The second dual of a tensor product of C*-algebras By ## Tadashi HURUYA (Received October 1, 1971) ## 1. Introduction Let f be a positive linear functional on a C*-algebra A. Then there exists a canonically associated representation $\pi_f: A \to L(H_f)$ with a cyclic vector ξ_f such that $$f(x) = (\pi_f(x)\xi_f, \xi_f), x \in A.$$ We denote by Q(A) the set of all positive linear functional on A. Let π_A denote the representation $\sum_{f \in Q(A)} \oplus \pi_f$ of A and let H_A denote the Hilbert space $\sum_{f \in Q(A)} \oplus H_f$. The weak closure of $\pi_A(A)$ in $L(H_A)$ is *-isomorphic to the second dual A^{**} of A [3: 12. 1. 3.]. Therefore we may regard A^{**} as a W*-algebra on H_A . Let A and B be C*-algebras, $A \otimes_{\alpha} B$ their C*-tensor product, and $A^{**} \otimes B^{**}$ the W*-tensor product of A^{**} and B^{**} [5: Theorem 1], [7: Theorem 1]. Then $\pi_A \otimes \pi_B$ is the *-isomorphism of $A \otimes_{\alpha} B$ onto $\pi_A \otimes \pi_B (A \otimes_{\alpha} B)$. Therefore $A \otimes_{\alpha} B$ may be regarded as a subalgebra of $A^{**} \otimes B^{**}$. This paper is concerned with embedding of $A^{**} \otimes B^{**}$ in $(A \otimes_{\alpha} B)^{**}$. #### 2. Theorems THEOREM Let A and B be C*-algebras. Then there exists the central projection z of $(A \otimes_{\alpha} B)^{**}$ which has the following properties: - (a) $(A \otimes_{\alpha} B)^{**}$ z is *-isomorphic to $A^{**} \otimes B^{**}$. - (b) For a positive linear functional f on $A \otimes_{\alpha} B$ to have the normal extension to $A^{**} \otimes B^{**}$ it is necessary and sufficient that f has the support such that $\sup p(f) \leq z$. - (c) $A^* \otimes_{\alpha'} B^* = (A \otimes_{\alpha} B)^* z$, where $A^* \otimes_{\alpha'} B^*$ denotes the norm closure of the algebraic tensor product $A^* \otimes B^*$ of linear spaces A^* and B^* in $(A \otimes_{\alpha} B)^*$. PROOF. Let $Q(A) \times Q(B)$ be the set of all positive linear functionals on $A \otimes_{\alpha} B$ which can be written as follows: $$f(\sum_{i=1}^{n} x_i \otimes y_i) = f^1 \otimes f^2(\sum_{i=1}^{n} x_i \otimes y_i),$$ 36 T. Huruya for $f^1 \in Q(A)$, $f^2 \in Q(B)$, and $\sum_{i=1}^n x_i \otimes y_i \in A \otimes_{\alpha} B$. $H=\sum\limits_{f\in Q(A)\times Q(B)} \oplus H_f$ is invariant with respect to $\pi_{A\otimes \alpha B}$, and we denote by π the restriction of $\pi_{A\otimes \alpha B}$ to H. Then we have $$\pi(x) = \pi_A \otimes \pi_B(x), x \in A \otimes_{\alpha} B.$$ Let $\overline{\pi}$ be the representation which is the extension of π to $(A \otimes_{\alpha} B)^{**}$. Since $\ker \overline{\pi}$ is a w*-closed two-sided ideal in $(A \otimes_{\alpha} B)^{**}$, there exists the central projection z of $(A \otimes_{\alpha} B)^{**}$ such that $$(A \otimes_{\alpha} B)^{**} (I-z) = \ker \overline{\pi}$$. Then we have $$\overline{\pi}((A \otimes_{\alpha} B)^{**} z) = A^{**} \otimes B^{**}.$$ Hence, we obtain the *-isomorphism of $(A \otimes_{\alpha} B)^{**} z$ onto $A^{**} \otimes B^{**}$ such that $$\varphi: xz \longrightarrow \overline{\pi}(xz), xz \in (A \otimes_{\alpha} B)^{**}z.$$ By [6: Theorem 1], $(A^{**} \otimes B^{**})_*$ can be identified with $A^* \otimes_{\alpha'} B^*$. Using the *-isomorphism φ of $(A \otimes_{\alpha} B)^{**} z$ onto $A^{**} \otimes B^{**}$, we have $$(A \otimes_{\alpha} B)^* z = A^* \otimes_{\alpha'} B^*.$$ This completes the proof. Now, a *-isomorphism φ of $A^{**}\otimes B^{**}$ to $(A\otimes_{\alpha}B)^{**}$ is said canonical if $\varphi^{-1}(x)=\pi_A\otimes\pi_B(x)$, $x\in A\otimes_{\alpha}B$. COROLLARY. $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$ if and only if every positive linear functional on $A \otimes_{\alpha} B$ has the normal extension to $A^{**} \otimes B^{**}$. PROOF. Suppose that every positive linear functional on $A \otimes_{\alpha} B$ has the normal extension to $A^{**} \otimes B^{**}$. From (b) of Theorem, the central projection z is the identity of $(A \otimes_{\alpha} B)^{**}$, and $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$. Conversely, suppose that there exists a canonically *-isomorphism φ from $A^{**} \otimes B^{**}$ onto $(A \otimes_{\alpha} B)^{**}$. For a positive linear functional f on $A \otimes_{\alpha} B$, we have $$f(\sum_{i=1}^{n} x_i \otimes y_i) = \tilde{f}(\varphi(\sum_{i=1}^{n} x_i \otimes y_i)), \quad x_i \in A, \ y_i \in B,$$ where \tilde{f} denotes the normal extension of f to $(A \otimes_{\alpha} B)^{**}$. Then the linear functional: $x \longrightarrow \tilde{f}(\varphi(x))$ may be regarded as the normal extension of f to $A^{**} \otimes B^{**}$. This completes the proof. ## 3. Examples Wwe consider a case of dual C*-algebras. We begin with the following definition. Let A be a C*-algebra that does not necessarily contain a unit element. A projection $P \in A^{**}$ is open if there exists a net $\{a_{\alpha}\} \subset A$ such that $0 \le a_{\alpha} \uparrow P$. If P is open, we say P' = I - P is closed [1: Definition II. 1]. As [1: Proposition II. 2], a projection $P \in A^{**}$ is closed if and only if P supports a weak* closed left invariant subspace in A^* . In case A is a dual C*-algebra, by [2: Theorem II. 5] A is a two-sided ideal in A^{**} . Hence every projection $P \in A^{**}$ is open and closed. Lemma. Let A and B be dual C*-algebras. Then $A \otimes_{\alpha} B$ is a dual C*-algebra. PROOF. Let \widehat{C} denote the spectrum of any C*-algebra C [3: 2. 9. 7., 3. 1. 5.]. Since A and B are dual C*-algebras, \widehat{A} and \widehat{B} are discrete, and there exists the homeomorphism $(\pi \times \nu) \longrightarrow \pi \otimes \nu$ of $\widehat{A} \times \widehat{B}$ onto $(A \otimes_{\alpha} B)^{\wedge}$. Hence, $(A \otimes_{\alpha} B)^{\wedge}$ is discrete, and every irreducible representation of $A \otimes_{\alpha} B$ is a compact one. Let π_t be any element of the equivalence class $t \in (A_\alpha \otimes B)^{\hat{}}$. Then a representation $\sum_{t \in (A \otimes \alpha B)^{\hat{}}} \pi_t$ of $A \otimes_{\alpha} B$ is faithful. Let ε be a positive number, and x an element in $A \otimes_{\alpha} B$. By [3: 3. 3. 7.], $\{t \in (A \otimes_{\alpha} B)^{\wedge} | \|\pi_t(x)\| \ge \varepsilon\}$ is compact, i. e. it consists of finite elements. Consequently, $A \otimes_{\alpha} B$ is a dual C*-algebra. Example Let A and B be dual C*-algebras. Then $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$. PROOF. Since $A*\otimes_{\alpha'}B^*$ is invariant, there exists the central projection z such that $$A^* \bigotimes_{\alpha'} B^* = (A \bigotimes_{\alpha} B)^* z.$$ Since $A \otimes_{\alpha} B$ is a dual C*-algebra, z is closed. Hence $(A \otimes_{\alpha} B)^* z$ is the weakly *-closed subspace of $(A \otimes_{\alpha} B)^*$. On the other hand, $A^* \bigotimes_{\alpha'} B^*$ is the weakly *-dense subset of $(A \bigotimes_{\alpha} B)^*$. Therefore, we have $$(A \bigotimes_{\alpha} B)^* = (A \bigotimes_{\alpha} B)^* z.$$ Now we get $$(A \bigotimes_{\alpha} B)^* = A^* \bigotimes_{\alpha'} B^*.$$ By Theorem, $A^{**} \otimes B^{**}$ is canonically *-isomorphic to $(A \otimes_{\alpha} B)^{**}$. NIIGATA UNIVERSITY ### References - 1 C. A. Akemann: The general Stone-Weierstrass problem. J. Functional Anal., 4(1969), 277-298. 2. Left ideal structure of C*-algebras. J. Functional Anal., 6 (1970), 305-317. - 3. J. DIXMIER: Les C*-algèbres et leurs représentations. Gauthier-Villars, Paris, 1964. - 4. J. GLIMM: On a certain class of operator algebras. Trans. Amer. Math. Soc., 95 (1960), 318-340. - 5. T. Turumaru: On the direct-product of operator algebras I. Tôhoku Math. J., 4(1952), 242-251. - 6. ———: On the direct-product of operator algebras III. Tôhoku Math. J. 6(1954), 208-211. - 7. A. Wulfsohn: Produit tensoriel de C*-algèbres. Bull. Sci. Math., 87 (1963), 13-27.