z) and g(z) are
monodiffric.

LEMMA 1. The formal power series ¢4,, relative to monodiffric function f o g is
given by

brog = (1—2)ds ;.

Proor. By definition,

B100 = Bsunyroers = D 1(F # 9)(m) + g(0) F(m)]=™

m=0

= (1-2)¢s8; — 9(0)¢1 + 9(0)¢1 = (1 — 2)¢1 ;.

ProrosITION 1 [2]. Let f,g,h € M(2* x 2*) and c € C . Then
(a) (f+g)oh=(foh)+(goh),
(b) fo(g+h)=(fog)+(foh)
(c) (cf)og=c(fog)=fo(cg).

PROOF. @(s1g)on = (1 = 2)ds146n = (1 = 2)[bs + $glén = bson + $gon. On the
other hand, @(son)+(gon) = Pfon + Pgon. Thus we have d(s45)0n = P(fon)+(gon)- Similarly,
we can prove (b) and (c).

ProPosITION 2 [2]. If f,g € M(z* x z*) then fog=go f.

ProorF. By Lemma 1,
$rog = (1 —2)¢18, and dgor = (1 —2)¢,¢5.

ProsiTioN 3 [2]. If f,gand h € M(2% x z%) then (fog)oh = fo(goh).

PROOF. @(sog)on = (1 = 2)dsogdn = (1 — 2)[(1 — 2)dsdgldn = (1 — 2)2¢; b n,
Pro(gon) = (1 — 2)Bsdgon = (1 —2)ds(1 — 2)d s = (1 — 2) s Pyn.

ProrosITION 4 [2]. If f,g € M(z* x2%*) and fog =0, then either f =0 or
g=0.

PrOOF. Since ¢yog = (1—2)dsd, =0, we haved; =0 or ¢, = 0. It follows from
Theorem 1 that f =0 or g = 0.

4. Cauchy formula in monodiffric function
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PROPOSITION 5. The monodiffric polynomia z(™ has the following relation

z(n) o z(") _ z("’+")
YRl AT

for every n,k=1,2,....

Proor.

n zh

'
Camoun = (1-2lbmdum = (- o) g oy

zn+k

BCED R
An analog of the well-known Cauchy’s formula in the continuous case

We have
ProrosiTIiON 6. If f € M(z* x z%), then for n=0,1,2,...,

z t1 tn 1
.o coodty = (n+1)),
‘/.‘ ‘/OA ) f(tn+1)dtn+1 dt1 (n T 1)' (f oz )

Proor. From (4.1) in [4],

~ z
¢f: f(t)de = 1_:—¢f'

z

Since ¢,a1) = {=s)”» We obtain ¢;.,y = (1 — 2)¢rd,0) = 2;¢5. Thus, we have

Jo F(®)dt = f oz,

Using of Propositions 3 and 5,

tn-l tu ‘n—l
/ F(tny1)dtnirdt, = / (f 0 20)(t,)dtn = (f 0 2(1)) 0 z(1)
0 0 0

(2)
_ 1 1)y _ z
--fo(z( )Oz( ))—fO—-2—|—.

tnoa ptai pta 2(2) 2(2)
/ / ftni1)dtni1dtndt,_1 = (fo —==)o 21 = fo(=o z(l))
By induction we conclude the proof.

— 47 —



5. Generalized Laplace monodiffric difference equation
We are now in position to discuss our main results.

THEOREM 2. Let k,H,g € M(z% x z%). Corresponding to the solution of the
generalized Laplace monodiffric difference equations of the form

k(z)o g + (eH(z)+b)o % +(cg(z) +d)o f(z) =0 (5.1)

with £(0) = ¢; and f'(0) = c5, its formal power series ¢4 is given by

4 = [(1 = 2)2¢s + a(1 — 2)zdg + bz]er + (1 — 2)zdyes

= (1 —_ t)3¢k + a(l - z)2z¢H + bz(l - z) + czz(l _ z)¢g T dz? . (5.2)

PRrROOF. By use of Lemma 1 and relation 3 in Table I, (5.1) becomes the following
formal power series of the form

¢hof" + a¢Hof' + bd’f’ + c¢gof + d‘l’f = 0;
(1 - 2)u 5 {(1 — 2)*4s — ca(1 = 2) — a2} + a1 — 2)pmr{(1 ~ 2)$s — 2}

F2{(1~ 2}y — ex} +e(l ~ 2)dosy +dy =0,

i.e.
[(1—2)¢n + a(l — 2)’egm + be(1 — 2) + c2’(1 — 2)¢, + dz?]¢;

=c1[(1 — 2)2¢x + a(1 — 2)zdm + bz] + (1 — z)zdxca.
Thus we obtain (5.2).

6. Bessel, Laguerre, Laplace and Gauss equation

We shall apply Theorem 2 to the cases of Bessel, Laguerre, Laplace and Gauss equation
as Corollaries.

COROLLARY 1. (The Bessel monodiffric difference equation) The equation is of the
form

2
NONLS SRNCPS. N (23 —a?) o f(z) =0 (6.1)
dz? dz

with £(0) = ¢; and f'(0) = c2, where « is a complex number.
Corresponding to its solution of (6.1),the formal power series is

by = 3(1 — z)ey + 2zc,
= (3=a?)(1=-2) + 22°

(6.2)



PROOF In (5.1), we take k(2) = 2(2), H(2) = 20, g(z) = 2®),a = c=1,b = 0 and
d = —a?. Then (5.2) becomes

PR (e )2, + (1 = 2)2d,m]er + (1 — 2)zd, ey
4 (1~=2),0) + (1 —2)22d,a) + z22(1 — 2)d,a) — a?2?’

Since 4,1y = 7%y and 4, = (12—__“’%;, we obtain
5 [2(1 — 2)%22 + (1 — 2)%22c; + 2(1 — 2)23c,
F T 1= 222 + (1 - 2)%2? + 22%(1 — 2) — a’2?(1 — 2)°
3(1 — z)ey + 2zc,
(3 — o?)(1 - 2)? + 222

COoROLLARY 2. ( The Laguerre monodiffric diference equation) The equation is of
the form P P
| z(l)o%—(z(1)+a—l)o—f+(a+)\)of(z)=0 (6.3)

with f(0) = ¢; and f'(0) = c;, where a and ) are complex numbers. Corresponding to
its solution of (6.3) the formal power series is

(= 8)z + (2 — a)]es + caz
b1 = (1-2)2—a+(2a+ A —3)z] (6.4)

ProOF. In (5.1), we take k(z) = H(z) = z(),a = =1,b =1 - a,c = 0 and

D = a+ A. Then (5.2) becomes
by = [(1—2)2d,a) — (1 — @)z, 1) + (1 — @)z]er + (1 — 2)2d,re;
1= (1-2)3¢,0 — (1 — 2)?2d, + (1 —a)2(l — 2) + (a + N)2?"

Since ¢,y = ooy Wwe have
by = [(1—2)?2—(1—2)2? + (1 —a)z(l —2)%c; + (1 — 2)zle,
T =2z —(1-2)%2? + (1 - a)2(l — 2)° + (@ + Ne?(l — 2)?
_ [(¢=3)z+2—a]es +ca2
T (1-2)2-a+ 20+ -3

Thus, we obtain (6.4).

CoROLLARY 3. (The Laplace monodiffric difference equation) The equation is of

the form
2o 3— + (az(V) +b) o + (ezV) +d)o f(z) =0 (6.5)



with f(0) = ¢; and f'(0) = c;, where a,b,c and d are complex numbers. Corresponding
to its solution of (6.5), the formal power series is
by = [b+1+(a—b—1)2]C1+sz
A=) b+1+(at+d—b-1)a| +cz*'

(6.6)

PrOOF. In (5.1), we take k(z) = H(z) = g(z) = z(1). Then (5.2) becomes

by = (1= 2)*¢,) + a(1 — @)z, 1) + bz]cy + (1 — 2)zd,(1)cs

A 2)%¢, ) +a(1 — 2)%2d,1) + b2(1 — 2) + ca?(1 — 2)¢,q) + dz?

Since bs) = sy We have
_ [(1 - 2)%2 +a(1 - 2)2? + b2(1 — 2)%]c; + (1 — 2)2%c,
T (1-2)3z+a(l—2)%2% + bz(1 — 2)% + ce3(1 — 2) + dz3(1 — 2)?
_ [b+1+4(a—b—1)z]c; +c32
T (-2)b+1l4(a+d—b—1)2] +cz?

7

Thus, Corollary 3 is proved.

COROLLARY 4. (The Gauss monodiffric difference equation) The equation is of the
form

Mo (1-ezt)o %‘I— + (h = j2M)o g- -mf(z)=0 (6.7)

with f(0) = ¢; and f (0) = c3, where e,h,j and m are complex numbers. Corresponding
to its solution of (6.7),the formal power series is

by = (1-—z)[(1+h)—(1+e+j+h)z]c1+z[1—(1+e)z]c3
1= (1-23[1+h)—(1+e+m+j+ k) '

(6.8)

PROOF. In (5.1), we take k(z) = z(V o (1 —ez(V)),qa = -5 H(z) =2, b=h,c=0
and d = —m. Then (5.2) becomes

(1 —2)’¢% — §(1 — 2)2dm + hazc; + (1 — 2)zducs
(1—2)*¢x — j(1 — 2)%2¢g + hz(1 — ) — ma?

Since k(z) = z(1) — £2(3), we have

,¢f"—'[

(1-2) (1-2)*
¢r = A=
_ (A -2)’2 —e2?(1 — 2)? — j(1 — 2)%2 + h(1 — 2)%2]c;, + [=%(1 — 2)? — (1 - 2)z3¢]c,;
(1-2)tz — (1 - 2)%% — j(1 — 2)33 + ha(l — 2)* — mz?(1 — )3
(1= )(1+h) = (1+ e+ 5+ h)ales + o1 — (1 + e)ales
1-22[(1+h)—(1+e+j+h+m)e)

)

Py
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Thus, Corollary 4 is proved.

CoROLLARY 5. (The confluent hypergeometric monpdiffric difference equation)
The equation is of the form :

2o 3 +(h—21)0 g—-f; -mf(z) =0 : (6.9)

with f(0) = ¢; and #(0) = c;, where h and m are complex numbers. Corresponding to
its solution of (6.9), the formal power series is

¢ _ [1+h—(2+h)2]01+022
T A=) I+h=(2+h+ma]

ProOF. This equation is obtained from the Gauss monodiffric difference equation
(6.7) by confluence, i.e., by letting e — 0 and j — 1. So, (6.10) is obtained immediately
from (6.8). Or, in another way, it is essentially the same as the Laguerre monodiffric
difference equation (6.3). That is, in (6.4) if we take h = 1 — @ and m = —(a + )) then
(6.4) becomes (6.10).

(6.10)

7. Applications

As for its applications to our main result, we shall define monodiffric exponential, sine
and cosine functions as follows;

DEFINITION 6. Monodiffric exponential, sine and cosine functions are defined re-
spectively as follows.

e¥* = i i:;!z(")

a2n+1,(2n+1)
sinaz = ,;(_ ) ot 1)'
e n,(2n)
cosaz—;( ) (2 T

where a is a complex number.

ProPOSITION 7. Corresponding to monodiffric exponential, sine and cosine func-
tions, their formal power series are

1 ,

beor = T (1.1)

¢sinaz = (1 — z;:_}_ alz? (7.2)
1-

¢cosaz = (1 _ 2)2 :azzz . (7-3)
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Proor.

- S e 1
beor S ITn 0 = L Ty~ T

Thus (7.1) is proved.

2n+1
¢sin¢z=¢2~ (- 1),, o2 ?"+1 Z( l)n (azl)zn.}.z)

n=0
_ az
T (1-2)% +a?e?’

Thus we obtain (7.2). Similarly we have (7.3).

This monodiffric exponential function e** = (1+a)*(1+4a)! forz=2+iyanda € C
was introduced by Issacs [1].

ExAMPLE 1. The solution of the equation

j_i —mf(z)=0  with f(0) =1 (7.4)

is give by f(z) = e™*.

PrOOF. In (5.1),we take 1 = 1,c2 = 0,k(z) = 0,H(z) = 0,9(z) = 0,b=1,c =0
and d = —m. Then (5.2) becomes

z 1

R A T (Ern i e

Therefore, we have f(z) = e™*,

ExAMPLE 2. The solution of the equation

a*f
dz?

is given by f(z) = sinmz.

+m?f(z) =0 with £(0) = 0 and f'(0) = m (7.5)

Proor. In (5.1), we take k(z) = l,a =b=c = 0,d = m%,¢; = 0 and ¢; = m.
Then (5.2) becomes
m(1 — 2)z¢,

¢ = (1-2)3¢; + m2z?’

Since ¢; = ;1=, we have ¢; = G=syirmiar: BY (7.2), &1 = dsinms ie. f(2z) = sinmaz.

Similarly, we have example 3.
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ExAMPLE 3. The solution of the equation

d*f 2 . A 1A

is given by f(2) = cos mz.
ProrosITION 8.

eia,z + e—ia,z

1 =
(1) cosaz —
eia,z _ e—ia,z

2 ] =
(2) sinaz 57

d .
(3) 7, cosaz = —asinaz

d |
(4) 7, finaz = acosaz
(5) €** =cosaz +isinaz.

PrOOF. These facts follow directly from Proposition 7.
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