A note on transitive and irreducible action on the Stiefel manifold $V_{n, n-2}$

By

Kojun ABE and Tsuyoshi WATABE

(Received October 1, 1971)

1. Introduction

The purpose of this note is to prove the following

THEOREM. Let G be a compact connected Lie group. If G acts on X=SO(n)/SO(2) continuously, transitively and irreducibly, then G is locally isomorphic to SO(n) and isotropy subgroup is SO(2).

This work was stimulated by the work of W. Y. Hsiang and J. C. Su [1]. They have proved that if (n, k) satisfies some conditions, which exclude the case k=2, the standard action (SO(n), SO(k), SO(n)/SO(k)) is the only effective and irreducible transitive action on SO(n)/SO(k). We do not know whether in our case isotropy subgroup is conjugate to the standardly embedded SO(2).

2. Statement of results

We consider a transitive action (continuous) of a compact connected Lie group G on X=SO(n)/SO(2) with isotropy subgroup H. A transitive action of G is said to be irreducible when no proper normal subgroup of G acts transitively. Recall that given a compact connected Lie group G, one can always write $G=T^r \times G_1 \times \ldots \times G_s/N$, where T^r is r-dimensitional torus, G_i' s are simply connected simple Lie groups and N is a finite normal subgroup of $G^*=T^r \times G_1 \times \ldots \times G_s$. Let $p: G^* \longrightarrow G$ the canonical projection. Then G^* acts transitively on X in a natural way with isotropy subgroup $H^-=p^{-1}(H)$. Since X is simply connected, H^- is connected, and hence $H^-=H^*/M$, where $H^*=T^t \times H_1 \times \ldots \times H_u$ and M is a finite normal subgroup of H^* .

Considering the following parts of the homotopy exact sequences of the fibering (G^*, H^-, X) ;

$$0 \longrightarrow \pi_2(X) \longrightarrow \pi_1(H^-) \longrightarrow \pi_1(G^*) \longrightarrow \pi_1(X)$$

and

$$\pi_4(X) \longrightarrow \pi_3(H^-) \longrightarrow \pi_3(G^*) \longrightarrow \pi_3(X) \longrightarrow 0,$$

we have that u=s-1 and t=r+1.

We will prove the following

PROPOSITION 1. If G^* and H^* contain a factor G_k such that the composition $G_k \longrightarrow H^* \longrightarrow \overline{H} \longrightarrow G^* \longrightarrow G_k$ is epimorphic, then the normal subgroup G^*/G_k of G^* acts transitively on X.

This follows immediately from the result in [2] which says; the restriction of the natural action $G \times G/H \longrightarrow G/H$ to a subgroup K of G is transitive if and only if KH=G.

According to proposition 1, it is easy to show that $G^*/T^r = G_1 \times \dots \times G_s$ acts transitively on X. Hence by irreducibility we may assume that $G^* = G_1 \times \dots \times G_s$ and $H^* = T \times H_1 \times \dots \times H_{s-1}$.

Recall that the rational cohomology ring of a compact connected Lie group G is an exterior algebra $\Lambda_Q(x_1, x_2, \ldots, x_r)$, where x_i' s are of odd degree and r is the rank of G. Let n(G) be the highest degree of generators x_1, \ldots, x_r . For reference, we list below the degree and number of primitive generotors of simple Lie groups;

 A_n :
 3, 5, 7,, 2n+1

 B_n :
 3, 7, 11,, 4n-1

 C_n :
 3, 7, 11,, 4n-1

 D_n :
 3, 7, 11,, 4n-1

 D_n :
 3, 7, 11,, 4n-5, 2n-1

 G_2 :
 3, 11

 F_4 :
 3, 11, 15, 23

 E_6 :
 3, 9, 11, 15, 17, 23

 E_7 :
 3, 11, 15, 19, 23, 27, 35

 E_8 :
 3, 11, 23, 27, 35, 39, 47, 59

It is well known that $\pi_i(G)\otimes Q \neq 0$ if *i* is equal to some degree of x_i and $\pi_i(G)\otimes Q = 0$ otherwise, where *Q* is the field of rationals [2].

By the following proposition, we may assume that $n(G^*)$ and $n(H^*)$ are not greater than n(Spin(n)).

PROPOSITION 2. G^* and H^* are factored as follows;

 $G^* = G_0 \times Spin(2i_1)^{\epsilon_1} \times Spin(2i_2)^{\epsilon_2} \times \dots \times Spin(2i_k)^{\epsilon_k}$

 $H^* = H_0 \times Spin \ (2i-1)^{\epsilon_1} \times \dots \times Spin \ (2i_k \times 1)^{\epsilon_k}$

where ε_j are some integer, $n < 2i_1 - 1 < \dots < 2i_k - 1$ and $n(G_0)$, $n(H_0) \le n(Spin(n))$. Moreover let f_{ij} denote the composition $H_j \longrightarrow H^* \longrightarrow G^* \longrightarrow G_i$; then the matrix (f_{ij}) is diagonal.

Let G_0 and H_0 be factored as follows;

 $G_0 = G_1 \times G_2 \times \dots \times G_s$ and $H_0 = T \times H_1 \times \dots \times H_{s-1}$, respectively. We will prove the following

the win prove the following

PROPOSITION 3. If a factor $H_j \neq Spin(n)$ is mapped non-trivially into a factor G_i of G_0 , then we have $n(H_j) \leq n(G_i)$.

To prove these propositions, we need the following lemma which is useful in the

10

$$\begin{array}{ccc} H^* \longrightarrow G^* \\ p'_1 & & \downarrow p_1 \\ H_1 \longrightarrow G_1. \end{array}$$

This diagram is commutative if the composition; $H^*/H_1 \longrightarrow H^* \longrightarrow G^* \longrightarrow G_1$ is trivial. We will define an map h: $G^*/H^- \longrightarrow G_1/f(H_1)$ such that the diagram;

$$\begin{array}{ccc} G^* & \longrightarrow & G^*/H^- \\ p_1 & & \downarrow & h \\ G_1 & \longrightarrow & G_1/f(H_1) \end{array}$$

is commutative and $h_{\sharp}: \pi_i(G^*/H^-) \longrightarrow \pi_i(G_1/f(H_1))$ is surjective into the image of $(\pi_1)_{\sharp}$ for $i \ge 3$. Define $h(gH^-) = p_1(g)f(H_1)$. In fact h is well defined; let $g_1H^- = g_2H^-$. Then we have $g_1^{-1} g_2 \in H^-$, and hence we have $p_1(g_1)^{-1} p_1(g_2) \in p_1(H^-) \subseteq f(H_1)$. Consider the following diagram of homotopy groups;

Let x be in image of $\pi_{1\sharp}$. Choose y in $\pi_i(G_1)$ such that $x = \pi_{1\sharp}(y)$. Since $p_{1\sharp}$ is sujective, we find z in $\pi_i(G^*)$ such that $p_{1\sharp}(z) = y$. Put $w = \pi_{\sharp}(z)$, and we have $h_{\sharp}(x) = x$. This implies that h_{\sharp} is surjective onto the image of $\pi_{1\sharp}$.

Thus we have proved the following

LEMMA 1. Let G^* and H^* be factored into product $G_1 \times G_2$ and $H_1 \times H_2$ resp., where H_1 and G_1 are semi-simple. Then if the composition; $H_2 \longrightarrow H^* \longrightarrow G^* \longrightarrow G_1$ is trivial, there is defined a map $h: G^*/H^- \longrightarrow G_1/f(H_1)$ such that $h_*: \pi_i(G^*/H^-) \longrightarrow \pi_i(G_1/f(H_1))$ is surjective onto the image of the homomorphism $\pi_i(G_1) \longrightarrow \pi_i(G_1/f(H_1))$.

REMARK. To complete the proof of the above lemma, we need the following fact; let G_1 and G_2 be simple Lie groups and f a homomorphism of $G_1 \times G_2$ into a compact connected Lie group G. Then if f is non-trivial, f is locally isomorphic. The proof of this fact is not difficult.

We shall consider the factor H_0 and G_0 of H^* and G^* in proposition 2. Let $a_i, a_i'; b_i$, $b_i'; c_i, c_i'; d_i, d_i'; g_2, g_2'; f_4, f_4'; e_6, e_6'; e_7, e_7'$ and e_8, e_8' be the number of factors SU(i), $Spin(2i+1), Sp(i), Spin(2i+2), G_2, F_4, E_6, E_7$ and E_8 in G_0 and H_0 respectively. We will prove the following. LEMMA 2. We have the following equalities;

(1)
$$a_i = a_i' = 0$$
 for $i = 2, 3, 4, 5, 6$

- (2) $a_{2i+1}=0$
- (3) $g_2 = g_2' = 0$
- (4) $b_i = b_i' = 0$ for i = 2, 3, 4, 5
- (5) $d_i = d_i' = 0$ for i = 4, 5
- (6) $f_4 = f_4' = 0$
- (7) $e_6 = e_6' = 0$
- $(8) \quad 2d_6 + b_6 + e_7 = 2d_6' + b_6' + e_7'$
- $(9) \quad e_7 + e_8 = e_7' + e_8'.$

Modulo verifications of the above propositions and lemmas, we will prove the theorem mentioned in introduction.

Let G_0 and H_0 be factored as follows; $G_0 = G_1 \times \dots \times G_s$ and $H^* = T \times H_1 \times \dots \times H_{s-1}$ We assume that $n(H_1) \leq n(H_2) \leq \dots \leq n(H_{s-1})$. Let G_{i_1}, \dots, G_{i_t} be the factors of G_0 into which H_{s-1} is mapped non-trivially. We will prove that t is at most 1. Assume that $n(G_{i_1}) \leq \dots \leq n(G_{i_t})$. Put $m = n(G_{i_1})$. By proposition 3, $n(H_{s-1})$ is smaller than m. Let H_{j_1}, H_{j_u} be the simple factors of H_0 which are mapped non-trivially into $G_{i_1} \times \dots \times G_{i_t}$.

We are concerned only in the case when n is odd.

CASE 1. Gij is a classical group for all ij.

Combining the facts $\pi_m(H_{j_1} \times \ldots \times H_{s-1}) \otimes Q = 0$, $\pi_m(G_{i_1} \times \ldots \times G_{i_t}) \otimes Q \supseteq tQ$ and $\pi_m(X) \otimes Q = Q$ and Lemma 1, we have that t is at most 1

CASE 2. Gi1 is exeptional and all other Gij are classical.

This case is similar to the case 1.

CASE 3. G_{i_1} is classical and some G_{i_j} is exeptional.

We may assume that $n(H_{s-1}) \ge 19$. In fact, $n(H_{s-1}) < 19$, then H_0 does not contain Spin(12), Spin(13) and E_7 , E_8 , and hence $d_6 = b_6 = e_7 = e_8 = 0$. CASE 3-1. Some G_{ij} is E_7 .

Since $n(E_7)=35$, the possible value of m is 31, 27 and 23. When m=23, or 27, we have $\pi_m(G_{ij})\otimes Q \neq 0$ for all G_{ij} . The argument similar to the case 1 shows that t is at most 1. Consider the case m=31. If $n(H_{s-1})\leq 23$, $\pi_{27}(G_{ij})\otimes Q \neq 0$, and hence we have $t\leq 1$. If $n(H_{s-1})=27$, H_{s-1} is one of Spin(15), Spin(16), Sp(7) and SU(14). These cannot be mapped non-trivially into E_7 .

CASE 3-2. Some G_{ij} is E_8 .

Since $n(E_8) = 59$, we have $m \le 55$. We may assume $m \ge 23$. The similar arguments show that t is at most 1.

Thus we have proved that the factor H_{s-1} is mapped non-trivially into at most one factor, say $G_{r(s-1)}$. Next consider the second factor H_{s-2} . If $n(H_{s-2})=n(H_{s-1})$, it is similarly proved that H_{s-2} is mapped only one factor, say $G_{r(s-2)}$ non-trivially. Assume that $n(H_{s-2}) < n(H_{s-1})$. Let G_{i_1}, \ldots, G_{i_t} be the factors of G_0 into which H_{s-2} is mapped

12

non-trivially, and $H_{j_1} \times \ldots \times H_{j_u} \times H_{s_{-2}}$ the factor of H_0 which is mapped into $G_{i_1} \times \ldots \times G_{j_t}$. It is easy to show that t is at most 2. Let $H_{s_{-2}}$ be mapped into $G_1 \times G_2$ non-trivially. Then $H_{s_{-1}}$ is mapped into G_1 , or G_2 . For if $H_{s_{-1}}$ is not mapped into neither G_1 nor G_2 , we have that $n(H_i) \leq n(H_{s_{-2}})$ for every H_i which is mapped $G_1 \times G_2$. This is impossible.

Summing up, we have obtained a correspondence (not neccessarily injective) τ : [1, 2,...., s-1] \longrightarrow [1, 2,...., s] such that H_{s-1} is mapped inte $G_{r(s-1)}$ non-trivially, H_{s-2} is mapped into $G_{r(s-1)}$, $G_{r(s-2)}$ non-trivially and so on. In other words, the matrix (f_{ij}) is a triangular matrix, where f_{ij} is the composition $H_j \longrightarrow H^* \longrightarrow G^* \longrightarrow G_i$. Therefore there is at least one factor of G_0 such that no factor of $H_0 \neq T$ is mapped non-trivially. The following proposition completes the proof of the theorem.

PROPOSITION 4. Let G_1 be one of simple factor of G (different from Spin(n)). Then there exists one simple factor H_1 of H_0 such that H_1 is mapped into G_1 non-trivially.

2. The proof of Proposition 2

In this sections, we will restict ourselves in the case when n is odd: n=2k+1. Assume that $n(G^*)=4m+1$. If 4m+1>4k-1, then we have that rank $\pi_{4m+1}(G^*)=\operatorname{rank} \pi_{4m+1}(H^*)$, and hence $a_{2m+1}=a_{2'm+1}$. Since the factor SU(2m+1) of H^* is mapped only into the factor SU(2m+1) of G^* , proposition 1 and the irreducibility concludes that $a_{2m+1}=a_{2m+1'}=0$. Therefore we may assume that $n(G^*)\leq 4m-1$. It is easy to show that rank $\pi_{4m-1}(G^*)$ is given by the following formula;

rank
$$\pi_{4m-1}(G^*) = a_{2m} + b_m + c_m + d_{m+1}$$
 for $m > 15$
 $= a_{2m} + b_m + c_m + d_{m+1} + e_8$ for $m = 15$
 $= a_{2m} + b_m + c_m + d_{m+1}$ for $9 < m < 15$
 $= a_{2m} + b_m + c_m + d_{m+1} + e_7$ for $m = 9$
 $= a_{2m} + b_m + c_m + d_{m+1}$ for $6 < m < 9$
 $= a_{2m} + b_m + c_m + d_{m+1} + f_4 + e_6$ for $m = 6$.

The formula of rank $\pi_{4m-1}(H^*)$ is the same as above, but it is primed. If 4m-1>4k-1, the homotopy exact sequence of the fibering (G^*, H^-, X) shows that rank $\pi_{4m-1}(G^*) =$ rank $\pi_{4m-1}(H^*)$. Consider the case when *n* is is greater than 15. Then we have $a_{2m} + b_m + c_m + d_{m+1} = a_{2m}' + b_m' + c_m' + d_{m+1}'$. Since the factor SU(2n) of H^* can be mapped nontrivially only SU(2n) of G^* , proposition 1 and Irreducibility imply that $a_{2n}=0$. Similar argument shows that $d_{m+1}'=0$. It is not difficult to show that $a_{2m}=c_n$ and $d_{m+1}=b_m'$.

Next we consider the case when *n* is 15. Then we have $a_{30}+b_{15}+c_{15}+d_{16}+e_8=a_{30}'$ $+b_{15}'+c_{15}'+d_{16}'+e_8'$. Since E_8 is not mapped non-trivially into SU(30), Spin(31), Sp(15)and Spin(32), we have $e_8=e_8'=0$, $a_{30}=c_{15}'$ and $d_{16}=b_{15}'$. By the same arguments as above, it is shown that

$$a_{2m} = c_{m'}$$
 and $d_{m+1} = b_{m'}$ for $m > 6$

and

$$a_{2m} = c_{m'}, d_{m+1} = b_{m'} \text{ and } e_6 = f_4' \text{ for } m = 6.$$

We will prove that $a_{2m} = c_{m'}$ and $e_6 = f_4' = 0$ for both cases. Firstly consider the case when *n* is greater than 6; let a factor Sp(m) of H^* be mapped non-trivially into an SU(2m). It is not difficult to show that no factor H_1 of H^* different from *T* can be mapped into SU(2m)in the way that $H_1 \times Sp(m)$ is mapped non-trivially into SU(2m) (cf. remark below lemma 1). Consider the following sequence;

$$\pi_{5}(Sp(m) \times T^{\epsilon}) \longrightarrow \pi_{5}(SU(2m)) \longrightarrow \pi_{5}(SU(2m)/Sp(m) \times T^{\epsilon}) \longrightarrow \pi_{4}(Sp(m) \times T^{\epsilon}),$$

where ε is 0 or 1. Since $\pi_5 (Sp(m) \times T^{\varepsilon})$ and $\pi_4 (Sp(m) \times T^{\varepsilon})$ are finite groups, the image of the homomorphism $\pi_5 (SU(2m) \longrightarrow \pi_5 (SU(2m)/Sp(m) \times T^{\varepsilon}))$ is of rank 1. Combining the fact that $\pi_5 (X)=0$, lemma 1 and irreducibility, it is concluded that $a_{2m}=c_m'=0$. By the similar argument, it is easy to show that e_6 and f_4' vanish when m is 6. When m is at least 6. When m is at least 6, there is no non-tritial homomorphism of Spin(2m+1)into Spin(2m+2) other than the standard one (because of representation theory). Hence we have obtained the factorization of G^* and H^* such that

$$G^* = G_1 \times Spin(2m+2)$$
 and $H^* = H_1 \times Spin(2m \times 1)$,

where the compositions $H_1 \longrightarrow H^* \longrightarrow G^* \longrightarrow Spin(2m+2)$ and $Spin(2m+1) \longrightarrow H^* \longrightarrow G^* \longrightarrow G_1$ are trivial. Repeating this procedure, we shall obtain the factorization of G^* and H^* as stated in Proposition 2. This completes the proof of proposition 2.

3. The proof of Proposition 3

In this section, we will prove Proposition 3 only when n is greater than 9. Let H_1 and G_1 be factor of H_0 and G_0 respectively and the composition $\varphi_1: H_1 \longrightarrow H^* \longrightarrow G^* \longrightarrow G_1$ non-trivial. It is known that $n(H_1)$ is at least $n(G_1)$ and $n(H_1)$ is equal to $n(G_1)$ only when (H_1, G_1, φ_1) is the following triples;

case	(1)	(2)	(3)	(4)	(5)	(6)	
Η	Sp(l)	G2	Spin(7)	<i>G</i> ₂	F4	Spin(2p+1)	
G	SU(2l)	Spin(7)	Spin(8)	Spin(8)	E_6	Spin(2p+2)	
φ_1	φ_1	Ψ ₂	φ_3	$\varphi_2 + N$	$\varphi_4 + N$	$\varphi_1 + N$	

CASE 1. Since $\pi_{2l}(Sp(l)) = Z_2$ or $\pi_{2l}(SU(2l)) = Z_{(2l)!}$ and $\pi_{2l}(X) = Z_2$ or 0, lemma 1 shows that this case is impossible.

By similar arguments, it is easy to show that case 3, case 4, case 2 and case 5 are all impossible.

14

CASE 6. Considering the following table of homotopy groups, one can conclude that this case is also impossible.

	$\pi_{2l+4}(Spin(2l+1))$	$\pi_{2l+4}(Spin(2l+2))$	$\pi_{2l+4}(X)$		
			n = 2l + 3	$2l\!+\!4$	2l + 5
<i>l</i> =0(4)	0	Z_{12}	Z_2	$Z_8 \oplus Z_2$	Z_8
$l \equiv 1(4)$	$Z_{8d}(d=1, 2)$	$Z_4 \oplus Z_{24d}$	Z_2	Z_4	$Z_2 \oplus Z_2$
$l \equiv 2(4)$	Z_2	$Z_{12} \oplus Z_2$	Z_2	Z_{2}^{3}	Z_8
<i>l</i> =3(4)	Z_8	$Z_{24} \oplus Z_8$	$Z_2 \oplus Z_2$	Z_4	Z_2 .

4. The proof of Lemma 2

In this section, we restrict ourself in the case when *n* is greater than 16. Let $n_p(q)$ and $n_p'(q)$ denote the number of the factors Z_q in $\pi_p(G^*)$ and $\pi_p(H^*)$ respectively.

From the homotopy exact sequence of the fibering (G^*, H^-, X) , we have

i) $n_8(2) = n'_8(2)$, ii) $n_8(8) \ge n'_8(8)$, iii) $n_{13}(2) = n'_{13}(2)$ and iv) $n_9(3) = n_9'(3)$.

These imply that

i) $a_3+a_4=a_3'+a_4'$, ii) $a_4 \ge a_4'$, iii) $2a_2+a_3=2a_2'+a_3'$ and iv) $a_2+a_3+g_2$ = $a_2'+a_3'+g_2'$.

Hence we have that $a_2=a_2'$, $a_3=a_3'$, $a_4=a_4'$ and $g_2=g_2'$. It is not difficult to show that a_2 , a_3 and g_2 vanish. It is also easy to show that $a_5+a_6=a_5'+a_6'$ and hence $a_5=a_6=a_5'=a_6'$ =0. This completes the proof of (1).

We omit the proof of equalities (2), (3),, (9), since they are tedious, but not difficult.

5. The proof of Proposition 4

Let G_1 be one of factor of G_0 different from Spin (n). Then if no factor of H_0 is mapped non-trivially into G_1 , there is a surjective homomorphism of $\pi_i(X)$ onto $\pi_i(G_1)$ for every $i \ge 3$. This follows from lemma 1. Therefore, to prove proposition 4, it is sufficient to show that there exists an integer *i* satisfying the condition (\ddagger) $\pi_i(X)$ is not mapped surjectively onto $\pi_i(G_1)$.

If G_1 is SU(2k), or Sp(k), then i=5 satisfies the condition (#). When G_1 is Spin(k) we can also find an integer *i* satisfying the condition (#). When G_i is E_7 , i=12 satisfies the condition (#).

Consider the case when G_1 is E_8 . First we will prove that $e_8=0$ if n is smaller than 64. In fact, by representation theory, it is clear that E_7 and E_8 can not be mapped nontrivially in Spin(k), where $k \leq 64$. Considering homotopy groups $\pi_{12}(E_7)$ and $\pi_{12}(E_8)$, it is impossible that E_7 is mapped non-trivially into E_8 . Hence we have $e_7 = e_8 = e_7' = e_8' = 0$. Therefore we may consider only the case when *n* is greater than 64, By a result in [3], it is known that for prime $p \ge 31$, $\pi_q(E_8) \otimes Z_p = \pi_q(S^3 \times S^5 \times \dots \times S^{59}) \otimes Z_p$. It is proved in [4] that for odd prime p, $k \ge 1$ and $i \ge 3$, $\pi_{2k(p-1)-1+1}(S^i) \otimes Z_p = 0$ and in particular, $\pi_{62}(S^3) \otimes Z_{31} \neq 0$. Since *n* is greater than 64, $\pi_{62}(X) \otimes Z_{31} = 0$. Hence i = 62 satisfies the condition (**#**). This completes the proof of Proposition 4.

6. Concluding remarks

1. Suppose that G is any compact connected Lie group such that $SO(n) \subset G \subset SO(n) \times SO(n-k)$, then it is easy to see that G acts on SO(n)/SO(k) transitively. His and Su have proved that for many values of n and $k \ (k \neq 2)$ every transitive and effective action on SO(n)/SO(k) is differentiably equivalent to the above example. However we do not know whether the same result holds in the case k=2.

2. We have ommitted the proof of the theorem when the rank of Spin(n) is smaller than 8. When n is small, we can prove the theorem more directly by counting the factors G^* and H^* .

3. We have omitted the proof of the theorem when n is even. When n is even, we can prove the theorem in the similar method.

NIIGATA UNIVERSITY

References

- [1] HSIANG, W. Y. and Su, J.: On the classification of transitive effective action on Stiefel manifolds. Trans. Amer. Math. Soc. (1968) 322-336.
- [2] ONISCIK, A. L.: Transitive compact transformation groups. Amer. Math. Soc. Translations, Ser. 2, vol. 55, 153–194.
- [3] SERRE, J. P.: Groupes d'homotopie et classes de groupes abéliens. Ann. of Math. 58(1953) 258-294.
- [4] TODA, H.: On unstable homotopy groups of sphere and classical groups. Proc. Nat. Acad. Sci. U.S.A. 46 (1960) 1102–1105.