The second dual of a tensor product of C*-algebras

By

Tadashi HURUYA

(Received October 1, 1971)

1. Introduction

Let f be a positive linear functional on a C*-algebra A. Then there exists a canonically associated representation $\pi_f: A \to L(H_f)$ with a cyclic vector ξ_f such that

$$f(x) = (\pi_f(x)\xi_f, \xi_f), x \in A.$$

We denote by Q(A) the set of all positive linear functional on A. Let π_A denote the representation $\sum_{f \in Q(A)} \oplus \pi_f$ of A and let H_A denote the Hilbert space $\sum_{f \in Q(A)} \oplus H_f$. The weak closure of $\pi_A(A)$ in $L(H_A)$ is *-isomorphic to the second dual A^{**} of A [3: 12. 1. 3.]. Therefore we may regard A^{**} as a W*-algebra on H_A .

Let A and B be C*-algebras, $A \otimes_{\alpha} B$ their C*-tensor product, and $A^{**} \otimes B^{**}$ the W*-tensor product of A^{**} and B^{**} [5: Theorem 1], [7: Theorem 1]. Then $\pi_A \otimes \pi_B$ is the *-isomorphism of $A \otimes_{\alpha} B$ onto $\pi_A \otimes \pi_B (A \otimes_{\alpha} B)$. Therefore $A \otimes_{\alpha} B$ may be regarded as a subalgebra of $A^{**} \otimes B^{**}$.

This paper is concerned with embedding of $A^{**} \otimes B^{**}$ in $(A \otimes_{\alpha} B)^{**}$.

2. Theorems

THEOREM Let A and B be C*-algebras. Then there exists the central projection z of $(A \otimes_{\alpha} B)^{**}$ which has the following properties:

- (a) $(A \otimes_{\alpha} B)^{**}$ z is *-isomorphic to $A^{**} \otimes B^{**}$.
- (b) For a positive linear functional f on $A \otimes_{\alpha} B$ to have the normal extension to $A^{**} \otimes B^{**}$ it is necessary and sufficient that f has the support such that $\sup p(f) \leq z$.
- (c) $A^* \otimes_{\alpha'} B^* = (A \otimes_{\alpha} B)^* z$, where $A^* \otimes_{\alpha'} B^*$ denotes the norm closure of the algebraic tensor product $A^* \otimes B^*$ of linear spaces A^* and B^* in $(A \otimes_{\alpha} B)^*$.

PROOF. Let $Q(A) \times Q(B)$ be the set of all positive linear functionals on $A \otimes_{\alpha} B$ which can be written as follows:

$$f(\sum_{i=1}^{n} x_i \otimes y_i) = f^1 \otimes f^2(\sum_{i=1}^{n} x_i \otimes y_i),$$

36 T. Huruya

for $f^1 \in Q(A)$, $f^2 \in Q(B)$, and $\sum_{i=1}^n x_i \otimes y_i \in A \otimes_{\alpha} B$.

 $H=\sum\limits_{f\in Q(A)\times Q(B)} \oplus H_f$ is invariant with respect to $\pi_{A\otimes \alpha B}$, and we denote by π the restriction of $\pi_{A\otimes \alpha B}$ to H. Then we have

$$\pi(x) = \pi_A \otimes \pi_B(x), x \in A \otimes_{\alpha} B.$$

Let $\overline{\pi}$ be the representation which is the extension of π to $(A \otimes_{\alpha} B)^{**}$. Since $\ker \overline{\pi}$ is a w*-closed two-sided ideal in $(A \otimes_{\alpha} B)^{**}$, there exists the central projection z of $(A \otimes_{\alpha} B)^{**}$ such that

$$(A \otimes_{\alpha} B)^{**} (I-z) = \ker \overline{\pi}$$
.

Then we have

$$\overline{\pi}((A \otimes_{\alpha} B)^{**} z) = A^{**} \otimes B^{**}.$$

Hence, we obtain the *-isomorphism of $(A \otimes_{\alpha} B)^{**} z$ onto $A^{**} \otimes B^{**}$ such that

$$\varphi: xz \longrightarrow \overline{\pi}(xz), xz \in (A \otimes_{\alpha} B)^{**}z.$$

By [6: Theorem 1], $(A^{**} \otimes B^{**})_*$ can be identified with $A^* \otimes_{\alpha'} B^*$. Using the *-isomorphism φ of $(A \otimes_{\alpha} B)^{**} z$ onto $A^{**} \otimes B^{**}$, we have

$$(A \otimes_{\alpha} B)^* z = A^* \otimes_{\alpha'} B^*.$$

This completes the proof.

Now, a *-isomorphism φ of $A^{**}\otimes B^{**}$ to $(A\otimes_{\alpha}B)^{**}$ is said canonical if $\varphi^{-1}(x)=\pi_A\otimes\pi_B(x)$, $x\in A\otimes_{\alpha}B$.

COROLLARY. $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$ if and only if every positive linear functional on $A \otimes_{\alpha} B$ has the normal extension to $A^{**} \otimes B^{**}$.

PROOF. Suppose that every positive linear functional on $A \otimes_{\alpha} B$ has the normal extension to $A^{**} \otimes B^{**}$. From (b) of Theorem, the central projection z is the identity of $(A \otimes_{\alpha} B)^{**}$, and $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$.

Conversely, suppose that there exists a canonically *-isomorphism φ from $A^{**} \otimes B^{**}$ onto $(A \otimes_{\alpha} B)^{**}$. For a positive linear functional f on $A \otimes_{\alpha} B$, we have

$$f(\sum_{i=1}^{n} x_i \otimes y_i) = \tilde{f}(\varphi(\sum_{i=1}^{n} x_i \otimes y_i)), \quad x_i \in A, \ y_i \in B,$$

where \tilde{f} denotes the normal extension of f to $(A \otimes_{\alpha} B)^{**}$.

Then the linear functional: $x \longrightarrow \tilde{f}(\varphi(x))$ may be regarded as the normal extension of f to $A^{**} \otimes B^{**}$. This completes the proof.

3. Examples

Wwe consider a case of dual C*-algebras. We begin with the following definition.

Let A be a C*-algebra that does not necessarily contain a unit element. A projection $P \in A^{**}$ is open if there exists a net $\{a_{\alpha}\} \subset A$ such that $0 \le a_{\alpha} \uparrow P$. If P is open, we say P' = I - P is closed [1: Definition II. 1]. As [1: Proposition II. 2], a projection $P \in A^{**}$ is closed if and only if P supports a weak* closed left invariant subspace in A^* .

In case A is a dual C*-algebra, by [2: Theorem II. 5] A is a two-sided ideal in A^{**} . Hence every projection $P \in A^{**}$ is open and closed.

Lemma. Let A and B be dual C*-algebras. Then $A \otimes_{\alpha} B$ is a dual C*-algebra.

PROOF. Let \widehat{C} denote the spectrum of any C*-algebra C [3: 2. 9. 7., 3. 1. 5.].

Since A and B are dual C*-algebras, \widehat{A} and \widehat{B} are discrete, and there exists the homeomorphism $(\pi \times \nu) \longrightarrow \pi \otimes \nu$ of $\widehat{A} \times \widehat{B}$ onto $(A \otimes_{\alpha} B)^{\wedge}$. Hence, $(A \otimes_{\alpha} B)^{\wedge}$ is discrete, and every irreducible representation of $A \otimes_{\alpha} B$ is a compact one.

Let π_t be any element of the equivalence class $t \in (A_\alpha \otimes B)^{\hat{}}$. Then a representation $\sum_{t \in (A \otimes \alpha B)^{\hat{}}} \pi_t$ of $A \otimes_{\alpha} B$ is faithful.

Let ε be a positive number, and x an element in $A \otimes_{\alpha} B$. By [3: 3. 3. 7.], $\{t \in (A \otimes_{\alpha} B)^{\wedge} | \|\pi_t(x)\| \ge \varepsilon\}$ is compact, i. e. it consists of finite elements. Consequently, $A \otimes_{\alpha} B$ is a dual C*-algebra.

Example Let A and B be dual C*-algebras. Then $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$.

PROOF. Since $A*\otimes_{\alpha'}B^*$ is invariant, there exists the central projection z such that

$$A^* \bigotimes_{\alpha'} B^* = (A \bigotimes_{\alpha} B)^* z.$$

Since $A \otimes_{\alpha} B$ is a dual C*-algebra, z is closed. Hence $(A \otimes_{\alpha} B)^* z$ is the weakly *-closed subspace of $(A \otimes_{\alpha} B)^*$.

On the other hand, $A^* \bigotimes_{\alpha'} B^*$ is the weakly *-dense subset of $(A \bigotimes_{\alpha} B)^*$. Therefore, we have

$$(A \bigotimes_{\alpha} B)^* = (A \bigotimes_{\alpha} B)^* z.$$

Now we get

$$(A \bigotimes_{\alpha} B)^* = A^* \bigotimes_{\alpha'} B^*.$$

By Theorem, $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$.

NIIGATA UNIVERSITY

References

- 1 C. A. Akemann: The general Stone-Weierstrass problem. J. Functional Anal., 4(1969), 277-298.
 2. Left ideal structure of C*-algebras. J. Functional Anal., 6 (1970), 305-317.
- 3. J. DIXMIER: Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris, 1964.
- 4. J. GLIMM: On a certain class of operator algebras. Trans. Amer. Math. Soc., 95 (1960), 318-340.
- 5. T. Turumaru: On the direct-product of operator algebras I. Tôhoku Math. J., 4(1952), 242-251.
- 6. ———: On the direct-product of operator algebras III. Tôhoku Math. J. 6(1954), 208-211.
- 7. A. Wulfsohn: Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.