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1. Introduction

In this paper, we consider the dimension of a compact connected group $G$ which acts
on a space $X$ effectively. In [1], L. N. Mann treated of the case where $G$ acts on $X$ tran-
sitively. We shall try to generalize this result when $G$ acts on $X$ not necessary transi-
tively. The proof of our result is based on the property of a slice on the G-space.

Throughout this paper, all transformation groups are metrizable and all spaces are
cohomology manifolds over a characteristic O-field $K$

The author wishes to thank Prof. K. Aoki and Prof. T. Watabe for their kind en-
couragements and advices.

2. Some propositions

For a G-space $X,$ $H$ and $X_{(H)}$ denote a principal isotropy subgroup and the set of all
principal orbits of this action respectively (see [2]).

If $X$ is a finite dimensional G-cohomology manifold over $K$ and $x\in X$, there exists
a slice at $x$ which is also a cohomology manifold. Following propositions have been
proved when $X$ is a differentiable G-manifold. Combining the methods in [3, p. 6] and
[2, p. 121, lemm 3. 2], and those results can be gengralized when $X$ is a G-space similarly.

In this section we assume that $G$ is a compact connected Lie group which acts on an
connected n-cm $X$ over $K$ effectively.

PROPOSITIONI (cf. [4] p. 9). $IfG_{x}(x\epsilon X)$ is connected, $X(H)$ is open dence in X
Let $X$be an n-dimensional G-space. Using Proposition 1, we have following proposition.

PROPOSITION 2 (cf. [4] p. 12). Let $X$ be an effective G-space, then we have $dimG\leqq n(n+$

$1)/2$ .

PROPOSITION 3 (cf. [5]). If the dimension on $G$ falls into one of the ranges $(n-k)(n-k$

$+1)/2+k(k+1)/2<dimG<(n-k+1)(n-k+2)/2(k=1,2,\ldots\ldots\ldots)$ , then there exist only

three possibilities:
(1) $n=4,$ $G\sim SU(3)$ and $X\approx P^{2}(C)$ .
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(2) $n=6,$ $G\simeq G_{2}$ and $X\approx S^{6}$ or $P^{6}(R)$ .
(3) $n=10,$ $G\sim SU(6)$ and $X\approx P^{5}(C)$ .

where all the above actions are transitive. The notations $\sim,$ $\simeq and\approx imply$ locally isomor-
phic, isomorphic and homeomorphic respectively.

3. Main theorems

In this section $G$ denotes a compact connected group (not necessary a Lie group).

We try to generalize some results for differentiable G-action in the case of continuous
G-action.

THEOREM 1. For a compact connected finite dimensional group $G$, Proposition 3 also
holds.

PROOF. There exists a O-dimensional central subgroup $F$ of $G$ such that $G/F$ is a Lie
group (see [6, Chapt. 91). By [3, Theorem 11, $X/F$ is an n-cm over $K$. Then it is easy
to check the action:

$G/F\times X/F\rightarrow X/F$

is an almost effective action. By Proposion 3, $G/F$ is a simple Lie group.
Let $G^{*}=A\times G_{1}$ be a finite covering of $G$ such that $A$ is a compact connected abelian

group and $G_{1}$ is a compact connected simply connected semi simple Lie group. Since $G/F$

is a simple Lie group, $A$ is a trivial factor. Considering the proof of [6, Example 74],

it is easy to see that $G$ is a Lie group. The proof of Theorem 1 is reduced to that of
Proposition 3.

L. N. Mann considered dimensions of compact groups which act on spaces transitively
and effectively [11. By the above results, we can remove the assumption ”transitively”
with somewhat difference from his conclusion.

THEOREM 2. Let $G$ be a finite dimensional compact connected group which acts on an
n-cm $X$ over $K$ effectively. If $dimG>(n-2)(n-1)/2+2$, then one of the following holds.

(1) GisaLiegroup andX isamanifold,

(2) $dimG=n(n-1)/2+1$ and $G\sim A^{1}\times Spin(n)$ ,
(3) $n=5$ and $G\sim A^{1}\times SU(3)$ ,

(4) $dimG=n(n-1)/2$ and $G\sim Spin(n)$ ,

where $A^{1}$ is a l-dimensional compact connected group.

PROOF. Similarly as the case of the proof of Theorem 1, suppose that $G^{*}=A\times G_{1}$ is
the finite covering of $G$ and $F$ is a o-dimensional subgroup of $G$. Further we can choose
$T^{q}\times G_{1}$ as a finite covering of $G/F$ where $T^{q}$ is a q-dimensional toral group. It is easy to
see that $(T^{q}\times G_{1})\times X/F\rightarrow X/F$ is an almost effective action. Let $H$ be a principal iso-
tropy subgroup of this action. Set $X_{1}=(T\times G_{1})/H$
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Let $G_{x}$ be an isotropy subgroup of $x$ such that $G/G_{x}\cdot F=X_{1}$ . Then $G_{x}\cdot F/F$ is a princi-
pal isotropy subgroup of the action: $G/F\times X/F\rightarrow X/F$. By a result in [6, Chapt. 7], we
have $\dim G/G_{x}\cdot F=\dim G/G_{x}=\dim X_{1}$ . From the definition of $H$, it follows that $H/K$ is
also a principal isotropy subgroup of this action, where $K$ is a finite subgroup of $T^{q}\times G_{x}$

such that $T^{q}\times G_{1}/K=G/F$. Therefore we have

$\dim X_{1}=\dim T^{q}\times G_{1}-\dim H=\dim G/F-\dim H/K=\dim G/G_{x}\cdot F$

Since the action: $G_{1}\times X_{1}/T^{q}\rightarrow X_{1}/T^{q}$ is an almost effective action, Proposition 2
concludes that

$\dim(i\leqq(\dim X_{1}-q)(\dim X_{1}-q+1)/2$.
Therefore we have

$(*)$ $\dim G\leqq(\dim X_{1}-q)(\dim X_{1}-q+1)/2+q$.
Combining the assumption of $\dim G$, Proposition 3 and $(*)$ , we have following five

possibilities:
(I) $\dim X_{1}=n$

(a) $\dim G=n(n+1)/2$,
(b) $\dim G=n(n-1)/2+1$,
(c) $\dim G=n(n-1)/2$,
(d) $\dim G=(n-1)(n-2)/2+3$,

(II) $\dim X_{1}=n-1$

(e) $\dim G=n(n-1)/2$,
Next, we investgate the above cases.
Case (I):

Using the slice theorem one can deduce from $\dim X_{1}=\dim X/F$ that $X_{1}=X/F$, and
hence the action is transitive.

(a) $(*)$ implies that
$n(n+1)/2\leqq(n-q)(n-q+1)/2+q$,

and hence we have $q^{2}+q-2nq\geq 0$ .
Since $T^{q}$ acts $mX$ almost effectively, we have $n\geqq q$. Then we have following two

possibilities :
$(a. 1)$ $q=0$ .
$G$ is a Lie group and hence we have possibility (1).
$(a. 2)$ $q=1$ .
We can deduce from $n=1$ that $G\sim A^{1}$, and this is contrary to our hypothesis.
(b) Similarly $(*)$ implies $q\leqq 2$ .
$(b. 1)$ $q=0$ .
We have possibility (1).
$(b. 2)$ $q=1$ .
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The action: $G_{1}\times X_{1}/T^{1}\rightarrow X_{1}/T^{1}$ is an almost effective action. Since $\dim G_{1}=n(n-$

$1)/2$ and $\dim X/T^{1}=n-1$, we shall prove in Theorem 3 that $G_{1}\sim Spin(n)$ . So we have
possibility (2).

$(b. 3)$ $q=2$ .
It is easy to see that this is contrary to our hypothesis.
(c) $(*)$ implies $q\leqq 3$ .
$(c. 1)$ $q=0$.
$(c. 2)$ $q=1$ .
Since the action: $G_{1}\times X_{1}/T^{1}\rightarrow X_{1}/T^{1}$ is an almost effective action, it follows from

Proposition 3 that $n\leqq 2$ . Therefore $n=2$, but this is contradiction to $X/F=X_{1}$ .
$(c. 3)$ $q=2$ .
Similar to $(c. 2)$ , it can be showed.
$(c. 4)$ $q=3$ .
Since $n=3$ , this is contrary to our hypothesis.
(d) $(*)$ implies $q\leqq 1$ .
$(d. 1)$ $q=0$.
$(d. 2)$ $q=1$ .
Combining Proposition 3 and $(*)$ , we have $n=5$ and $G_{1}\sim SU(3)$ . Therefore we have

possibility (3).

Case (II):

(e) Since $T^{q}\times X_{1}\rightarrow X_{1}$ is an almost effective action, we have $n\geq q+1$ . Then
$(*)q\leqq 1$ .

$(e. 1)$ $q=0$ .
We shall prove in Theorem 3 that $G_{1}\sim Spin(n)$ , and hence we have possibilities (4).

$(e. 2)$ $q=1$ .
Since $n\leqq 2$, this is contradiction.
This $\omega mpletes$ the proof of Theorem 2.
If we use the above discussion, we have an extension of L. P. Eisenhalt [7] in the

case of compact topological group.

THEOREM 3 Let $G$ be an $n(n+1)/2$ dinensional compact connected group which acts on
an n-cm $X$ over $K$ effectively. Then we have $G\sim Spin(n+1)$ or $A^{1}$, and if $n$ is even $X\approx S^{n}$

or $P^{n}(R)$ .

PROOF. (I) In the case where $G$ is a Lie group.
With the same notation and similar computation as Theorem 2 we have

$\dim G\leqq(n-q)(n-q+1)/2+q$.

This implies that $q\leqq 1$, and hence we have following two possibilities.
(I. 1) $q=1$ .
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Since $n=1$ , we have $G=T^{1}$ and $X=S^{1}$ .
(I. 2) $q=0$ .
We require here following lemma [5].

LEMMA. There are integers $t_{1},$ $t_{2},\ldots\ldots,$ $t_{s}$ such that
(1) $G=G_{1}\times c_{2}\times\ldots\ldots\times G_{S}whereG_{1}isasimpleLiegrouporSpin(4)$ ,
(2) $\dim G;\leqq(t;+1)t;/2$ and $t_{1}+t_{2}+\ldots\ldots+t_{S}\leqq t$, where $t=dimension$ of the princi-

pal orbit.
Since $\dim G=n(n+1)/2$, there exists some $t;=n$ and the other $tj=0(j\neq i)$ . Then we

have $G=G;$ . By L. N. Mann’s list [5], such $G$; is locally isomorphic to Spin$(n+1)$ .
Let $H$ be a principal isotropy subgroup of the action, and $H_{1}$ be identity component of

$H$ Set $X_{1}=Spin(n+1)/H_{1}$ . Since the dimension of the maximal subgroup of Spin$(n+1)$

is $n(n-1)/2$, we have $\dim H_{1}=n(n-1)/2$ . Hence $H_{1}=Spin(n)$ and $X_{1}=S^{n}$. By a result
in [8], $X_{1}$ is a covering space of $X$ and the order of this covering is one or two when $n$ is
even. So we have $X=S^{n}$ or $P^{n}(R)$ .

(II) In the case where $G$ is a compact group.
Let $F$ be the O-dimensional subgroup of $G$ such that $G/F$ is a Lie group.

$G/F\times X/F\rightarrow X/F$

is an action of a Lie group, and hence it is easy to show that this is reducible to the
case (I).
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