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1. Introduction

In this paper, we consider the dimension of a compact connected group G which acts
on a space X effectively. In[17, L. N. Mann treated of the case where G acts on X tran-
sitively. We shall try to generalize this result when G acts on X not necessary transi-
tively. The proof of our result is based on the property of a slice on the G-space.

Throughout this paper, all transformation groups are metrizable and all spaces are
cohomology manifolds over a characteristic 0-field K.

The author wishes to thank Prof. K. Aoki and Prof. T. Watabe for their kind en-
couragements and advices.

2. Some propositions

For a G-space X, H and X(; denote a principal isotropy subgroup and the set of all
principal orbits of this action respectively (see [2]).

If X is a finite dimensional G-cohomology manifold over K and x&X, there exists
a slice at x which is also a cohomology manifold. Following propositions have been
proved when X is a differentiable G-manifold. Combining the methods in [3, p. 6] and
[2, p. 121, lemm 3. 2], and those results can be gengralized when X is a G-space similarly.

In this section we assume that G is a compact connected Lie group which acts on an
connected n-cm X over K effectively.

ProposiTiON 1 (cf. [4]p. 9). If Gx (weX) is connected, Xz is open dence in X.
Let X be an n-dimensional G-space. Using Proposition 1, we have following proposition.

ProposITION 2 (cf. [4]p.12). Let X be an effective G-space, then we have dim G=n(n-
/2.
ProrosiTioN 3 (cf.[5]). If the dimension on G falls into one of the ranges (n—k)(n—k
+1)/24+k(k4-1)/2<dim G<(n—k+1D)(n—k+2)/2 (k=1, 2,......... D), then there exist only
three possibilities:

(1) n=4, G~SU (3) and X~P2(C).
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(2) n=6, G=G, and X~S6 or P8 (R).

(3) n=10, G~SU (6) and X~P5 (C).
where all the above actions are transitive. The notations ~, ~ and ~ imply locally isomor-
phic, isomorphic and homeomorphic respectively.

3. Main theorems

In this section G denotes a compact connected group (not necessary a Lie group).
We try to generalize some results for differentiable G-action in the case of continuous
G-action.

THEOREM 1. For a compact connected finite dimensional group G, Proposition 3 also
holds.

Proor. There exists a O-dimensional central subgroup F of G such that G/F is a Lie
group (see [ 6, Chapt. 91). By [3, Theorem 1], X/F is an n-cm over K. Then it is easy
to check the action:

G/FxX|F—>X|F

is an almost effective action. By Proposion 3, G/F is a simple Lie group.

Let G*=A X G; be a finite covering of G such that A is a compact connected abelian
group and G; is a compact connected simply connected semi simple Lie group. Since G/F
is a simple Lie group, A is a trivial factor. Considering the proof of [6, Example 747,
it is easy to see that G is a Lie group. The proof of Theorem 1 is reduced to that of
Proposition 3.

L. N. Mann considered dimensions of compact groups which act on spaces transitively
and effectively [1]. By the above results, we can remove the assumption “transitively”
with somewhat difference from his conclusion.

THEOREM 2. Let G be a finite dimensional compact connected group which acts on an
n-cm X over K effectively. If dim G>(n—2)(n—~1) /242, then one of the following holds.
(1) Gis a Lie group and X is a manifold,
(2) dim G=n(n—1)/2+1 and G~A1X Spin(n),
(@) n=5and G~A*xSU(3),
4 dim G=n(n—1)/2 and G~Spin(n),
where Al is a 1-dimensional compact connected group.

Proor. Similarly as the case of the proof of Theorem 1, suppose that G¥*=A x G; is
the finite covering of G and F is a o-dimensional subgroup of G. Further we can choose
Tax Gy as a finite covering of G/F where T4 is a g-dimensional toral group. It is easy to
see that (T¢x Gy) X X/F—X|/F is an almost effective action. Let H be a principal iso-
tropy subgroup of this action. Set X;=(TXx Gy)/H.
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Let Gx be an isotropy subgroup of x such that G/Gx+F=X;. Then Gx+F/F is a princi-
pal isotropy subgroup of the action: G/FxX/F—>X/F. By a resultin [6, Chapt. 7], we
have dim G/Gz+F=dim G/Gx=dim X;. From the definition of H, it follows that H/K is
also a principal isotropy subgroup of this action, where K is a finite subgroup of 77X Gx
such that 79X G;/K=G/F. Therefore we have

dim Xj=dim T9X G;—dim H=dim G/F—dim H/K=dim G/Gz*F

Since the action: G;xX;/T9—X;/T7 is an almost effective action, Proposition 2
concludes that

dim G=({dimX;—¢)(dim X;—q-+1)/2.
Therefore we have
() dim G=(dim X;—¢)(dim X;—q+1)/2+q.

Combining the assumption of dim G, Proposition 3 and (x), we have following five
possibilities:
(ID) dim Xj=n
(a) dim G=n(r+1)/2,
(b)) dim G=n(n—1)/2+1,
(c) dim G=n(n—1)/2,
(d) dim G=(m—1)(n—2)/2+3,
() dim Xj=#»n-—1
(e) dim G=n(n—1)/2,
Next, we investgate the above cases.
Case (I):
Using the slice theorem one can deduce from dim X;=dim X/F that X;=X/F, and
hence the action is transitive.
(a) () implies that
n(n+1D/2=(n—@(n—qg+1)/2+q,
and hence we have g2+ ¢g—2ng>0.
Since T¢ acts on X almost effectively, we have n=¢q. Then we have following two
possibilities:
(@. 1) g=0.
G is a Lie group and hence we have possibility (1).
(@.2) g=1.
We can deduce from #=1 that G~A1, and this is contrary to our hypothesis.
(b) Similarly (%) implies g=<2.
(b.1) ¢=0.
We have possibility (1).
(b.2) g¢g=L
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The action: Gy xX;/T'—X; /T is an almost effective action. Since dim G;=n(n—
1)/2 and dim X/T1=n—1, we shall prove in Theorem 3 that G;~Spin(n). So we have
possibility (2).

(b.3) g¢g=2.

It is easy to see that this is contrary to our hypothesis.

(c) (®) implies ¢<3.

(c.1) ¢=0. |

(c.2) g=1.

Since the action: G;xX;/T1—X;/T?! is an almost effective action, it follows from
Proposition 3 that n<<2. Therefore »=2, but this is contradiction to X/F=Xj.

(c.3) ¢g=2.

Similar to (c. 2), it can be showed.

(c. ) g=3.

Since n=3, this is contrary to our hypothesis.

(d) (x implies ¢<1.

(d.1) g=0.

2 g=L

Combining Proposition 3 and (*), we have n=5 and G;~SU(3). Therefore we have
possibility (3).

Case (ID):

(e) Since TexX;—>X; is an almost effective action, we have n>>¢g+1. Then
0 ¢=1.

(e. 1) g=0.

We shall prove in Theorem 3 that G;~Spin(n), and hence we have possibilities (4).

(e.2) q=L

Since #n=<2, this is contradiction.

This completes the proof of Theorem 2.

If we use the above discussion, we have an extension of L. P. Eisenhalt [7] in the
case of compact topological group.

THEOREM 3 Let G be an n(n+1) /2 dinensional compact connected group which acts on
an n-cm X over K effectively. Then we have G~Spin(n+1) or Al, and if n is even X~Sn
or P»(R).

Proor. (1) In the case where Gis a Lie group.
With the same notation and similar computation as Theorem 2 we have

dim GE=(n—q@)(n—q+1)/2+q.

This implies that ¢<1, and hence we have following two possibilities.

A1 g=1
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Since n=1, we have G=T"1! and X=S1.

d.2) g=0.
We require here following lemma [5].

LemMma. There are integers #4, #o,...... , ts such that
(D G=G1XGyX ...... X Gs where G, is a simple Lie group or Spin(4),
(2) dim Gi=({ti+1)ti/2 and t+t+...... +ts§i, where ¢=dimension of the princi-
pal orbit.
Since dim G=n(n-+1)/2, there exists some #;=# and the other #;=0(==i). Then we
have G=G;. By L. N. Mann’s list [ 5], such G: is locally isomorphic to Spin(n-+1).
Let H be a principal isotropy subgroup of the action, and H; be identity component of
H. Set X;=Spin(n+1)/H;. Since the dimension of the maximal subgroup of Spin(n-+1)
is n(n—1)/2, we have dim H;=#n(n—1)/2. Hence Hy=Spin(n) and X;=S». By a result
in[8], Xjisa coverihg space of X and the order of this covering is one or two when # is
even. So we have X=S7 or P»(R).
(II) In the case where G is a compact group.
Let F be the O-dimensional subgroup of G such that G/F is a Lie group.

G/FxX|F—>X|F

is an action of a Lie group, and hence it is easy to show that this is reducible to the
case (D).
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