On the abstract quasi-linear differential equation

By

Michiaki WATANABE

(Received October 31, 1969)

1. Introduction

The present paper is concerned with the solution of the Cauchy problem for the
abstract quasi-linear evolution equation

¢ —Lu(t)+AG u(t NDu(I=F¢ u(),  0<t<T,

€)) u(0)=¢

in a Banach space X, where A(¢, p) is, for every ¢ €[0, T] and pE X, not necessarily a
bounded linear operator acting in X and F(¢, p) is a non-linear perturbation which takes
values in X.

We have tried to integrate the above equation in the case when A(#, p) does not
contain p : A%, p)=A(¢) ([51). In this paper, however, we assume neither this nor the
condition that the domain D(¢#)=D(A{, p)) of A(¢, p) is independent of ¢.

To this end we shall consider the following integral equation associated with (1)-(2):

@ e(t)=V{, 0; v>¢+§;v<t, s; )FCs, v(s))ds, 0<t<T,

wher V({¢, s; v) is, for a certain function »( + ) on [0, T'] to X, a bounded-operator valued
function on 0 < s <t <T satisfying among other things (Definition 1)

%—V(t’ s; )&=V, ;DA v(s))eg

for any g&D(s).

Here we call v(¢) a mild solution of (1)-(2) in [0, T'] if »(¢) is strongly continuous
on [0, T] and satisfies (3). As is verified in Proposition, a mild solution »(¢) in [0, T] is
also a strict solution (Definition 2) in [0, TV]1C[0, T] as long as F({¢, »(¢)) is strongly
continuous on [0, 7Y ] if (¢ ) belongs to D(¢) and is strongly differentiable for 0<¢ <T".

It is our main object of this article to construct a solution of (1)-(2) as the strong
limit of the sequence #,,(¢), m=0, 1, -----. defined by
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2 tm () HAC Ui (U (I =FCl, thr (1)), OI<T,

um(0)=go, m=1, 2, ------

and

u(t)=9.

This argument would be admitted to be very natural. To make this sketch possible, we
suppose that A4, p) and F(¢#, p) satisfy for example the assumptions (A), (B) and (O),
and use the semi-group method, above all, T. Kato and H. Tanabe’s theory on abstract
linear evolution equations ([1], [3]). Namely A(#, ¢) are, for a fixed ¢&X, assumed to
fulfil the hypothesis on A(#) in H. Tanabe [3] and to be densely defined uniformly on
[0, T in the sense that for any xEX exp(—4A(, ¢))x converges to x uniformly on
[0, T] ash }O0.

But the solution obtained is merely a mild one although it is strongly Lipshitz conti-
nuous in #. The unique existence of the mild solution »(¢) of (1)-(2) in [0, To]C[0, T1]
with an arbitrary initial value ¢&=D(0) is established in Theorem 1. While Theorem 2
shows that if this mild solution »(¢) is strongly continuously differentiable on [0, To]C
[0, T, then it becomes a strict one there and further the associated operator V(% s; v)
coincides with the evolution operator U(¢, s; v) to the linear equation

TjT”(t>+A<t’ v(t))u(t)=0, 0t < T,
that is,
V(, s;0)=exp(—(—s)AQ, v(t)))-l-giexp(—(t—f)fl(t» v(ONR(, 53 v)dr,

where R(%, s; v) is the solution of the integral equation
R, s;v)=—(9/0t+3/3s)exp(—(t—s)Al, v(¢)))

—Si (8/8t+8/0r)exp(— (E—1A, (¢ Y)DR(r, s; v)dr.

2. Definitions and assumptions

We begin this section with the following definitions:

Definition 1. We call v(t) a mild solution of (1)-(2) in [0, T7]if
(1) o(@) is strongly continuous on [0, T],
(i) F@,v(t)) is strongly integrable on [0, T] and v(¢) satisfies

2(£)=V(E 0; v)go+8:)V(t, 53 9)FCs, v(s))ds, 0<t<T,

where V(¢, s;v), 0<s <t <T is a family of bounded operators on X to X and has the



properties:
A%  V(, s;v) is strongly continuous for 0<s <<t <T;
@ Vi, r; )V, s; )=V, s;v), V(r, r;v)=1I,
3%  for any gED(s), s—EToh“l{V(t, s+h; V)=V, s; v)g exists and is equal to

V&, s; vDACs, v(s))e.

Definition 2. We call v(t) a strict solution of (1)-(2) in [0, T] if
(i) o(t) is strongly continuous on [0, T] and strongly differentiable in t&(0, T,
(i) for each t=(0, T1, v(t) belongs to D(t), -
(i) o) satisfies (1) and (2).

From the above definitions we can prove

Proposition. Let v(t) be a mild solution of (1)—(2) in [0, T]. Suppose that v(t) belongs
to D(t) and is strongly differentiable or 0<t <T'(LT) and that F(t, v(t)) is strongly
continuous on [0, T'].

Then v(t) is a strict solution of (1)—-(2) in [0, T'].

Proof. For any t =(0, T']

Vs, t56) 0(t)=V(z, 0; )¢ + | Vs, 5300 Cs, v())ds, 0< ¢t << T,
which implies

-V, 00002} =V (=, £ 0)FE o(2)).
Hence, thanks to (3%), we have

VG, £ 05 0()+ V(s 8 DAG, 0001 =V (s, t;FE, 0(4)).

Putting r=¢, we can conclude
Lot +AG o(EDID=Fo(t),  0<t<T"

Throughout this paper we shall make the following assumptions for an arbitrarily
fixed pEX.
(A) Foreach t&[0, T, Ao(t)=A(, ¢) is a closed linear operator whose domain is D(¢)
and satisfies: '

(A. 1) The resolvent set of Ay(¢#) contains a fied closed sector

Y= {z; < arg z2<2n—0) O<o<—5.

For any ¢t&[0, T] and 23] it holds that
le(z—Ao(¢ D) ~HI<M (M>0);
(A. 2) Ay(¢)~1is continuously differentiable in # in the uniform operator topology.
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The range R(stAoct)—l) of stAO(t)—l is contained by D(Ae(£)") and

Ao()” jt Ao(£)~1 is continuous on [0, T'] with nAo(t)P_j_t_Ao(t)—ll| <N (0<p<1, N>0);

(A. 3) ForanyxEX, x,(t)=exp (—hAy(t))x converges uniformly on [0, T'] to x in
the strong topology as 4 | 0 (See [4], Theorem 1).
(B) Foreacht&[0, T] and pEX, A(t, p) is a closed linear operator with the domain
D(t) and fulfils:

1H{AG, p)—AU, D} A UL allpl+lglDlp—ql
for any p, ¢g&=X and ¢t &[0, T1;

If »(¢) is continuously differentiable on [0, 7] in the strong topology, so is
A, u(@)) Ao (#)~!in the uniform operator topology with

2 (G, wC DA} IbAHCE ] +I—5-uCEDID
for any t€[0, T and () EX.
(C) F(@, ) is a function defined on [0, T]x X to X satisfying

IFCG, pY—F&, DI Lc(lpl+laDIp—al,

I1FC, p)—F(s, DILApID ]t —s]* (0<p'<1)
for any p, g&X and ¢, s [0, T].

Here 6, M, N, p and p’ are some constants dependent only on ¢ at the most and a, b, ¢
and d are non-decreasing continuous functions on [0, =) to [0, o0) which generally depend
on ¢. For the sake of simplicity we assume p=p’ with N or d a little changed.

3. Preparatory lemmas

Under the assumptions (A. 1), (A. 2) and (C), the fundamental solution (evolution
operator) Uy(Z, s), 0<s <t <T of

) T w()+AIU(I=F L, 9),  0<t<T
can be constructed in the following manner:

(Unt, ) =exp (—(t—)Ao(t N+ exp(— =N At DR, $)dr,

exp(— (F— DAt = 5oy | €= O2(z—Ao(#)) 1z,

OF < - o . 9
Rit, =33 Ri(t, ), Ryt ) =—(—g—+—5-) exp(— (=)Ao,

| RuC, ={'RiG PRI D k=23, e,
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Whrer I' is a smooth path running in 37 from cce—% to wef. And (1);-(2) admitts a
unique solution in [0, 7] which is given by

u(£)=Uit, Op+{ Ui, FCs, 9)ds.

For the details, see T. KaTo-H. TANABE [1] and H. Tanage [3].

More generally we have

Lemma 1. Let v(¢) be strongly continuously differentiable in t<[0, T] and satisfy
v(0)=¢9E X. Then there exists a positive number Ty with Th<T and the fundamental
solution U (¢, s;v), 0<s<t<T) of

@ LW HAG s DW=, o(1)),  0<E<T,

can be constructed by the formula

UG, 53 0)=exp(— (t— AL, o(¢I)+|. exp(—t=nAE, 0(INRG, 53 ),
R(, s;0) =§1Rk(t. $; 0D,

(4v) \
R(2, s; v)=—~(—(%~+aa—s)exp(—(t-8)A(t, v(t))),

[R*C, 55 v)=S:R1(t, riORE-1(r, 53 0)dr, k=2, 3, cvererees
The unique solution u(t) of (1)s—(2) in [0, T1] is given by
w(t)=UCt, 0; v)go+5:;U(t, s: 0)F (s, v(s))ds.

Proof. Let Kj and K; be the maximum values of [[o(¢)], | —Ed;—v(t)ll respectively:

loOI<LK;, IIT%—v(t) <K, tE[0, T]. Nextlet 77 be the maximum value of positive ¢

satisfying

t<T, oKt leD KM+ D 1< 5.
Then the resolvent of A(¢, v(#))=A;() is given by the Neumann series

(z—Au(2 ))‘1=k‘§(z—Ao( )~ H(AL1(# ) —Ao(2 D) (@—Ao(2)) 1} *
because of the inequality

1CA1(2 D) —Ao(2))(z—Ao(£D) ~H La (K1t [ plD K2(M+1) té%,
which implies
QD lz(z—A1()) 1 <2M, tel0, Thl, zE2..

Moreover we have
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@G.2) 140C2 )°Ar(2 ) (2—A1(2 D)~ Ao(2 ) 7|
<z |Ao(# ) (@—A1(2 D)~ (A1(£ ) —Ao()) (2—Ao(£))MAe(2 )~ 4|
+11Ao(2 D1~ £+%(2—Ao(2 D)1
< Clz|*-5, 2EX] O<La<p<)

if we note
[AoCt )*(2—A1(2 D))~ <2[1 A2 )*(2—Ao(2 D).
In what follows, we use C, Cy, Cy, ------ to denote constants depending only on 6,
M, N, p and T.

From the differentiability of A;(#)A¢(#)~1and A¢(¢)~1! it follows that
A 71=33 Ao(£)~H{(Ao(# ) —Ar(#))Ae(# )T} &
is continuously differentiable in #&[0, 77] in the uniform operator topology and that
dAy(8) = dt={dAo(2) =1/t —Ar(£) -1 E (A (£ DA 1) D }
X 33 (Ao £ ) —A1(E DA 4 t€Lo, Ty1.
For the proof of the above formula, we have only to show that
Z‘.Ao(t) e {CAo(t) —A1(EDA) 1
is continuous on [0, 77] and converges uniformly on [0, 73] to
—A1C# ) A A DS Aot )= A1CE DA )~ b

in the uniform operator topology as #— .

From the above argument it follows tl‘lat R(stAl( t )‘ID)CD (Ao(t)”) holds and

A2 )”—d%-Al(t)—l is continuous in ¢ and that

3.3) 140 (2 )* jt A1(2)HLZ{N+2]Ao( 2 )P~ Hb(Ka1+2K)} <D, telo, 711,
Hence, by (3. 2) and (3. 3) we have
G4 l—=— dt (2—A1(#)) 7 = A2 (2—A1(2 D)~ Ae(#) == Ao(#)* — - A1(t) -1

X A1) @—A1@)) "L CD|z| —% 2E2]

and



3.5 140 (£)"- 4 G—M(t D-UYLCDel "%, 268 (0<a<p).

Consequently making use of (3.1)-(3.5) we can construct the fundamental solution
U2, s;v) by the formula (4), and the unique solution

u(t)=U(, 0; 1))90—|—S£U(t, s;0)0 F(s, v(s))ds.

Lemma 2. If ¢ belongs to D(0), then the solution u(t) in [0, T1] of (1) with u(0)=¢
is strongly differentiable on [0, T1] and satisfies
1) lu(®)—e|<Et,
i) II%u(t)-i-Ao(O)so—F (0, )<l {T—exp (—2A0(0))} (Ao (0 —F(0, D)+ Est® for
all t&[0, T1], where Ey and E, arve constants depending only on Ky, Ky and ¢, and Ky and
K, are the maximum values on [0, T] of |o(O), |dv(¥)/dt| respectively.

Proof. Writing
AOUCE, 0; 0)p=exp(—tA0ADp+ (A1 dexp(—A(#))
— Ao 0)exp(—t4o(0))) o+ Ar(1Dexp(— 1= ARG, 03 v)pds

and marking use of the inequalities

@3.6) 1A1(2>exp(—(t—)A1(£)) —A1(s)exp(— (¢ —$)A1 () KCD(E—s)"1,
@D IR, 55 HIKEU@—$)""1, E=§11(ClDF (pOFT*=D?[I"(kp),

140CE Y RCE, 55 DI IAC £ )RS, 550D+ SiAo(t)"‘RlCt, 73 0)R(r, s; )dr|
<CD{(U=$) = 1+ E( =)~} (0<a<lp),

we obtain |
3.8) 1)} A1(UCs, 0; 9)pds| < ColAu(Oelit+ Dl t°-+ DE| o] £27).
From

IFC, oD <c(KatllelD Kt el +deD T+ 1 FO, @) || =H,
we get :
(3.9 IIS:U(L $; ©)F(s, 0())ds| < Ca(t+Et"~HH.

In view of (3. 8), (3. 9) and the expession
u(£)—p=—‘A1(HUGs, 03 pds+| Ut 53 DFCs, o())ds,
we can conclude i) if we put
(3.10) E;=C5(JAo(0)¢|| T1~*+ Dol +DE| | T*) + Cs(T*~*+ TE) H.
Next, by means of (3. 2) and (3. 4), we have
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(3.11) I {Cz—41(£)) 1= (2=A1() =Y Ao() ]
<| - G 1))~ o)1= Ao(s) 1

+i 1L =AY 1 Ao~ dr <CD{Ct—5)2 2] ~*+ (15| "~
and hence
3.12) I {A1()exp(—#A1(#)) —Ao(0)exp(—240(0))} ¢l < CiDIAe(0) el 2.
Wriﬁng
— | AIOTC, 53 0)FCs, o(s))ds+ (T—exp(—t4o(03)) A0~ FCO, ¢)+FCt, v(8))
= {I—exp(—#A40(0))} (Ao(0)p—F (0, ¢))+exp(—2Ao(0)) (F(2, v(#))—F(0, ¢)}
— | A1(Dexp(— (t=$)A1(D)) (F(s, o)) —F (4, () ds
+ {exp(—1A4:1(#)) —exp(—tAo (0))} F(Z, v(2))
—\!ar as(Dexp(— (t—)MEIRCGs, 7 0IF(r, o())ds
and marking use of (3. 6) and (3. 7), we obtain
(3.13) I {T—exp(—2A0(0))} « Ao(0)—F(0, )+ F(t, v(£))
—S:Al( UL, s; 9)F(s, v(s))ds|
< {I—exp(—1A40(0))} (A0 —F(0, )|
+Csc(Ky+ lol) Kat+c(2Ky) Kyt + d(Kt*+ DHt*+ DEHt.
Noting
|-F-—A1()) 1 Ao~ U<CD2e| -1, 2EX
and taking I'=IUI';UI's, where
1= {re=it; (t—s)"1<r< o}, I'g= {reit; (t—s)~1<r< oo}

and
Fy= {(t—5)~leiv; 0<p<2r—0)},
we have
IR 53 ) Ao )M =[5 | =292 (a=A1(#))~1-A0(#)~1dz]
<CD(t—s)"
and hence

IRICZ, 55 9D Ao() "I RIS, 550) {Ao(s) 1 —Ao(®)} |+ | RI(Z, 55 0)Ae(D) 1|
<CD(t-—-s)".



In view of (4),, we can prove
Rr(t, s; v)=S:Rk~1(t, 7; V)R (r, s; v)dr, k=3, 2, «+-coeet

by induction and hence obtain
| R(¢, s; v)=R'(4, s; v)+S:R(t, r; V) RI(7, s; v)dr.
From this formula and (3. 7) we get
.14 IR, s; ©)Ae(s) ~HIKCD{(E—5)*+ (¢ —s)¥E}.
From
1o C £ )" (2—Ar(E) -1 A(D-ILCDI2|**-, 265 (0<a<lp)
which is true because of (3. 2) and (3. 3), we have similarly
Ao(D*RI(E, s; )A() U KCD(# —5)°~*
and by (3. 14)
(.15 1Ae(D*R(Z, s; 9DA0(s) 1
<[Ao(*RI(H, 53 1D A(SI M+ Si”‘Ao(t)“Rl(t, 7; 0)-R(7, 55 0) Ao(s) "l ar
<CD{(t—s)*~*+D(t—s)?—*+DE(t—s)3—}.
Thus we have by (3. 6), (3. 14) and (3. 15)
(3.16) I S:Al(t)exp( —(t—5)A1(DIR(s, 05 0)pds|| < Coll Ao(0ell {DE* + D% + D2EL}
Collecting (8. 12), (3. 13) and (3. 16) and writing
2 ()= —exp(— tAsOA O~ 4D U 3 DFCs, o()ds
+F (¢, v(#))— {A1(# dexp(—2A1(¢)) —Ao(Dexp(—2A,(0)D} ¢
— | 41(£dexp(— (1= A EDRCs, 0; D)eds,
we can conclude ii) if we put
(8.17)  E;=CyAe(0)e| + Cs {c(K1+ lelD KT~ * +c(2K ) K Tt~ *+d (K1) +DH+ DEHTY}
+ CellA0(0) ¢l DA +DT*+DET?).

From the argument above it will be clear that —d—u( t) is strongly continuous on

dt
[0: Tl]-
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4. Construction of the solution

By virtue of the lemmas established in the previous section, we can construct a sequ-

ence %,,(f), m=0,1, 2, --.-.--.- defined in the following manner:
Mm At (2)[dE+AE, Uy —1(2))Um(E)=F(t, tpy—1(1)), 0<2<Th,
(Dm Uy () =0, m=1, 2, -eeeeree : ‘
u(H=¢, oED(0).
In this section we investigate the strong limit of this sequence and that of the sequ-
ence U,(Z, s), m=1, 2, «ceeveven of the fundamental solutions to (1),,, m=1, 2, -------- con-

structed by (4)., v=u,,.

Lemma 3. There are positive constants Ly, Ly, and Ty dependent only on ¢ such that
the sequence u,,(t), m=0, 1, 2, --------- satisfies

lum(I<Ly and |- &, (I <Ls
Jor all t&[0, Ty] and m=0,1, 2, --------- .
Proof. Let L; and L, be some constants such that
Li>llel, Ly>[A0(0¢—F(0, )|
and 7, be the maximum value of positive ¢ satisfying
(<7, allatleDLM+Di<—, By Lt-<Li—|g|
and I {I—exp(—£A0(0))} (Ao(0D e —F(0, )1l +E2(Ly, Lp)te
<L;—[Ae(0e—F(0, ),

where the functions E; and E, of L; and L, are dependent only on ¢ and are defined by
(3. 10) and (3. 17) together with

D=2N+Cob L1+Ls), E=k§0(clpr(p))k T2 (kp),
H=c(Li+|elDL1+lelD)+adllel) T+ FO, @)l

Arguing (1); and (4)4 and noting, for instance, that D>N and H>|F(, ¢)|,
we have easily ' . : A :

I OISLy,  |-S-u(I<Ls, tEL0, Tol.
If we suppose that

I OI<Ly  I-Fu( DIy tE10, T
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then with aid of Lemma 2 we have
Nk 1(ONLEL( Ly, L2+l <Ly,
”%‘uk+1(t)“£” {I—exp(—140(0))} (Ao(De—F(0, @) |+ Ez(Ly, L2)t*
+140(0e—F(0, )<Ly, te[0, Tol
Thus we have established this lemma by induction.

Lemma 4. #,,(¢) converges uniformly on [0, Ty in the strong topology as m—co and
v(t) =s-lim #,,(t) satisfies
m—>

loCEONLLy, o(2) —v( <Ly | t—s]
for all t, s& [0, To) with v(0)=¢.
Proof. From the definition of #,,, it follows that

l1em 10 ) =6t AL\ NUnCl IECs, um(I—=FCs, wm=a()D} Ids

+S;II Un(t, $){ACs, #4m($)) —ACs, thn—1())} um(S)l\ds, - m=1, 2, -
Estimating as
4.1 1UnCt, SIKCA+ET) =R,
(4.2 140D um(D N KINHAG, 1)) —Ao(D} (D + AU, U -1 tm (D]

<3 1A0C ) um( )| +Lot-H,

we can show that

6 +1C 8=t £ NG, [ () — s (D |, =1, 2, oo
where G=Rc(2Ly) +2R1a(2L,)(Ly+H) and hence that

Nohms 4 1C 8D —wyCEINK LG+ (m+1)
for all VtE[O, Tol and m=0, 1, ----- because of |u () —uo( )| <Lyt

This implies that #,,(¢#) onverges uniformly on [0, T;]. The remaining part of this lemma
will be clear from

#mCEN<Lay |26 ( 2D — (I <La|t—s| and #%,,(0)=¢.
Lemma 5. If m—o0, U, (¢, s) converges uniformly for 0<¢<T, in the strong topology.
Put V¢, s; v) x=s-lim U,(¢, s)x for an arbitrary x=X. Then the bounded operator

m—>co

V{4, s;v) on X to X satisfies (19), (2°) and (3°) of Definition 1.
Proof. First we shall prove that
4.3 |- Un(t, )-Ao( <R,
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for all £, s with 0<{s<¢< T, and some positive constant R, depending only on ¢. Writing
LA, (23D Um(2, $)A0() ~HILIACS, #m(s)) exXp(—(—5)ACS, #m(s))Ao() 1 |
+IHAC, n($))exp(—(E—DAL, um(£)) —AC(S, Un($))exp(—(E—DACS, 4m(s))} Ao(s) 1
+L1A4Ct un(Bexp(—t=PACt 4R, 55 4m)Ao(s)~Har,

we have easily

||—;TU,,,(t, ) *Ao(s)~ 1| < Ca {1+D(t—5)"+D2(t—5)2"+D2E(t —s)%}
< Cg(14-DT*4+D?T?+D?ET%,) =R,
by replacing » with #,, in (3. 2), (3. 11), (3. 14) and (3. 15).
From
Un(t, $)x—U,(t, $)x=Un(t, s)—(¢, $))(x—x,(s))+
+HL 0.0 DA, 4,00~ A, wn (D) U, Y00C)r
and
A( 1)U, )xn(8)=— A, um(#)) —Ao(2)} Un(t, $)24(s)
——‘%Um(t, $)ex5(s)
together with (4. 1) and (4. 3), we get
1Um(t, $)x—Un(t, $)x| <2Ry[x—2,(s) | -|.-2R1de(2L1) S:M Um (1) — () || Ao(D x5 (S) || A7

2Ry |5 —2n(D | +2CM+D R Rpa LD +h =1 4 (8)— wa(r) N driz].

Thus in view of the previous lemma and (A. 3) we can conclude the uniform conver-
gence of U,(Z, s) in the strong topology.
(19) is obvious and so is (29) from

V&, r; )V (r, s; 0)x—V{, s; 0)x=(V(&, r; v)—U,,(t, r)V(r, s; v)x
F U, NV, 85 0)—Up(?, )2 +(Unp(t, $)—V(@, s; 0))%
and
V(r, r; )x—2x=(V(r, r; ) —U,(r, )x.

To complete this lemma we have only to show that (3%) is valid.
Clearly

Aoy~ —Up(t, DA6() 1=\ Uty DA, (1)) Ao(r) 1
+Un(ty D—3-Ao(r)~Y xdr
for 0<s<t<Ty and xEX.
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Hence, from (4. 1) and the compactness in X of the sets
AU, v())A(D~1 1 t€[0, To ]} and {%Ao(t)‘l : telo, To]}
we get

Ao() 15—Vt 53 9) Ao(s)Le= | (V75 DACT, o)A

+V(Q, r; v)%Ao(r)-l} xdr.

Here we have only to note
h=Y{V({&, s+h; v)—V(, s; )} g—V (4, s; A, v(s))g

=h=1"" (V7 DA, 0()A
—V(&, s; A, v(s))Ao(s) 1} Ao(s)gdr
+h—1gz+h V(73 0)—V(t, s+h; v)}—d‘-i—r—Ao(r)-le(s)gdn gED(s).

5. Results and their proofs

Now we shall state main result.

Theorem 1. Under the assumptions (A), (B) and (C) for an arbitrary ¢=D(0),
there exist positive numbers Ty, Ly and L, dependent only on ¢ such that (1)-(2) admitts
a unigue mild solution v(t) in [0, To1C[O0, T] satisfying

lo(OI<Ly and |v(t)—v(s)|<La|t—s|
forall t, s €[0, Tyl

Proof. In view of Lemma 4 and Lemma 5, it remains to show that »(#) satisfies (3)
in [0, To] and is unique for the initial value ¢.
From
' 2(£)—V (2, 0; v)¢—§:V(t, s 9)F(s, 9(s))ds
= {0(t) =ty 41( D} + {Un(t, Dp—V(, 0; v)¢}
+{L Ut (PG, (D) —FCs, ()} ds

+§;{Um(t, =V, s; )} F(s, v(s))ds, m=0, 1, «--eeeeee
and the compactness of the set (F(t, v(D)); te[0, T, we get
2(1) =V (¢, 0; v)ga+S:V(t, 53 O)F(s, v(s))ds, 0<t<To.
Next, let #(£) be any mild solution of (1)-(2) in [0, TV 1:
u(£)=V'(t, 0; w)p +S:V’(t, s; WFCs, w(s))ds, 0<t< T,
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where V'(¢, s; u), 0<s <t <T’ is a family of bounded operators satisfying the conditions
(19), (20) and (3°) of Definition 1. Then as is easily seen, [|#(¢) || <Ll'and |V'(4, s; w)| <R
with positive constants L’ and R’.

Recalling the definition of #,, and noting

U =t 1) = (V' Ct, 03 )= UpCt, D)
+{ Ve, 53 0 (FGs, w(D)=FGs, (s ds

+ 7/t 53— Uty ) FGs, s (5224
=\ V't 539 (FCs, w(s)—FCs, um(s))} ds

+{ vt 55 014G, 1))~ ACs, (2D} thma1(5)ds
and (4. 2), we have
Ilu(t)—um+1(l‘)HSSZKIIu(S)—um(S) lds,  t€l0, TolA[0, T}, m=1, 2,
where
K=R'c(L1+L")+2R'a(Li+L")(L,+H).
Hence, passing to the limit in the above inequality we obtain
() —o( I Klu() —v()ds
and conclude #(¢)=v(t) on [0, To1AL0, TV]. Q E. D.
Remark. In the above argument it holds that
V&, s; 0)=V'( s; v)
for all ¢, s with 0<s<t<Min (T,, T'). In fact, from
V(¢ s; )=V, 55 0)x={V({, s; ) —U,(@, )} x—{V'{¢, 55 0) - U, 8} (x—x;,(s))
+H\ V' 73 0) (A 0 —AG, Un (P} Un(r, xa(sddr
we get
1V, 55 0)2=V'(E, 55 22| KIVE 55 02— Un(t, x|l
+(R +R) |5 —24() | +2R’ Rpa (L) CMAD) =2 Jo(r) (D) dr- I
for 0<s<t<Min(Ty, T") and x=X. Thus letting m— o we obtain the desired relation.
Finally we shall give a condition for a mild solution to be a strict one. '

Theorem 2. Let v(t) be an X-valued function continuously differentiable on [0, T] in
the strong topology such that v(0)=¢p. Then v(t) is a strict solution of (1)—(2) in some
interval [0, To1C[O, T] if and only if v(¢) is @ mild solution in [0, Ty ].
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Proof. Putting M;= Max lo(OI, Mz—MaX I Av( t)| and letting T, be a positive
number such that TogT and a(M;+ HGDIDMZCM +1) T0<1 we can construct the funda-
mental solution U(%, s; v), 0<s <t T, of

W”(O‘FAU, v(t))u(t)=0, 0<t<LTo

through the formula (4), in Lémma 1.
If »(¢) is a mild solution in [0, Ty ], then we have

V(& s+e; ) U(sH+e, s; 0)x—U, s; )%
¢

:_S ;_r{V(t, 7; U7, s; )} xdr

S+¢

~

=\., .Vt 73 ) LAG, 0 —ACr, v(r)) UCr, s; 9)xdr=0
for any ¢>0 and x&X and hence
V(t, s; 0)=U, s;v), 0<s<t < Ty,

where V(¢ s; v), 0<s<t<LT, is a family of bounded operators satisfying (1%), (2°) and
(3% of Definition 1. Thus v(¥) belongs to D(¢) for t&(0, To] and consequently »(¢) is a
strict solution in [0, To] (See Proposition).

“Only if” part. Let »(#¥) be a strict solution in [0, To]. Then for 0<s<¢t< T,

——U(t s; v (s)=U(, s; v)( ——0(s)+AGs, v(s))v(s))
=U(, s; ) F(s, v(s)).
Integrating thison [ e, £] (¢2>0) we have
o(£)=UCt &5 0)0()=\'UCt, 53 )FCs, 9(s))ds
and by letting ¢ | 0 we conclude
v(Y=Ut, 0; D9+ { U si)FGs, o(s)dds,  0<t<Th.

Remark. Obviously the mild solution »(#) of (1) with »(0)=¢&D(0) in [0, T,]
whose unique existence has been established in Theorem 1, is a unique strict solution
under the condition that v(¢) is continuously differetiable on [0, T, ] in the strong topology.
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