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1. Introduction

The purpose of this note is to prove the following
THEOREM. Let G be a compact connected Lie group. If G acts on X=SO(n)/SO(2) con-
tinuously, tranmsitively and irreducibly, then G is locally isomorphic to SO(n) and isotropy
subgroup is SO(2).

This work was stimulated by the work of W.Y. Hsiang and J.C. Su[1]. They have
proved that if (#, k) satisfies some conditions, which exclude the case k=2, the standard
action (SO(n), SO(k), SO(n)/SO(E)) is the only effective and irreducible transitive action
on SO(»n)/ SO(k). We do not know whether in our case isotropy subgroup is conjugate to
the standardly embedded SO(2).

2. Statement of results

We consider a transitive action (continuous) of a compact connected Lie group G
on X=S0(n)/SO(2) with isotropy subgroup H. A transitive action of G is said to be
irreducible when no proper normal subgroup of G acts transitively. Recall that given a
compact connected Lie group G, one can always write G=T7XG; X....... X Gs/ N, where T
is r-dimensitional torus, Gi’ s are simply connected simple Lie groups and N is a finite
normal subgroup of G*=T7rXG;X...... X Gs. Let p:G*——G the canonical projection.
Then G* acts transitively on X in a natural way with isotropy subgroup H-=p"1(H).
Since X is simply connected, H~ is connected, and hence H-=H*/M, where H*=Ttx H;
b T X H, and M is a finite normal subgroup of H*.

Considering the following parts of the homotopy exact sequences of the fibering (G*,
H, X);

0—> 7 (X )—>m(H ) —>m(G*)—>m(X)
and

(XD m3(H D)—>m3(G*)—>m(XD—> O,
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we have that u=s—1 and ¢t=7+1.
We will prove the following

ProposITION 1. If G* and H* contain a factor G such that the composition Gy—> H*——H

——> G*——> Gy, is epimorphic, then the normal subgroup G*|Gr of G* acts transitively on X.
This follows immediately from the result in [2] which says; the restriction of the

natural action Gx G/H— G/H to a subgroup K of G is transitive if and only if KH=G.

According to proposition 1, it is easy to show that G*/Tr=G; X...... X Gs acts transi-
tively on X. Hence by irreducibility we may assume that G*=G; X ...... X Gs and H*=T
X H; 1 X eeinan X H, s—1

Recall that the rational cohomology ring of a compact connected Lie group G is an
exterior algebra Ao(x, %,,...... , Xr), where xi’ s are of odd degree and 7 is the rank of G.
Let #(G) be the highest degree of generators x;,...... , Xr. For reference, we list below the
degree and number of primitive generotors of simple Lie groups;

An: 3,5, 7, viiiiiiiiiiiinnn. , 2n+1

Bu: 3,7, 11, ... , dn—1

Cn: 3, 7,10, i, , dn—1

Dp: 3,7, 11, neiannnnnn. , 4n—5, 2n—1
Gy: 3,11

Fy: 3,11, 15, 23

Eg: 3,9, 11, 15,17, 23

Ey: 3,11, 15. 19. 23, 27, 35
Es: 3,11, 23, 27, 35, 39, 47, 59

It is well known that 7:(G)XQ==0 if i is equal to some degree of x; and =:(GHRQR=0
otherwise, where Q is the field of rationals[2].

By the following proposition, we may assume that »(G*) and »n(H*) are not greater
than #(Spin(n)).

ProrosiTiON 2. G* and H* are factored as follows;
G*=Gp X Spin(2iy)e X Spin(2i)e X ............ X Spin(2ir)er
H*=Hyx Spin (2i—1Da X ............ X Spin(2ir X 1)k
where ¢ are some integer, n<2i;—1<...... <2ir—1 and n(Gy), n(Hy)=n(Spin(n)). More-
over let fij denote the composition Hj—> H*—> G*—> G;; then the matrix (fi;) is diagonal.
Let G, and H, be factored as follows;
Go=G1 XGsX ............ XGsand Hyp=TxH; X ............ X Hs_y, respectively.
We will prove the following

ProrosiTion 3. If a factor Hj==Spin(n) is mapped non-trivially into a factor G: of G,
then we have n(H;) = n(G:).
To prove these propositions, we need the following lemma which is useful in the
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sequel. Let H; and G; be one of factors of H* and G* respectively, f the composition H;
H*—G* G; and p’4, p1 the projection. H*——> H;, G*—> Gy resp. Then we have
the following diagram;

H* — G*

| &

H]_——)G]_.
S

This diagram is commutative if the composition; H*/H;—> H*—> G*—G; is trivial.
We will define an map h: G*/H-— G; /f(H;) such that the diagram;

G* — G*/H-

D1 l l h

Gy —> Gi/f(H)
is commutative and 4y : 7:(G*/H)—> n: (Gy/f (Hy)) is surjective into the image of (m;)s
for i=3. Define /(gH )=p:(g)f(Hy). In fact & is well defined; let gyH =g,H . Then
we have g;7! g,&H-, and hence we have p,(g;) ! p1(g)EM(H DS F(H;). Consider
the following diagram of homotopy groups;

ni(H) —> ni(G*) —> ni(G¥*(H) —> mi_(H™)

Q Q
miH*) mi_yCH*)
! b1z hy
mi(Hy) | | mi_1(Hyp)

7i(f (HD)—> 7i(G) —> wi( Gy [f (HD)) — #ia(f(H1))

Let x be in image of ;3. Choose y in 7i(Gy) such that x==3(y). Since p3 is sujective,
we find z in 7(G*) such that p;3(2)=y. Put w==3(2), and we have Ay (x)=x. This
implies that A4 is surjective onto the image of zy4.

Thus we have proved the following

LemMA 1. Let G* and H* be factored into product Gyx Gy and Hyx H, resp., where Hy and
G1 are semi-simple. Then if the composition; Hy—> H*—> G*—— G, is trivial, there is
defined a map h: G*|H—> Gy /[f(Hy) such that hy: #i(G* | H)—>ri( Gy [f(Hy)) is surjective
onto the image of the homomorphism ni( G)—>mi( Gy/f (H).

ReMARK. To complete the proof of the above lemma, we need the following fact; let Gy
and G, be simple Lie groups and f a homomorphism of G; X G, into a compact connected
Lie group G. Then if f is non-trivial, f is locally isomorphic. The proof of this fact is not
difficult. ‘

We shall consider the factor Hy and G, of H* and G* in proposition 2. Let ai, ai’; bi,
bi'; ci, ¢’y di, di’; g9, 825 fu, 4 € €6 er, ¢/ and eg, eg’ be the number of factors SU( i),
Spin(2i+1), Sp(i), Spin(2i+2), G, Fa, Es, E; and Egin G, and H, respectively. We will
prove the following.
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LemMA 2. We have the following equalities;
(D) ai=ai’=0fori=2,3,4,5,6
2) a.1=0
(3 g£2=g/=0
(4) bi=bi'=0 for i=2,3,4,5
(%) di=di’=0 fori=4,5
6 fu=rfi=0
(7 es=ed =0
(8) 2dg+be+er=2dg +bg +e;
(9 etez=e/+ed.
Modulo verifications of the above propositions and lemmas, we will prove the theorem
mentioned in introduction.
Let Gy and H, be factored as follows; Go=G; X ...... X Gsand H¥=Tx H;X...... X Hs_4
We assume that n(H)<n(Hy)=...... =n(Hs.1). Let Gi,...... Gi: be the factors of G, into
which Hs_; is mapped non-trivially. We will prove that ¢ is at most 1. Assume that

Hj,, Hj, be the simple factors of Hy which are mapped non-trivially into Gi; X ...... X Git.

We are concerned only in the case when # is odd.

Casel. Gijis a classical group for all i;.

Combining the facts z#m(Hj1 X ...... X Hs_1))R®Q =0, rm(Gi1 X ...... X Git)Q Q=2tQ and
zm(X)®Q=Q and Lemma 1, we have that ¢ is at most 1
CASeE 2. Giy is exeptional and all other Gij are classical.

This case is similar to the case 1.

Case3. Giy is classical and some Gij is exeptional.

We may assume that »(Hs_;)=19. In fact, n(Hs_1)<<19, then H, does not contain
Spin(12), Spin(13) and E;, Es, and hence dg=bg=e;=e3=0.

Case 3-1. Some Gij is E;.

Since n(E;)=35, the possible value of m is 31, 27 and 23. When m=23, or 27, we
have 7m(Gi;)®Q+0 for all Gi;. The argument similar to the case 1 shows that ¢ is at
most 1. Consider the case m=31. If n(Hs_1)=23, n5(Gi;)QRR+0, and hence we have
t<1. If n(Hs_1)=27, Hs_; is one of Spin(15), Spin(16), Sp(7) and SU(14). These cannot
be mapped non-trivially into E;.

Case 3-2. Some G;; is Es.

Since n(Es)=59, we have m=55. We may assume m=23. The similar arguments
show that # is at most 1. '

Thus we have proved that the factor Hs_; is mapped non-trivially into at most one
factor, say G:¢s_;). Next consider the second factor Hs_,. If n(Hs_;)=n(Hs_y), it is
similarly proved that Hs_, is mapped only one factor, say G:cs_y) non-trivially. Assume
that n(Hs_)<n(Hs_;). Let Gi,...... , Git be the factors of G, into which Hs_, is mapped



non-trivially, and Hj; X ...... X Hju X Hs_o the factor of H, which is mapped into Gi; X ......
X Gji. It is easy to show that ¢ is at most 2. Let Hs_, be mapped into Gy X G, non-
trivially. Then Hs_; is mapped into Gy, or G,. For if Hs_; is not mapped into neither G;
nor G, we have that n(H:)=n(Hs_,) for every H; which is mapped G; X G,. Thisis
impossible.

Summing up, we have obtained a correspondence (not neccessarily injective) z: [1,
2,...... , s—11—[1, 2,...... s] such that Hs_; is mapped inte Gr¢s-1) non-trivially, Hs_, is
mapped into Gr¢s_1), Gecs-2) non-trivially and so on. In other words. the matrix (fi;) isa
triangular matrix, where fi; is the composition H,—> H*—> G*——>Gi. Therefore there .
is at least one factor of Gy such that no factor of Hy+# T is mapped non-trivially. The
following proposition completes the proof of the theorem.

ProrosiTION 4. Let Gy be one of simple factor of G (different from Spin(n)). Then there
exists one simple factor Hy of Hy such that Hy is mapped into Gy non-trivially.

2. The proof of Proposition 2

In this sections, we will restict ourselves in the case when # is odd: #=2k-+1. Assume
that n(G*)=4m+1. If 4m+41>4k—1, then we have that rank nym,1(G*)=rank zgm, (H*),
and hence aym,1=ay’m,1. Since the factor SU(2m+1) of H* is mapped only into the
factor SU(2m+1) of G*, proposition 1 and the irreducibility concludes that aym,1=asm 1’

=0. Therefore we may assume that »(G*)<dm—1. It is easy to show that rank wym_;
(G*) is given by the following formula;

rank wgm_1(G*)=am-+bm-+cm-+dm1 for m>15
=aom+bm+cm+dm+11eg for m=15
=aom+bm+cm+dms1 for 9<<m<15
=agm+bmtcem+dmiiter for m=9
=agm+bm-+Cm+dmi1 for 6<<m<9

=azm+bm+CM+dm+1+f4+es for m=6.

The formula of rank mgm_; (H*) is the same as above, but it is primed. If 4dm—1>4k—1,
the homotopy exact sequence of the fibering (G*, H-, X) shows that rank zym._; (G*)=
rank zngm_y (H*). Consider the case when # is is greater than 15. Then we have aum+
bm—+cm-tdmi1=amm’ +bm’ +cm’ +dm.1’. Since the factor SU(2n) of H* can be mapped non-
trivially only SU(2%) of G*,‘ proposition 1 and Irréducibility imply that @z»=0. Similar
argument shows that dm,;’=0. It is not difficult to show that azm=cx» and dm.1=>bn’.

Next we consider the case when # is 15. Then we have azy+bi5+c15+dis+es=az’
+b15’ +c15’ +dig’ +e's.  Since Ej is not mapped non-trivially into SU(30), Spin(31), Sp(15)
and Spin(32), we have eg=eg’ =0, agy=c15’ and djg=>by5’. By the same arguments as above,
it is shown that
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Aom= cm’ and dm;+1= bm’ for m> 6
and
Aom=Cnm/’, dm+1 =bm’ and 86=f4’ for m=6.

We will prove that asm=c»’ and eg=f4'=0 for both cases. Firstly consider the case when
n is greater than 6; let a factor Sp(m) of H* be mapped non-trivially into an SU(2m). It -
is not difficult to show that no factor H; of H* different from T can be mapped into SU(2m)
in the way that H; X Sp(m) is mapped non-trivially into SU(2m) (cf. remark below lemma
1). Consider the following sequence;

w5(Sp(m) X Te)—>n5 (SUC2Zm))——>n5 (SUC2m) [Sp(m) X T)—>my (Sp(m) X T*),

where ¢ is 0 or 1. Since =5 (Sp(m) X T=) and =y (Sp(m) X T¢) are finite groups, the image
of the homomorphism 75 (SU(2m)—>ns (SU(2m)/Sp(m) X T¢) is of rank 1. Combining
the fact that =5 (X)=0, lemma 1 and irreducibility, it is concluded that eom=cn’=0. By
the similar argument, it is easy to show that ¢; and f,/ vanish when m is 6. When m is
at least 6. When m is at least 6, there is no non-tritial homomorphism of Spin(2m--1)
into Spin(2m+2) other than the standard one (because of representation theory). Hence
we have obtained the factorization of G* and H* such that

G*=Gy x Spin(2m+2) and H*=H; x Spin(2mx 1),

where the compositions H;—> H*—> G*—— Spin(2m+2) and Spin(2m+1)— H*—> G*
—> G, are trivial. Repeating this procedure, we shall obtain the factorization of G* and
H* as stated in Proposition 2. This completes the proof of proposition 2.

3. The proof of Propdsition 3

In this section, we will prove Proposition 3 only when # is greater than 9. Let H; and
G, be factor of H, and G, respectively and the composition ¢;: H;—> H*—G*—> Gy
non-trivial. It is known that n(H,) is at least »(Gy) and n(H;) is equal to #(G;) only
when (H;, Gy, ¢1) is the following triples;

case | (1) (2) (3) (4) (5) (6)
H Sp() G, Spin(7) G, F, Spin(2p+1)
G SU2l) | Spin(7) | Spin(8) | Spin(8) E; Spin(2p+2)

141 o ¢2 s ©+N | o+N o+ N

Casel. Since ny(Sp(1))=2, or n(SU(2D))=2Z(9p) and gy (X)=2, or 0, lemma 1 shows
that this case is impossible. ' ' ‘

By similar arguments, it is easy to show that case 3, case 4, case 2 and case 5 are all
impossible.
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Case 6. Considering the following table of homotopy groups, one can conclude that this
case is also impossible.

To1+4(SPin(2l+1))  ma44(Spin(20+2)) o1+4(X)
n=2[+3 2[+4 2[4+5
I=0(4) 0 AR Z ZePZ, Zg
=14 Zgq(d=1, 2) ZDZua Z, Zy, ZyDZ,
I=2(4) Zy Z19DZy Z3 Z3 Zg
1=34) Zs NV ZDZ, Z Zs.

4. The proof of Lemma 2

In this section, we restrict ourself in the case when # is greater than 16. Let 75(q)
and n,'(g) denote the number of the factors Z; in np (G*) and =np (H*) respectively.
From the homotopy exact sequence of the fibering (G*, H~, X), we have

1) ng(2)=n'g(2), ii) ng(8)=n's(8), 1iii) 713(2)=n"13(2) and iv) ne(3)=ny'(3).
These imply that

1) agtay=as’ +a, i) ay=ay, iil) 2a,+a3=2a,'+as’ and iv) ax+az+ 2,
=ay +as'+g7.

Hence we have that a,=a,/, az=a3’, ay=a, and g,=g5’. It is not difficult to show that a,,
ag and g, vanish. It is also easy to show that as-+ag=as' +as and hence as=as=as’' =ag
=0. This completes the proof of (1).

We omit the proof of equalities (2), (3), ......... , (9), since they are tedious, but not
difficult.

5. The proof of Proposition 4

Let G; be one of factor of G, different from Spin (n). Then if no factor of H, is
mapped non-trivially into Gj, there is a surjective homomorphism of #:(X) onto =:(Gy)
for every i=3. This follows from lemma 1. Therefore, to prove proposition 4, it is
sufficient to show that there exists an integer i satisfying the condition (§) =:(X) is not
mapped surjectively onto wi(Gy).

If G, is SU(2k), or Sp(k), then i=5 satifles the condition (§). When G is Spin(k)
we can also find an integer i satisfiying the condition (§). When G: is E7, i=12 satisfies
the condition (#).

Consider the case when G; is Es. First we will prove that eg=0 if # is smaller than
64. In fact, by representation theory, it is clear that E; and Es can not be mapped non-
trivially in Spin(k), where £<64. Considering homotopy groups m2(E7) and m15(Eg), it
is impossible that E; is mapped non-trivially into Ezg. Hence we have e;=ez=¢;" =¢3'=0.
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Therefore we may consider only the case when 7 is greater than 64, By a result in [3], it
is known that for prime p=31, n;(Eg)RZp=nq(SEX S5X ......... X SRZp. It is proved in
[4] that for odd prime p, k=1 and i=3, 7k(p_1)-14+1(S)RZp=0 and in particular, =g(S3)
RZ31#0. Since n is greater than 64, ng(X)®7Z5=0. Hence i=62 satifies the condition
(#). This completes the proof of Proposition 4.

6. Concluding remarks

1. Suppose that G is any compact connected Lie group such that SO(#n)CGCSO(n)
X SO(n—Fk), then it is easy to see that G acts on SO(%)/SO(k) transitively. Hsiang and
Su have proved that for many values of # and %k (k#2) every transitive and effective
action on SO(n)/SO(k) is differentiably equivalent to the above example. However we
do not know whether the same result holds in the case k=2.

2. We have ommited the proof of the theorem when the rank of Spin(#n) is smaller
than 8. When # is small, we can prove the theorem more directly by counting the factors
G* and H*.

3. We have omitted the proof of the theorem when 7 is even. When # is even, we
can prove the theorem in the similar method.
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