A note on transitive and irreducible action on the Stiefel manifold $V_{n,n-2}$

By

Kojun ABE and Tsuyoshi WATABE

(Received October 1, 1971)

1. Introduction

The purpose of this note is to prove the following

THEOREM. Let G be a compact connected Lie group. If G acts on $X = SO(n)/SO(2)$ continuously, transitively and irreducibly, then G is locally isomorphic to $SO(n)$ and isotropy subgroup is $SO(2)$.

This work was stimulated by the work of W. Y. Hsiang and J. C. Su [1]. They have proved that if (n, k) satisfies some conditions, which exclude the case $k=2$, the standard action $(SO(n), SO(k), SO(n)/SO(k))$ is the only effective and irreducible transitive action on $SO(n)/SO(k)$. We do not know whether in our case isotropy subgroup is conjugate to the standardly embedded $SO(2)$.

2. Statement of results

We consider a transitive action (continuous) of a compact connected Lie group G on $X = SO(n)/SO(2)$ with isotropy subgroup H. A transitive action of G is said to be irreducible when no proper normal subgroup of G acts transitively. Recall that given a compact connected Lie group G, one can always write $G=T^{r}\times G_{1}\times\ldots\ldots\times G_{s}/N$, where T^{r} is r-dimensitional torus, G_{i}^{\prime} s are simply connected simple Lie groups and N is a finite normal subgroup of $G^{*}=T^{r}\times G_{1}\times\ldots\ldots\times G_{s}$. Let $p:G^{*}\longrightarrow G$ the canonical projection. Then G^{*} acts transitively on X in a natural way with isotropy subgroup $H^{-}=p^{-1}(H)$. Since X is simply connected, H^{-} is connected, and hence $H^{-}=H^{*}/M$, where $H^{*}=T^{t}\times H_{1}$ $\times\ldots\ldots\times H_{u}$ and M is a finite normal subgroup of $H^{*}.$

Considering the following parts of the homotopy exact sequences of the fibering $(G^{*},$ H^{-} , X);

$$
0 \longrightarrow \pi_2(X) \longrightarrow \pi_1(H^-) \longrightarrow \pi_1(G^*) \longrightarrow \pi_1(X)
$$

and

$$
\pi_4(X) \longrightarrow \pi_3(H^-) \longrightarrow \pi_3(G^*) \longrightarrow \pi_3(X) \longrightarrow 0,
$$

we have that $u=s-1$ and $t=r+1$.

We will prove the following

PROPOSITION 1. If G^{*} and H^{*} contain a factor G_{k} such that the composition $G_{k}\rightarrow H^{*}\rightarrow \overline{H}$ $\rightarrow G^{*}\rightarrow G_{k}$ is epimorphic, then the normal subgroup G^{*}/G_{k} of G^{*} acts transitively on X.

This follows immediately from the result in $\lceil 2 \rceil$ which says; the restriction of the natural action $G \times G/H \longrightarrow G/H$ to a subgroup K of G is transitive if and only if $KH=G$.

According to proposition 1, it is easy to show that $G^{*}/T^{r}=G_{1}\times\ldots\ldots\times G_{s}$ acts transitively on X. Hence by irreducibility we may assume that $G^{*}=G_{1}\times\ldots\ldots\times G_{s}$ and $H^{*}=T$ $\times H_{1}\times(ldots\ldots\times H_{s-1}.$

Recall that the rational cohomology ring of a compact connected Lie group G is an exterior algebra $A_{Q}(x_{1}, x_{2},\ldots,x_{r})$, where x_{i}^{\prime} s are of odd degree and r is the rank of G. Let $n(G)$ be the highest degree of generators x_{1},\ldots,x_{r} . For reference, we list below the degree and number of primitive generotors of simple Lie groups;

> \$A_{nI}\$ 3, 5, 7, \$2n+1\$ $B_{n}: \ \ 3, 7, 11, \ldots \ldots$ $C_{n}: \ \ 3, 7, 11, \ldots \ldots$ $D_{n}: \; 3, 7, 11, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \; 4n-5, 2n-1$ G_{2} : 3, 11 F_{4} : 3, 11, 15, 23 E_{6} : 3, 9, 11, 15, 17, 23 E_{7} : 3, 11, 15. 19. 23, 27, 35 E_{8} : 3, 11, 23, 27, 35, 39, 47, 59

It is well known that $\pi_i(G)\otimes Q\neq 0$ if i is equal to some degree of x_i and $\pi_i(G)\otimes Q=0$ otherwise, where Q is the field of rationals [2].

By the following proposition, we may assume that $n(G^{*})$ and $n(H^{*})$ are not greater than $n(Spin(n)).$

PROPOSITION 2. G^{*} and H^{*} are factored as follows:

 $G^{*}=G_{0}\times Spin(2i_{1})^{\epsilon_{1}}\times Spin(2i_{2})^{\epsilon_{2}}\times\ldots\ldots\ldots\times Spin(2i_{k})^{\epsilon_{k}}$

 $H^{*}=H_{0}\times Spin(2i-1)^{\epsilon_{1}}\times\tldots\tldots\ldots\times Spin(2i_{k}\times 1)^{\epsilon_{k}}$

where ϵ_j are some integer, $n \leq 2i_{1}-1 \leq \ldots \leq 2i_{k}-1$ and $n(G_{0}), n(H_{0}) \leq n(\text{Spin}(n)).$ Moreover let f_{ij} denote the composition $H_{j}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{i}$; then the matrix (f_{ij}) is diagonal.

Let G_{0} and H_{0} be factored as follows;

 $G_{0}=G_{1}\times G_{2}\times\ldots\ldots\ldots\ldots\times G_{s}$ and $H_{0}=T\times H_{1}\times\ldots\ldots\ldots\ldots\times H_{s-1}$, respectively. We will prove the following

Proposition 3. If a factor $H_{j}+Spin(n)$ is mapped non-trivially into a factor G_i of G_{0} , then we have $n(H_{j}) \leq n(G_{i})$.

To prove these propositions, we need the following lemma which is useful in the

$$
H^* \longrightarrow G^* \n p'_{1} \downarrow \qquad \qquad \downarrow p_{1} \n H_{1} \longrightarrow G_{1}.
$$

This diagram is commutative if the composition; $H^{*}/H_{1}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{1}$ is trivial. We will define an map h: $G^{*}/H^{-} \rightarrow G_{1}/f(H_{1})$ such that the diagram;

$$
G^* \longrightarrow G^*/H^-
$$

\n
$$
\downarrow h
$$

\n
$$
G_1 \longrightarrow G_1/f(H_1)
$$

is commutative and $h_{\#} : \pi_i(G^{*}/H^{-})\longrightarrow\pi_i(G_{1}/f(H_{1}))$ is surjective into the image of $(\pi_{1})_{\#}$ for $i\geq 3$. Define $h(gH^{-})=p_{1}(g)f(H_{1})$. In fact h is well defined; let $g_{1}H^{-}=g_{2}H^{-}$. Then we have $g_{1}^{-1}g_{2}\in H^{-}$, and hence we have $p_{1}(g_{1})^{-1}p_{1}(g_{2})\in p_{1}(H^{-})\subseteq f(H_{1})$. . Consider the following diagram of homotopy groups;

$$
\pi_i(H^+) \longrightarrow \pi_i(G^*) \longrightarrow \pi_i(G^*(H^-) \longrightarrow \pi_{i-1}(H^-)
$$
\n
$$
\pi_i(H^*) \qquad \downarrow \qquad \qquad h^* \qquad \qquad \pi_{i-1}(H^*)
$$
\n
$$
\pi_i(H_1) \qquad \qquad h^* \qquad \qquad h^* \qquad \qquad \pi_{i-1}(H_1)
$$
\n
$$
\pi_i(f(H_1)) \longrightarrow \pi_i(G_1) \longrightarrow \pi_i(G_1/f(H_1)) \longrightarrow \pi_{i-1}(f(H_1))
$$

Let x be in image of $\pi_{1\sharp}$. Choose y in $\pi_i(G_{1})$ such that $x=\pi_{1\sharp}(y)$. Since $p_{1\sharp}$ is sujective, we find z in $\pi_i(G^{*})$ such that $p_{1\#}(z)=y$. Put $w=\pi_{\#}(z)$, and we have $h_{\#}(x)=x$. This implies that $h_{\#}$ is surjective onto the image of $\pi_{1\#}$.

Thus we have proved the following

LEMMA 1. Let G^{*} and H^{*} be factored into product $G_{1}\times G_{2}$ and $H_{1}\times H_{2}$ resp., where H_{1} and G_{1} are semi-simple. Then if the composition; $H_{2}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{1}$ is trivial, there is defined a map $h: G^{*}/H^{-} \longrightarrow G_{1}/f(H_{1})$ such that $h_{\#} : \pi_{i}(G^{*}/H^{-}) \longrightarrow \pi_{i}(G_{1}/f(H_{1}))$ is surjective onto the image of the homomorphism $\pi_i(G_{1})\rightarrow\pi_i(G_{1}/f(H_{1}))$.

REMARK. To complete the proof of the above lemma, we need the following fact; let G_{1} and G_{2} be simple Lie groups and f a homomorphism of $G_{1}\times G_{2}$ into a compact connected Lie group G. Then if f is non-trivial, f is locally isomorphic. The proof of this fact is not difficult.

We shall consider the factor H_{0} and G_{0} of H^{*} and G^{*} in proposition 2. Let a_{i} , a_{i} '; b_{i} , bi'; ci, ci'; di, di'; g_2, g_2' ; f_4, f_4' ; e_6, e_6' ; e_7, e_7' and e_8, e_8' be the number of factors $SU(i)$, $Spin(2i+1), Sp(i), Spin(2i+2), G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8} in G_{0} and H_{0} respectively. We will prove the following.

LEMMA 2. We have the following equalities;

- (1) $a_i=a_i^{\prime}=0$ for $i=2,3,4,5,6$
- (2) $a_{2i+1}=0$
- (3) $g_{2}=g_{2}^{\prime}=0$
- (4) $b_i=b_i^{\prime}=0$ for $i=2,3,4,5$
- (5) $d_i = d_i' = 0$ for $i = 4, 5$
- (6) $f_{4}=f_{4}^{\prime}=0$
- (7) $e_{6}=e_{6}^{\prime}=0$
- (8) $2d_{6}+b_{6}+e_{7}=2d_{6}^{\prime}+b_{6}^{\prime}+e_{7}^{\prime}$
- (9) $e_{7}+e_{8}=e_{7}^{\prime}+e_{8}^{\prime}.$

Modulo verifications of the above propositions and lemmas, we will prove the theorem mentioned in introduction.

Let G_{0} and H_{0} be factored as follows; $G_{0}=G_{1}\times\ldots\ldots\times G_{s}$ and $H^{*}=T\times H_{1}\times\ldots\ldots\times H_{s-1}$ We assume that $n(H_{1})\leq n(H_{2})\leq\ldots\leq n(H_{s-1})$. Let G_{i_1},\ldots,G_{i_t} be the factors of G_{0} into which H_{s-1} is mapped non-trivially. We will prove that t is at most 1. Assume that $n(G_{i_1}) \leq \ldots \leq n(G_{i_t})$. Put $m=n(G_{i_1})$. By proposition 3, $n(H_{s-1})$ is smaller than m. Let H_{j_1}, H_{j_2} be the simple factors of H_{0} which are mapped non-trivially into $G_{i_1}\times\ldots\times G_{i_t}$.

We are concerned only in the case when n is odd.

 Case 1. G_{ij} is a classical group for all i_j.

Combining the facts $\pi_{m}(H_{j1}\times\ldots\ldots\times H_{s-1})\otimes Q=0$, $\pi_{m}(G_{i1}\times\ldots\ldots\times G_{it})\otimes Q\supseteq Q$ and $\pi_{m}(X)\otimes Q=Q$ and Lemma 1, we have that t is at most 1

CASE 2. G_{i1} is exeptional and all other G_{i} are classical.

This case is similar to the case 1.

CASE 3. G_{i1} is classical and some G_{i} is exeptional.

We may assume that $n(H_{s-1})\geq 19$. In fact, $n(H_{s-1})<19$, then H_{0} does not contain Spin(12), Spin(13) and E_{7} , E_{8} , and hence $d_{6}=b_{6}=e_{7}=e_{8}=0$. Case 3–1. Some G_i is E_7 .

Since $n(E_{7})=35$, the possible value of m is 31, 27 and 23. When $m=23$, or 27, we have $\pi_{m}(G_{i})\otimes Q\neq 0$ for all G_{i} . The argument similar to the case 1 shows that t is at most 1. Consider the case $m=31$. If $n(H_{s-1})\leq 23$, $\pi_{27}(G_{ij})\otimes Q\neq 0$, and hence we have *t* \leq 1. If $n(H_{s-1})=27$, H_{s-1} is one of Spin(15), Spin(16), Sp(7) and SU(14). These cannot be mapped non-trivially into E_7 .

 $\text{Case } 3\text{-}2.$ Some G_{ij} is E_{8} .

Since $n(E_{8})$ =59, we have $m \leq 55$. We may assume $m \geq 23$. The similar arguments show that t is at most 1.

Thus we have proved that the factor H_{s-1} is mapped non-trivially into at most one factor, say $G_{r(s-1)}$. Next consider the second factor H_{s-2} . If $n(H_{s-2})=n(H_{s-1})$, it is similarly proved that H_{s-2} is mapped only one factor, say $G_{r(s-2)}$ non-trivially. Assume that $n(H_{s-2})\langle n(H_{s-1})$. Let G_{i_1},\ldots, G_{it} be the factors of G_{0} into which H_{s-2} is mapped

non-trivially, and $H_{j1}\times\ldots\ldots\times H_{ju}\times H_{s-2}$ the factor of H_{0} which is mapped into $G_{i1}\times\ldots\ldots$ $\times G_{jt}$. It is easy to show that t is at most 2. Let H_{s-2} be mapped into $G_{1}\times G_{2}$ nontrivially. Then H_{s-1} is mapped into G_{1} , or G_{2} . For if H_{s-1} is not mapped into neither G_{1} nor G_{2} , we have that $n(H_i) \leq n(H_{S-2})$ for every H_i which is mapped $G_{1}\times G_{2}$. . This is impossible.

Summing up, we have obtained a correspondence (not neccessarily injective) τ : [1, 2,..., $s-1$] \longrightarrow [1, 2,..... s] such that H_{s-1} is mapped inte $G_{\tau(s-1)}$ non-trivially, H_{s-2} is mapped into $G_{\tau(s-1)}$, $G_{\tau(s-2)}$ non-trivially and so on. In other words. the matrix (f_{ij}) is a triangular matrix, where f_{ij} is the composition $H_{j}\rightarrow H^{*}\rightarrow G^{*}\rightarrow G_{i}$. Therefore there is at least one factor of G_{0} such that no factor of $H_{0}\neq T$ is mapped non-trivially. The following proposition completes the proof of the theorem.

PROPOSITION 4. Let G_{1} be one of simple factor of G (different from Spin (n)). Then there exists one simple factor H_{1} of H_{0} such that H_{1} is mapped into G_{1} non-trivially.

2. The proof of Proposition 2

In this sections, we will restict ourselves in the case when n is odd: $n=2k+1$. Assume that $n(G^{*})=4m+1$. If $4m+1>4k-1$, then we have that rank $\pi_{4m+1}(G^{*})=rank\pi_{4m+1}(H^{*}),$ and hence $a_{2m+1}=a_{2^{m}+1}^{\prime}$. Since the factor $SU(2m+1)$ of H^{*} is mapped only into the factor $SU(2m+1)$ of G^{*} , proposition 1 and the irreducibility concludes that $a_{2m+1}=a_{2m+1}^{\prime}$ =0. Therefore we may assume that $n(G^{*})\leq 4m-1$. It is easy to show that rank $\pi_{4^{m}-1}$ (G^{*}) is given by the following formula;

The formula of rank $\pi_{4^{m}-1}(H^{*})$ is the same as above, but it is primed. If $4m-1>4k-1$, the homotopy exact sequence of the fibering (G^{*}, H^{-}, X) shows that rank $\pi_{4^{m}-1}(G^{*})=$ rank $\pi_{4^{m}-1}(H^{*})$. Consider the case when *n* is is greater than 15. Then we have $a_{2^{m}}+$ $b_{m}+c_{m}+d_{m+1}=a_{2m^{\prime}}+b_{m^{\prime}}+c_{m^{\prime}}+d_{m+1}^{\prime}$. Since the factor $SU(2n)$ of H^{*} can be mapped nontrivially only $SU(2n)$ of G^{*} , proposition 1 and Irreducibility imply that $a_{2n}=0$. Similar argument shows that $d_{m+1}^{\prime}=0$. It is not difficult to show that $a_{2^m}=c_{n}$ and $d_{m+1}=b_{m}^{\prime}$.

Next we consider the case when *n* is 15. Then we have $a_{30}+b_{15}+c_{15}+d_{16}+e_{8}=a_{30}^{\prime}$ $+b_{15}^{\prime}+c_{15}^{\prime}+d_{16}^{\prime}+e_{8}^{\prime}$. Since E_{8} is not mapped non-trivially into $SU(30)$, $Spin(31)$, $Sp(15)$ and Spin(32), we have $e_{8}=e_{8}^{\prime}=0$, $a_{30}=c_{15}^{\prime}$ and $d_{16}=b_{15}^{\prime}$. By the same arguments as above, it is shown that

 $a_{2m} = c_{m}^{\prime}$ and $d_{m+1} = b_{m}^{\prime}$ for $m>6$

and

$$
a_{2m} = c_m'
$$
, $d_{m+1} = b_m'$ and $e_6 = f_4'$ for $m = 6$.

We will prove that $a_{2m} = c_{m}^{\prime}$ and $e_{6}=f_{4}^{\prime}=0$ for both cases. Firstly consider the case when *n* is greater than 6; let a factor $Sp(m)$ of H^{*} be mapped non-trivially into an $SU(2m)$. It is not difficult to show that no factor H_{1} of H^{*} different from T can be mapped into $SU(2m)$ in the way that $H_{1}\times Sp(m)$ is mapped non-trivially into $SU(2m)$ (cf. remark below lemma 1). Consider the following sequence;

$$
\pi_5(Sp(m)\times T^{\epsilon})\longrightarrow \pi_5(SU(2m))\longrightarrow \pi_5(SU(2m)/Sp(m)\times T^{\epsilon})\longrightarrow \pi_4(Sp(m)\times T^{\epsilon}),
$$

where ε is 0 or 1. Since $\pi_{5}(Sp(m)\times T^{\epsilon})$ and $\pi_{4}(Sp(m)\times T^{\epsilon})$ are finite groups, the image of the homomorphism $\pi_{5}(SU(2m)\rightarrow\pi_{5}(SU(2m)/Sp(m)\times T^{\epsilon})$ is of rank 1. Combining the fact that $\pi_{5}(X)=0$, lemma 1 and irreducibility, it is concluded that $a_{2m}=c_{m}^{\prime}=0$. By the similar argument, it is easy to show that e_{6} and f_{4}^{\prime} vanish when m is 6. When m is at least 6. When m is at least 6, there is no non-tritial homomorphism of $Spin(2m+1)$ into $Spin(2m+2)$ other than the standard one (because of representation theory). Hence we have obtained the factorization of G^{*} and H^{*} such that

$$
G^* = G_1 \times Spin(2m+2) \quad \text{and} \quad H^* = H_1 \times Spin(2m \times 1),
$$

where the compositions $H_{1}\longrightarrow H^{*}\longrightarrow G^{*}\longrightarrow Spin(2m+2)$ and $Spin(2m+1)\longrightarrow H^{*}\longrightarrow G^{*}$ $\rightarrow G_{1}$ are trivial. Repeating this procedure, we shall obtain the factorization of G^{*} and H^{*} as stated in Proposition 2. This completes the proof of proposition 2.

3. The proof of Proposition 3

In this section, we will prove Proposition 3 only when n is greater than 9. Let H_{1} and G_{1} be factor of H_{0} and G_{0} respectively and the composition $\varphi_{1}: H_{1}\longrightarrow H^{*}\longrightarrow G^{*}\longrightarrow G_{1}$ non-trivial. It is known that $n(H_{1})$ is at least $n(G_{1})$ and $n(H_{1})$ is equal to $n(G_{1})$ only when $(H_{1}, G_{1}, \varphi_{1})$ is the following triples;

CASE 1. Since $\pi_{2l}(Sp(I)) = Z_{2}$ or $\pi_{2l}(SU(2l)) = Z_{(2l)!}$ and $\pi_{2l}(X) = Z_{2}$ or 0, lemma 1 shows that this case is impossible.

By similar arguments, it is easy to show that case 3, case 4, case 2 and case 5 are all impossible.

CASE 6. Considering the following table of homotopy groups, one can conclude that this case is also impossible.

4. The proof of Lemma 2

In this section, we restrict ourself in the case when *n* is greater than 16. Let $n_p(q)$ and $n_{p}^{\prime}(q)$ denote the number of the factors Z_{q} in $\pi_{p}(G^{*})$ and $\pi_{p}(H^{*})$ respectively.

From the homotopy exact sequence of the fibering (G^{*}, H^{-}, X) , we have

i) $n_{8}(2)=n_{8}'(2)$, ii) $n_{8}(8)\geq n_{8}'(8)$, iii) $n_{13}(2)=n_{13}'(2)$ and iv) $n_{9}(3)=n_{9}'(3)$.

These imply that

i) $a_{3}+a_{4}=a_{3}^{\prime}+a_{4}^{\prime}$, ii) $a_{4}\geq a_{4}^{\prime}$, iii) $2a_{2}+a_{3}=2a_{2}^{\prime}+a_{3}^{\prime}$ and iv) $a_{2}+a_{3}+g_{2}$ $=a_{2}^{^{\prime}}+a_{3}^{^{\prime}}+g_{2}^{\prime}.$

Hence we have that $a_{2}=a_{2}^{\prime}$, $a_{3}=a_{3}^{\prime}$, $a_{4}=a_{4}^{\prime}$ and $g_{2}=g_{2}^{\prime}$. It is not difficult to show that a_{2} , a_{3} and g_{2} vanish. It is also easy to show that $a_{5}+a_{6}=a_{5}^{\prime}+a_{6}^{\prime}$ and hence $a_{5}=a_{6}=a_{5}^{\prime}=a_{6}^{\prime}$ $=0$. This completes the proof of (1).

We omit the proof of equalities (2), (3),, (9), since they are tedious, but not difficult.

5. The proof of Proposition 4

Let G_{1} be one of factor of G_{0} different from $Spin (n)$. Then if no factor of H_{0} is mapped non-trivially into G_{1} , there is a surjective homomorphism of $\pi_i(X)$ onto $\pi_i(G_{1})$ for every $i\geq 3$. This follows from lemma 1. Therefore, to prove proposition 4, it is sufficient to show that there exists an integer *i* satisfying the condition $(\sharp)\pi_i(X)$ is not mapped surjectively onto $\pi_i(G_{1}).$

If G_{1} is $SU(2k)$, or $Sp(k)$, then $i=5$ satifles the condition $(\#)$. When G_{1} is $Spin(k)$ we can also find an integer i satisfiying the condition (\sharp). When G_i is E_{7} , $i=12$ satisfies the condition (\ddagger) .

Consider the case when G_{1} is E_{8} . First we will prove that $e_{8}=0$ if *n* is smaller than 64. In fact, by representation theory, it is clear that E_{7} and E_{8} can not be mapped nontrivially in Spin(k), where $k \leq 64$. Considering homotopy groups $\pi_{12}(E_{7})$ and $\pi_{12}(E_{8})$, it is impossible that E_{7} is mapped non-trivially into E_{8} . Hence we have $e_{7}=e_{8}=e_{7}^{\prime}=e_{8}^{\prime}=0$. Therefore we may consider only the case when n is greater than 64, By a result in [3], it is known that for prime $p\!\geq\! 31$, $\pi_{q}(E_{8})\!\otimes\! Z_{p}\!=\!\pi_{q}(S^{3}\times S^{5}\times........\times\!S^{59})\!\otimes\! Z_{p}.$ It is proved in [4] that for odd prime $p, k\geq 1$ and $i\geq 3$, $\pi_{2k}(p-1)-1+1}(S^{i})\otimes Z_{p}=0$ and in particular, $\pi_{62}(S^{3})$ $\otimes Z_{31}\neq 0$. . Since *n* is greater than 64, $\pi_{62}(X)\otimes Z_{31}=0$. Hence $i=62$ satifies the condition $(\#)$. This completes the proof of Proposition 4.

6. Concluding remarks

1. Suppose that G is any compact connected Lie group such that $SO(n)\subset G\subset SO(n)$ $\times SO(n-k)$, then it is easy to see that G acts on $SO(n)/SO(k)$ transitively. Hsiang and Su have proved that for many values of *n* and $k(k\neq 2)$ every transitive and effective action on $SO(n)/SO(k)$ is differentiably equivalent to the above example. However we do not know whether the same result holds in the case $k=2$.

2. We have ommited the proof of the theorem when the rank of $Spin(n)$ is smaller than 8. When n is small, we can prove the theorem more directly by counting the factors G^{*} and $H^{*}.$

3. We have omitted the proof of the theorem when n is even. When n is even, we can prove the theorem in the similar method.

NIIGATA UNIVERSITY

References

- [1] HSIANG, W. Y. and Su, J.: On the classification of transitive effective action on Stiefel manifolds. Trans. Amer. Math. Soc. (1068) 322-336.
- [2] ONISCIK, A. L.: Transitive compact transformation groups. Amer. Math. Soc. Translations, Ser. 2, vol. 55, 153-194.
- [3] SERRE, J. P.: Groupes d'homotopie et classes de groupes abéliens. Ann. of Math. 58(1953) 258-294.
- [4] TODA, H.: On unstable homotopy groups of sphere and dassical groups. Proc. Nat. Acad. Sci. U.SA. 46 (1960) 1102-1105.