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1. Introduction

The purpose of this note is to prove the following
THEOREM. Let $G$ be a compact connected Lie group. If $G$ acts on $X=SO(n)/SO(2)$ con-
tinuously, transitively and irreducibly, then $G$ is locally isomorphic to $SO(n)$ and isotropy
subgroup is $SO(2)$ .

This work was stimulated by the work of W. Y. Hsiang and J. C. Su [1]. They have
proved that if $(n, k)$ satisfies some conditions, which exclude the case $k=2$, the standard
action $(SO(n), SO(k),$ $SO(n)/SO(k))$ is the only effective and irreducible transitive action
on $SO(n)/SO(k)$ . We do not know whether in our case isotropy subgroup is conjugate to
the standardly embedded $SO(2)$ .

2. Statement of result8

We consider a transitive action (continuous) of a compact connected Lie group $G$

on $X=SO(n)/SO(2)$ with isotropy subgroup $H$ A transitive action of $G$ is said to be
irreducible when no proper normal subgroup of $G$ acts transitively. Recall that given a
compact connected Lie group $G$, one can always write $G=T^{r}\times G_{1}\times\ldots\ldots\times G_{s}/N$, where $T^{r}$

is r.dimensitional torus, $G_{i^{\prime}}s$ are simply connected simple Lie groups and $N$ is a finite
normal subgroup of $G^{*}=T^{r}\times G_{1}\times\ldots\ldots\times G_{s}$ . Let $p;G^{*}\rightarrow G$ the canonical projection.
Then $G^{*}$ acts transitively on $X$ in a natural way with isotropy subgroup $H^{-}=p^{-1}(H)$ .
Since $X$ is simply connected, $H^{-}$ is connected, and hence $H^{-}=H^{*}/M$, where $H^{*}=T^{t}\times H_{1}$

$\times\ldots\ldots\times H_{u}$ and $M$ is a finite normal subgroup of $H^{*}$ .
Considering the following parts of the homotopy exact sequences of the fibering $(G^{*}$ ,

$H^{-},$ $X$);

$0\rightarrow\pi_{2}(X)\rightarrow\pi_{1}(H^{-})\rightarrow\pi_{1}(G^{*})\rightarrow\pi_{1}(X)$

and

$\pi_{4}(X)\rightarrow\pi_{3}(H^{-})\rightarrow\pi_{3}(G^{*})\rightarrow\pi_{3}(X)\rightarrow 0$,
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we have that $u=s-1$ and $t=r+1$ .
We will prove the following

PROPOSITION 1. If $G^{*}and$ $H^{*}$ contain a factor $G_{k}$ such that the composition $G_{k}\rightarrow H^{*}\rightarrow\overline{H}$

$\rightarrow G^{*}\rightarrow G_{k}$ is epimorphic, then the normal subgroup $G^{*}/G_{k}$ of $G^{*}acts$ transitively on $X$.
This follows immediately from the result in [2] which says; the restriction of the

natural action $G\times G/H\rightarrow G/H$ to a subgroup $K$ of $G$ is transitive if and only if $KH=G$.
According to proposition 1, it is easy to show that $G^{*}/T^{r}=G_{1}\times\ldots\ldots\times G_{S}$ acts transi-

tively on $X$. Hence by irreducibility we may assume that $G^{*}=G_{1}\times\ldots\ldots\times G_{S}$ and $H^{*}=T$

$\times H_{1}\times\ldots\ldots\times H_{s-1}$ .
Recall that the rational cohomology ring of a compact connected Lie group $G$ is an

exterior algebra $\Lambda_{Q}(x_{1}, x_{2},\ldots\ldots, x_{r})$, where $Xi^{\prime}S$ are of odd degree and $r$ is the rank of $G$.
Let $n(G)$ be the highest degree of generators $x_{1},\ldots\ldots,$ $x_{r}$ . For reference, we list below the
degree and number of primitive generotors of simple Lie groups;

$A_{nI}$ 3, 5, 7, $2n+1$

$B_{n}$ : 3, 7, 11, $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots,$
$4n-1$

$C_{n}$ : 3, 7, 11,
$\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots,$

$4n-1$

$D_{n}$ ; 3, 7, 11, $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$ , $4n-5,2n-1$
$G_{2}$ : 3, 11
$F_{4}$ : 3, 11, 15, 23
$E_{6}$ : 3, 9, 11, 15, 17, 23
$E_{7}$ : 3, 11, 15. 19. 23, 27, 35
$E_{8}$ : 3, 11, 23, 27, 35, 39, 47, 59

It is well known that $\pi;(G)\otimes Q\neq 0$ if $i$ is equal to some degree of $Xi$ and $\pi;(G)\otimes Q=0$

otherwise, where $Q$ is the field of rationals [2].

By the following proposition, we may assume that $n(G^{*})$ and $n(H^{*})$ are not greater
than $n(Spin(n))$ .

PROPOSITION 2. $G^{*}and$ $H^{*}are$ factored as follows;
$G^{*}=G_{0}\times Spin(2i_{1})^{\epsilon_{1}}\times Spin(2i_{2})^{\epsilon_{2}}\times\ldots\ldots\ldots\ldots\times Spin(2i_{k})^{e_{k}}$

$H^{*}=H_{0}\times Spin(2i-1)^{\epsilon_{1}}\times\ldots\ldots\ldots\ldots\times Spin(2i_{k}\times 1)^{\epsilon_{h}}$

where $\epsilon J$ are some integer, $n<2i_{1}-1<\ldots\ldots<2i_{k}-1$ and $n(G_{0}),$ $n(H_{0})\leqq n(Spin(n))$ . More-
over let $fij$ denote the composition $H_{j}\rightarrow H^{*}\rightarrow G^{*}\rightarrow Gi$ ; then the matrix $(fi_{j})$ is diagonal.

Let $G_{0}$ and $H_{0}$ be factored as follows;
$G_{0}=G_{1}\times G_{2}\times\ldots\ldots\ldots\ldots\times G_{s}$ and $H_{0}=T\times H_{1}\times\ldots\ldots\ldots\ldots\times H_{s-1}$, respectively.

We will prove the following

PROPOSITION 3. If a factor $H_{j}\neq Spin(n)$ is mapped non-trivially into a factor $Gi$ of $G_{0}$,
then we have $n(H_{j})\neq n(G_{i})$ .

To prove these propositions, we need the following lemma which is useful in the
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sequel. Let $H_{1}$ and $G_{1}$ be one of factors of $H^{*}$ and $G^{*}$ respectively, $f$ the composition $H_{1}$

$\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{1}$ and $p_{1}^{\prime},$ $p_{1}$ the projection $H^{*}\rightarrow H_{1},$ $G^{*}\rightarrow G_{1}$ resp. Then we have
the following diagram;

$p_{1}^{\prime}\downarrow H^{*}H_{1}\rightarrow\rightarrow fG_{1}G^{*}\downarrow p_{1}$

This diagram is commutative if the composition; $H^{*}/H_{1}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{1}$ is trivial.
We will define an map $h:G^{*}/H^{-}\rightarrow G_{1}/f(H_{1})$ such that the diagram;

$G^{*}\rightarrow G^{*}/H^{-}$

$ p_{1}\downarrow$ $\downarrow h$

$G_{1}\rightarrow G_{1}/f(H_{1})$

is commutative and $h_{\#}$ : $\pi t(G^{*}/H^{-})\rightarrow\pi;(G_{1}/f(H_{1}))$ is surjective into the image of $(\pi_{1})_{\#}$

for $i\geqq 3$ . Define $h(gH^{-})=p_{1}(g)f(H_{1})$ . In fact $h$ is well defined; let $g_{1}H^{-}=g_{2}H^{-}$ . Then
we have $g_{1}^{-1}g_{2}\in H^{-}$ , and hence we have $p_{1}(g_{1})^{-1}p_{1}(g_{2})\in p_{1}(H^{-})\subseteq f(H_{1})$ . Consider
the following diagram of homotopy groups;

$\pi t(H^{-})\rightarrow\pi i(G^{*})\rightarrow\pi;(G^{*}(H^{-})\rightarrow\pi;_{-1}(H^{-})$

$\pi i(H^{*})\pi i(H_{1})l1\downarrow\downarrow$ $ p_{1\$}\downarrow$ $h_{\#}\downarrow|$ $\pi_{i-1}\pi_{i_{-1}}11\iota^{(H^{*})}\iota^{(H_{1})}$

$\pi;(f(H_{1}))\rightarrow\pi;(G_{1})\rightarrow\pi i(G_{1}/f(H_{1}))\rightarrow\pi t_{-1}(f(H_{1}))$

Let $x$ be in image of $\pi_{1f}$ . Choose $y$ in $\pi;(G_{1})$ such that $x=\pi_{1\#}(y)$ . Since $p_{1\$}$ is sujective,
we find $z$ in $\pi\iota(G^{*})$ such that $p_{1\$}(z)=y$ . Put $w=\pi_{\#}(z)$ , and we have $h_{\#}(x)=x$. This
implies that $h_{\#}$ is surjective onto the image of $\pi_{1\#}$ .

Thus we have proved the following

LEMMA 1. Let $G^{*}and$ $H^{*}be$ factored into product $G_{1}\times G_{2}$ and $H_{1}\times H_{2}$ resp., where $H_{1}$ and
$G_{1}$ are semi-simple. Then if the composition; $H_{2}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{1}$ is trivial, there is

defined a map $h:G^{*}/H^{-}\rightarrow G_{1}/f(H_{1})$ such that $h_{\#}$ ; $\pi;(G^{*}/H^{-})\rightarrow\pi;(G_{1}/f(H_{1}))$ is surjective

onto the image of the homomorphism $\pi t(G_{1})\rightarrow\pi;(G_{1}/f(H_{1}))$ .
REMARK. To complete the proof of the above lemma, we need the following fact; let $G_{1}$

and $G_{2}$ be simple Lie groups and $f$ a homomorphism of $G_{1}\times G_{2}$ into a compact connected
Lie group $G$. Then if $f$ is non-trivial, $f$ is locally isomorphic. The proof of this fact is not
difficult.

We shall consider the factor $H_{0}$ and $G_{0}$ of $H^{*}$ and $G^{*}$ in proposition 2. Let $a;,$
$a\iota^{\prime}$ ; $bi$,

$b;^{\prime}$ ; $c;,$
$c;^{\prime}$ ; $d;,$ $d_{i^{\prime}}$ ; $g_{2},$ $g_{2^{\prime}}$ ; $f_{4},$ $f_{4}^{\prime}$ ; $e_{6},$

$e_{6^{\prime}}$ ; $e_{7},$
$e_{7^{\prime}}$ and $e_{8},$

$e_{8^{\prime}}$ be the number of factors $SU(i)$ ,
Spin$(2i+1),$ $Sp(i),$ $Spin(2i+2),$ $G_{2},$ $F_{4},$ $E_{6},$ $E_{7}$ and $E_{8}$ in $G_{0}$ and $H_{0}$ respectively. We will
prove the following.
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LEMMA 2. We have the following equalities;
(1) $a\iota=a;^{\prime}=0$ for $i=2,3,4,5,6$

(2) $a_{2i+1}=0$

(3) $g_{2}=g_{2^{\prime}}=0$

(4) $b;=bt^{\prime}=0$ for $i=2,3,4,5$

(5) $d\iota=di^{\prime}=0$ for $i=4,5$

(6) $f_{4}=f_{4}^{\prime}=0$

(7) $e_{6}=e_{6^{\prime}}=0$

(8) $2d_{6}+b_{6}+e_{7}=2d_{6^{\prime}}+b_{6}^{\prime}+e_{7^{\prime}}$

(9) $e_{7}+e_{8}=e_{7^{\prime}}+e_{8^{\prime}}$ .
Modulo verifications of the above propositions and lemmas, we will prove the theorem

mentioned in introduction.
Let $G_{0}$ and $H_{0}$ be factored as follows; $G_{0}=G_{1}\times\ldots\ldots\times G_{s}$ and $H^{*}=T\times H_{1}\times\ldots\ldots\times H_{s-1}$

We assume that $n(H_{1})\leqq n(H_{2})\leqq\ldots\ldots\leqq n(H_{s-1})$ . Let $G;_{1},\ldots\ldots G$; be the factors of $G_{0}$ into
which $H_{s-1}$ is mapped non-trivially. We will prove that $t$ is at most 1. Assume that
$n(Gi_{1})\leqq\ldots\ldots\leqq n(Gi_{t})$ . Put $m=n(Gi_{1})$ . By proposition 3, $n(H_{s-1})$ is smaller than $m$ . Let
$Hj_{1},$ $H_{j_{u}}$ be the simple factors of $H_{0}$ which are mapped non-trivially into $Gi_{1}\times\ldots\ldots\times G;t$

We are concerned only in the case when $n$ is odd.
CASE 1. $G$; is a classical group for all $ij$ .

Combining the facts $\pi_{m}(Hj1\times\ldots\ldots\times H_{s-1})\otimes Q=0,$ $\pi_{m}(G;_{1}\times\ldots\ldots\times G\iota t)\otimes Q\supseteqq tQ$ and
$\pi_{m}(X)\otimes Q=Q$ and Lemma 1, we have that $t$ is at most 1
CASE 2. $G;1$ is exeptional and all other Gif are classical.

This case is similar to the case 1.
CASE 3. $Gi_{1}$ is classical and some $G$; is exeptional.

We may assume that $n(H_{s-1})\geqq 19$ . In fact, $n(H_{s-1})<19$, then $H_{0}$ does not contain
Spin(12), $Spin(13)$ and $E_{7},$ $E_{8}$, and hence $d_{6}=b_{6}=e_{7}=e_{8}=0$.
CASE 3-1. Some $G$; is $E_{7}$.

Since $n(E_{7})=35$, the possible value of $m$ is 31, 27 and 23. When $m=23$, or 27, we
have $\pi_{m}(G_{ij})\otimes Q\neq 0$ for all $G;j$ The argument similar to the case 1 shows that $t$ is at
most 1. Consider the case $m=31$ . If $n(H_{s_{-1}})\leqq 23,$ $\pi_{27}(Gt_{j})\otimes Q\neq 0$, and hence we have
$t\leqq 1$ . $Ifn(H_{s-1})=27,$ $H_{s-1}isoneofSpin(15),$ $Spin(16),$ $Sp(7)andSU(14)$ . These cannot
be mapped non-trivially into $E_{7}$ .
CASE 3-2. Some $G$; is $E_{8}$.

Since $n(E_{8})=59$, we have $m\leqq 55$ . We may assume $m\geqq 23$ . The similar arguments
show that $t$ is at most 1.

Thus we have proved that the factor $H_{s-1}$ is mapped non-trivially unto at most one
factor, say $G_{r(s-1)}$ . Next consider the second factor $H_{s-2}$. If $n(H_{s-2})=n(H_{s-1})$ , it is
similarly proved that $H_{s-2}$ is mapped only one factor, say $G_{\tau(s-2)}$ non-trivially. Assume
that $n(H_{s-2})<n(H_{s-1})$ . Let $Gi_{1},\ldots\ldots,$ $G;t$ be the factors of $G_{0}$ into which $H_{s-2}$ is mapped
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non-trivially, and $H_{j_{1}}\times\ldots\ldots\times H_{ju}\times H_{s-2}$ the factor of $H_{0}$ which is mapped into $ G;1\times\ldots\ldots$

$\times G_{jt}$ . It is easy to show that $t$ is at most 2. Let $H_{s-2}$ be mapped into $G_{1}\times G_{2}$ non-
trivially. Then $H_{s-1}$ is mapped into $G_{1}$ , or $G_{2}$. For if $H_{s-1}$ is not mapped into neither $G_{1}$

nor $G_{2}$, we have that $n(Hi)\leqq n(H_{S-2})$ for every $Hi$ which is mapped $G_{1}\times G_{2}$ . This is
impossible.

Summing up, we have obtained a correspondence (not neccessarily injective) $\tau;[1$ ,
2, $\ldots\ldots$ , $s-1$ ]$\rightarrow[1,2,\ldots\ldots s]$ such that $H_{s-1}$ is mapped inte $G_{\tau(s-1)}$ non-trivially, $H_{s-2}$ is
mapped into $G_{\tau(s-1)},$ $G_{r(s-2)}$ non.trivially and so on. In other words. the matrix $(fij)$ is a
triangular matrix, where $f_{\dot{i}j}$ is the composition $H_{j}\rightarrow H^{*}\rightarrow G^{*}\rightarrow Gi$ . Therefore there
is at least one factor of $G_{0}$ such that no factor of $H_{0}\neq T$ is mapped non-trivially. The
following proposition completes the proof of the theorem.

PROPOSITION 4. Let $G_{1}$ be one of simple factor of $G$ (different from Spin$(n)$). Then there
exists one simple factor $H_{1}$ of $H_{0}$ such that $H_{1}$ is mapped into $G_{1}$ non-trivially.

2. The proof of Proposition 2

In this sections, we will restict ourselves in the case when $n$ is odd: $n=2k+1$ . Assume
that $n(G^{*})=4m+1$ . If $4m+1>4k-1$ , then we have that rank $\pi_{4^{m}+1}(G^{*})=rank\pi_{4^{m}+1}(H^{*})$ ,
and hence $a_{2^{m}+1}=a_{2^{m}+1}^{\prime}$ . Since the factor $SU(2m+1)$ of $H^{*}$ is mapped only into the
factor $SU(2m+1)$ of $G^{*}$ , proposition 1 and the irreducibility concludes that $a_{2^{m}+1}=a_{2^{m}+1^{\prime}}$

$=0$ . Therefore we may assume that $n(G^{*})\leqq 4m-1$ . It is easy to show that rank $\pi_{4^{m}-1}$

$(G^{*})$ is given by the following formula;

rank $\pi_{4^{m}-1}(G^{*})=a_{2^{m}}+b_{m}+c_{m}+d_{m+1}$ for $m>15$

$=a_{2^{m}}+b_{m}+c_{m}+d_{m+1}+e_{8}$ for $m=15$

$=a_{2^{m}}+b_{m}+c_{m}+d_{m+1}$ for $9<m<15$

$=a_{2^{m}}+b_{m}+c_{m}+d_{m+1}+e_{7}$ for $m=9$

$=a_{2^{m}}+b_{m}+c_{m}+d_{m+1}$ for $6<m<9$

$=a_{2^{m}}+b_{m}+c_{m}+d_{m+1}+f_{4}+e_{6}$ for $m=6$ .
The formula of rank $\pi_{4^{m}-1}(H^{*})$ is the same as above, but it is primed. If $4m-1>4k-1$,

the homotopy exact sequence of the fibering $(G^{*}, H^{-}, X)$ shows that rank $\pi_{4^{m}-1}(G^{*})=$

rank $\pi_{4^{m}-1}(H^{*})$ . Consider the case when $n$ is is greater than 15. Then we have $a_{2^{m}}+$

$b_{m}+c_{m}+d_{m+1}=a_{2^{m^{\prime}}}+b_{m}^{\prime}+Cm^{\prime}+d_{m+1^{\prime}}$ . Since the factor $SU(2n)$ of $H^{*}$ can be mapped non-
trivially only $SU(2n)$ of $G^{*}$ , proposition 1 and Irreducibility imply that $a_{2^{n}}=0$ . Similar
argument shows that $d_{m+1^{\prime}}=0$ . It is not difficult to show that $a_{2^{m}}=c_{n}$ and $d_{m+1}=b_{m}^{\prime}$ .

Next we consider the case when $n$ is 15. Then we have $a_{30}+b_{15}+c_{15}+d_{16}+e_{8}=a_{m^{\prime}}$

$+b_{15}^{\prime}+c_{15^{\prime}}+d_{16^{\prime}}+e_{8}^{\prime}$ . Since $E_{8}$ is not mapped non-trivially into $SU(30),$ $Spin(31),$ $Sp(15)$

and Spin(32), we have $e_{8}=e_{8^{\prime}}=0,$ $a_{30}=c_{15^{\prime}}$ and $d_{16}=b_{15}^{\prime}$ . By the same arguments as above,
it is shown that
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$a_{2m}=c_{m^{\prime}}$ and $d_{m+1}=b_{m}^{\prime}$ for $m>6$

and
$a_{2m}=c_{m^{\prime}},$ $d_{m+1}=b_{m}^{\prime}$ and $e_{6}=f_{4^{r}}$ for $m=6$ .

We will prove that $a_{2^{m}}=c_{m^{\prime}}$ and $e_{6}=f_{4}^{\prime}=0$ for both cases. Firstly consider the case when
$n$ is greater than 6; let a factor $Sp(m)$ of $H^{*}$ be mapped non-trivially into an $SU(2m)$ . It
is not difficult to show that no factor $H_{1}$ of $H^{*}$ different from $T$ can be mapped into $SU(2m)$

in the way that $H_{1}\times Sp(m)$ is mapped non-trivially into $SU(2m)$ (cf. remark below lemma
1). Consider the following sequence;

$\pi_{5}(Sp(m)\times T^{\epsilon})\rightarrow\pi_{5}(SU(2m))\rightarrow\pi_{5}(SU(2m)/sp(m)\times T^{\epsilon})\rightarrow\pi_{4}(Sp(m)\times T^{\epsilon})$,

where $\epsilon$ isOor l. Since $\pi_{5}(Sp(m)\times Te)$ and $\pi_{4}(sp(m)\times T\epsilon)$ are finite groups, the image
of the homomorphism $\pi_{5}(SU(2m)\rightarrow\pi_{5}(SU(2m)/Sp(m)\times T\epsilon)$ is of rank 1. Combining
the fact that $\pi_{5}(X)=0$, lemma 1 and irreducibility, it is concluded that $a_{pm}=c_{m^{\prime}}=0$ . By
the similar argument, it is easy to show that $e_{6}$ and $f_{4}^{\prime}$ vanish when $m$ is 6. When $m$ is
at least 6. When $m$ is at least 6, there is no non-tritial homomorphism of Spin$(2m+1)$

into Spin$(2m+2)$ other than the standard one (because of representation theory). Hence
we have obtained the factorization of $G^{*}$ and $H^{*}$ such that

$G^{*}=G_{1}\times Spin(2m+2)$ and $H^{*}=H_{1}\times spin(2m\times 1)$ ,

where the compositions $H_{1}\rightarrow H^{*}\rightarrow G^{*}\rightarrow Spin(2m+2)$ and Spin$(2m+1)\rightarrow H^{*}\rightarrow G^{*}$

$\rightarrow G_{1}$ are trivial. Repeating this procedure, we shall obtain the factorization of $G^{*}$ and
$H^{*}$ as stated in Proposition 2. This completes the proof of proposition 2.

3. The proof of Proposition 3

In this section, we will prove Proposition 3 only when $n$ is greater than 9. Let $H_{1}$ and
$G_{1}$ be factor of $H_{0}$ and $G_{0}$ respectively and the composition $\varphi_{1}$ : $H_{1}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{1}$

non.trivial. It is known that $n(H_{1})$ is at least $n(G_{1})$ and $n(H_{1})$ is equal to $n(G_{1})$ only
when $(H_{1}, G_{1}, \varphi_{1})$ is the following triples;

CASE 1. Since $\pi_{2l}(Sp(I))=Z_{2}$ or $\pi_{2l}(SU(2l))=Z_{(2l)1}$ and $\pi_{2l}(X)=Z_{2}$ or $0$, lemma 1 shows
that this case is impossible.

By similar arguments, it is easy to show that case 3, case 4, case 2 and case 5 are all
impossible.
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CASE 6. Considering the following table of homotopy groups, one can conclude that this
case is also impossible.

$\pi_{2l+4}(Spin(2l+1))$ $\pi_{2l+4}(Spin(2l+2))$ $\pi_{2l+4}(X)$

$n=2l+3$ $2l+4$ $2l+5$

$l\equiv 0(4)$ $0$

$l\equiv 1(4)$ $Z_{8d}(d=1,2)$

$I\equiv 2(4)$ $Z_{2}$

$l\equiv 3(4)$ $Z_{8}$

$Z_{12}$ $Z_{2}$ $Z_{8}\oplus Z_{2}$ $Z_{8}$

$Z_{4}\oplus Z_{24d}$ $Z_{2}$ $Z_{4}$ $Z_{2}\oplus Z_{2}$

$Z_{12}\oplus Z_{2}$ $Z_{2}$ $Z_{2}^{3}$ $Z_{8}$

$Z_{24}\oplus Z_{8}$ $Z_{2}\oplus Z_{2}$ $Z_{4}$ $Z_{2}$ .

4. The proof of Lemma 2

In this section, we restrict ourself in the case when $n$ is greater than 16. Let $np(q)$

and $np^{\prime}(q)$ denote the number of the factors $Z_{q}$ in $\pi p(G^{*})$ and $\pi p(H^{*})$ respectively.
From the homotopy exact sequence of the fibering $(G^{*}, H^{-}, X)$ , we have

i) $n_{8}(2)=n_{8}^{\prime}(2)$ , ii) $n_{8}(8)\geqq n_{8}^{\prime}(8)$ , iii) $n_{13}(2)=n_{13}^{\prime}(2)$ and iv) $n_{9}(3)=n_{9^{\prime}}(3)$ .

These imply that

i) $a_{3}+a_{4}=a_{3^{\prime}}+a_{4^{\prime}}$ , ii) $a_{4}\geqq a_{4^{\prime}}$ , iii) $2a_{2}+a_{3}=2a_{2^{\prime}}+a_{3^{\prime}}$ and iv) $a_{2}+a_{3}+g_{2}$

$=a_{2^{\prime}}+a_{3^{\prime}}+g_{2^{\prime}}$ .
Hence we have that $a_{2}=a_{2^{\prime}},$ $a_{3}=a_{3^{\prime}},$ $a_{4}=a_{4^{\prime}}$ and $g_{2}=g_{2^{\prime}}$ . It is not difficult to show that $a_{2}$,
$a_{3}$ and $g_{2}$ vanish. It is also easy to show that $a_{5}+a_{6}=a_{5^{\prime}}+a_{6^{\prime}}$ and hence $a_{5}=a_{6}=a_{5^{\prime}}=a_{6^{\prime}}$

$=0$ . This completes the proof of (1).

We omit the proof of equalities (2), (3), ........., (9), since they are tedious, but not
difficult.

5. The proof of Proposition 4

Let $G_{1}$ be one of factor of $G_{0}$ different from Spin $(n)$ . Then if no factor of $H_{0}$ is
mapped non-trivially into $G_{1}$, there is a surjective homomorphism of $\pi t(X)$ onto $\pi;(G_{1})$

for every $i\geqq 3$ . This follows from lemma 1. Therefore, to prove proposition 4, it is
sufficient to show that there exists an integer $i$ satisfying the condition $(\#)\pi;(X)$ is not
mapped suriectively onto $\pi;(G_{1})$ .

If $G_{1}$ is $SU(2k)$ , or $sp(k)$ , then $i=5$ satifles the condition $(\#)$ . When $G_{1}$ is Spin$(k)$

we can also find an integer $i$ satisfiying the condition $(\#)$ . When $G$; is $E_{7},$ $i=12$ satisPes
the condition $(\#)$ .

Consider the case when $G_{1}$ is $E_{8}$. First we will prove that $e_{8}=0$ if $n$ is smaller than
64. In fact, by representation theory, it is clear that $E_{7}$ and $E_{8}$ can not be mapped non-
trivially in Spin$(k)$ , where $k\leqq 64$ . Considering homotopy groups $\pi_{12}(E_{7})$ and $\pi_{12}(E_{8})$, it
is impossible that $E_{7}$ is mapped non-trivially into $E_{8}$. Hence we have $e_{7}=e_{8}=e_{7^{\prime}}=e_{8^{\prime}}=0$.



16 K. $Abe$ and T. Watabe

Therefore we may consider only the case when $n$ is greater than 64, By a result in [3], it
is known that for prime $p\geqq 31,$ $\pi_{q}(E_{8})\otimes Zp=\pi_{q}(S^{3}\times S^{5}\times\ldots\ldots\ldots\times S^{59})\otimes Zp$ . It is proved in
[4] that for odd prime $p,$ $k\geqq 1$ and $i\geqq 3,$ $\pi_{2k(p-1)_{-1+1}}(S^{i})\otimes Zp=0$ and in particular, $\pi_{62}(S^{3})$

$\otimes Z_{31}\neq 0$ . Since $n$ is greater than 64, $\pi_{62}(X)\otimes Z_{31}=0$ . Hence $i=62$ satifies the condition
$(\#)$ . This completes the proof of Proposition 4.

6. Concluding remarks

1. Suppose that $G$ is any compact connected Lie group such that $SO(n)\subset G\subset SO(n)$

$\times SO(n-k)$, then it is easy to see that $G$ acts on $SO(n)/SO(h)$ transitively. Hsiang and
$Su$ have proved that for many values of $n$ and $k(k\neq 2)$ every transitive and effective
action on $SO(n)/SO(k)$ is differentiably equivalent to the above example. However we
do not know whether the same result holds in the case $k=2$ .

2. We have ommited the proof of the theorem when the rank of Spin$(n)$ is smaller
than 8. When $n$ is small, we can prove the theorem more directly by counting the factors
$G^{*}$ and $H^{*}$ .

3. We have omitted the proof of the theorem when $n$ is even. When $n$ is even, we
can prove the theorem in the similar method.
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