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1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R
satisfies

™ R(X, Y)-R=0 for all tangent vectors X and Y

where the endomorphism R(X, Y) operates on R as a derivation of the tensor
algebra at each point of M. Conversely, does this algebraic condition on the cur-
vature tensor field R imply that M is locally symmetric ?
We conjecture that the answer is affirmative in the case where M is a complete
and irreducible and dim M=>3.

The main purpose of the present paper is to consider the complex hypersur-
faces in spaces of constant holomorphic sectional curvature satisfying the condition
(™) on the curvature tensor.

2. Complex space forms

A Riemannian manifold M with Riemannian metric g is called an Einstein
manifold if its Ricci tensor S satisfies S=pg, where p is a constant. We call p the
Ricci curvature of the Einstein manifold.

Let M be a complex analytic manifold of complex dimension #». By means of
charts we may transfer the complex structure of complex n-dimensional Euclidean
space C» to M to obtain an almost complex structure J on M, i.e., a tensor field J
on M of type (1.1) such that J2=—I, where I is the tensor field which is the
identity transformation on each tangent space of M.

A Riemannian metric g on M is a Hermitian metric if g(JX, JY)=g(X,Y) for
any vector fields X and Y on M; M is called a Hermitian manifold. If in addition
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the almost complex J is parallel with respect to the Riemannian connection of g,
then J (resp. g) is called a Kihler structure (resp. Kihler metric); M is then
called a Kahler manifold.

A plane which is tangent to M and is invariant by J will be called a holomor-
phic plane. If M is a Kihler manifold we denote by K(p) the sectional curvature
of a plane p tangent to M and by K(X) the sectional curvature of the holomorphic
plane generated by a unit tangent vector X. M is said to be of constant holomor-
phic sectional curvature ¢ if the sectional curvature of every holomorphic tangent
plane is equal to ¢. If M is of constant holomorphic sectional curvature ¢, then M
is Einstein and, in the above notaion p=(n+1)c/2.

By a complex space form we will mean a complete Kihler manifold of constant
holomorphic sectional curvature.

We now introduce some special Kihler manifolds which will occur in the
course of our work. Let C»*2 dente complex (n+42)-dimensional Euclidean space
with the natural complex coordinate system 29,...... , zntl, Pnt1(C) will denote
complex (n+1)-dimensional projective space, P#+1(C) is a complex analytic maini-
fold which, when endowed with the Fubini-Study metric, is a Kihler manifold of
constant holomorphic sectional couvature 1. There is a natural holomorphic
mapping f: Cr+2— {0} —>Pr+1(C).

The variety in P#+1(C) determined by 2z#*1=0 is merely P»(C), the induced
metric being the Fubini-Study metric of P#(C).

The variety @# in P»+1(C) determined by (2°)2+...4(z*+1)2=0 is called the
n-dimensional quadric; Q* is a compact Kihler manifold with the metric and
complex structure induced from P=+1(C).

The group SO(n+42), as a subgroup of the group U(n+2) of all holomorphic
isometries of C#+2, act on @Q» as a transitive group of holomorphic isometries. The
isotropy group of this action at (1,4,0,... ,00EQ" is SO(2)xSO(»). It is easily
checked that SO(#+2)/SO(2)x SO(n) is a symmetric space. Thus, if, n>2, Q» is
irreducible and hence it is an Einstein manifold. However, Q2 is holomorphically
isometric to P1(C)x P'(C), where P'(C) is endowed with the Fubini-Study metric.
Hence Q» is a compact Einstein manifold if n=2.

Dn+1 will denote the open unit ball in C»+! endowed with the natural complex
structure and the Bergman metric. This is then a Kihler manifold of constant
holomorphic sectional curvature -1. The submanifold of D»+! determined by 2#=0
is merely D», the induced metric being the Bergman metric of D».

3. Complex hypersurfaces

Hence forth M will be a connected Kihler manifold of complex dimension n+1,
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the Kéahler structure and the Kihler metric of M being denoted by J and g respec-
tively ; moreover, M will be a connected complex manifold of complex dimension 7
which is a complex hypersurface of M, i.e. there exists a complex analytic mapp-
ing ¢: M—> M whose differential ¢4 is 1-1 at each point of M.

All metric properties on M will refer to the Hermitian metric g, induced on M
by the immersion ¢.

Then gy becomes to be a Kihler metric on M. Moreover it is well known
that this is ture for arbitrary complex submanifolds of M.

In order to simplify the presentation, we identify, for each ¥&M, tangent space
Tx(M) with ¢ (Tx(M))CT (M) by means of ¢5. A vector in Tyxn(M) which
is orthogonal, with respect to g, to the subspace ¢.(T+(M)) is said to be normal to
M at x. Since ¢*g=g¢ and Jp,=¢.J, Where J, is the almost complex structure of
M, the structures gy and J, on T(M) are respectively identified with the restrictions
of the structures g and J to the subspace ¢,.(Tx(M)). With this identification in
mind we drop the symbols gy and J,, using instead the symbols g and J.

The following is a purely local argument. Let U(x) be a neighborhood of a
point * EM on which we choose a unit vector field £ normal to M. V denotes the
Riemannian covariant differentiation on the Kihler manifold M. Throughout, X,
Y, Z and W will be either vector fields on one of the special neighborhoods U(x)
of x, or vectors tangent to M at a point of U(x), unless otherwise specified.

If X and Y are vector fields on U(x) we may write

@G3.1 VxY=VxY+h(X, Y)é+R(X, Y)JE,

where VxY denotes the component of VxY tangent to M.
Then we have

Lemma 3.1. (i) V is the covariant differentiation of the Hermitian manifold M ;
Surthermore M is a Kihler manifold, that is VJ=0.
(i) & and k are symmetric covariant tensor fields of degree 2 on U(x) satisfying

h(X: ]Y)':'_k(X: Y),
kX, JY)=h(X, Y).

The identity g(¢, £)=1 implies g( Vx§&, £)=0 on U(x) for any vector field X on
U(x). We may therefore write

3.2 Vxé=—AX)+s(X)J¢,
where A(X) is tangent to M.

LemMMa 3.2. A and s are tensor fields on U(x) of type (1.1) and (0.1) respec-
tively. Furthermore A and JA are symmetric with respect to g AJ=—JA and A satisfies




54 K. Sekigawa

r(X, Y)=g(AX, V),
k(X, Y)=g(JAX, ),

for any pair of vectors X and Y tangent to M at a point of U(x).
The following lemma will be used frequently in our work.

LEMMA 3.3D) Let V be a 2n—dimensional real vector space with a complex structure
J and a positive definite inner product g which is Hermitian, i.e., g(JX, JY)=g(X,Y)
Jor all X, YEV. If A is symmetric (with respect to g) and AJ=—]A, there exists an
orthonormal basis {e,..., en, Je1,..., Jen} of V with respect to which the matrix of A is
diagonal of the form

In particular Trace A=Trace AJ=0.
And morever we have

LeMMA 3.4. If M is of constant holomorphic sectional curvature c, then for any
pair of vectors X and Y tangent to M at a point of U(x), we have the equations

@G.3) (VxA)Y —(Vy ADX—s(XDJAY +s(Y)JAX=0 (Codazzi’s equation),
3.9 S(X, Y)=—2g(42X, Y)+(n+1)c/2 g(X, V),
where S is the Ricci tensor of M.

4. Reduction of condition (*) and some results

In the section, we shall assume that M is a space of constant holomorphic
sectional curvature ¢ and M is a complex hypersurface of M of complex dimension
n. Then the equation of Gauss expresses the curvature tensor R of M in the form

@n R(X, V)=AXNAY +JAXNJAY +c/4(XANY +TANIY +2¢(X, JY)},

where, in general, XAY denotes the endomorphism which maps Z upon g(Z, Y)X
—g(Z, X)Y.
The type number k(x) at x is, by definition, the rank of A at x.

Let {e,......, en, Je1,......, Jen} be the orthonormal basis which is constructed in
Lemma 3.3., then we have

1) See for example (4).
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4.2 R(ei, e;)=(% 4j +c /4)(ei N&j +&iN\ei)
.3) Rei, &))=CAi 2j— ¢/ 4)(@iNej —eiNE))—c / 25ij J.
where we put é=Je;. i, j=1,...... .

As the endomorphism R(X, Y) operates on R as a derivation of the tensor
algebra at each point of M, we get

‘.4 (R(X, Y)+R)(Z, W)=(R(X, Y), R(Z, W))—R(R(X, Y)Z, W)

For reduction of the condition (*), we have only to consider the following cases.

L X=ei, Y=ej, Z=er, W=a
II. X=ei, Y=¢j, Z=er, W=ai
II. X=ei, Y=¢j, Z=er, W=¢
Iv. X=ei, Y=¢;, Z=er, W=er.

Case I, then by making use of (4.2), from (4.4) we find that it is zero except
possibly in the case where k=i and /i, j(i%j).
Then we have

4.5 (RCei, e;)*R)(ei, e)=Cai Aj+c/4) (i —Ai)(eiNe1+&i NépD).

Case 1L, then, similarly by making use of (4.3), from (4.4) we find that it is
zero except possibly in the case where k=i and /=i, j(i=j).
Then we have

4.6) (R(ei, &)+R)(ei, &)=—(Ai 2j — ¢/ DUAj +1)(ej Aei+EiN\ér).

Case III, then by making use of (4.2) and (4.3), from (4.4) we find that it is
zero except possibly in the following two cases, that is, for k=i and /=i, j(i= ),
we get

4.7 (RCei, ei)*R)(ei, e)=CAi Aj +c /)i — A )(@iAei—ei N\&).
and for k=i and I=j(i%j), we get
4.8) (RCei, €;)+R)(ei, &)=2(A Aj+c/DAQAi—k)&Nei

+2(2i 2+ ¢ /425 — XD EiN\ej.

Case IV., then, similarly, we find that it is zero except possibly in the following
cases, that is, for k=i and /==i, j(iZj), we get

4.9 - (RCei, &)+R)(ei, er)=Cai 4j—c/4) u(Ai + 2i)(Ei\ei—ei N\éb).
and for k=i and /=j(i%j), we get
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(4.10) (R(ei, &)+*R)(ei, e;)=2(Ai 2j — ¢/ 4)2;2j + 4 )éjNei
—2Q% 2 — ¢ /AR +24) ejN\&i.

Therefore, from (4.5), (4.6), (4.7), (4.8), (4.9) and (4.10), we see that the condi-
tion (*) is equivalent to

(i dite/DuQRj—1)=0  for I%i, j(i¥j)

Qi 2j—c/DuAi+a)=0  for I=+i, j(i%7)

(i i+ ¢ /D2j(2j—2)=0  for i%j

(ki 2j—c/DaAj+2)=0  for i<j

(i 2j+ ¢/ DxQ;—)=0  for i%j

Ui 2j—c/DAQi44)=0  for i%j. i, j, I=1,.....um.

4.1) |

However, if M is of complex 2-dimensional, then the condition (*) is equivalent to
(4.11)3, (4.11),, (4.11)5 and (4.11)s.
Thus, from (4.11); and (4.11)g, we have

(4.12) 122 —c/4)=0 for i<=j.
and moreover, from (4.11), and (4.11)¢, we have
4.13) 2Q2—c/4)=0 for i=j.

Thus, we have the following

THEOREM 4.1. Let M be a complex hypersurface satisfying the condition (*) in a

space M of constant holomor phic sectional curvature ¢ of complex dimension n+1.
Then, the following statesments are valid. Where n=2.

(i) If ¢>0, then k(x)=0, or 2n at each point x&EM, that is, M is totally geodesic

in M, or an Einstein space of Ricci curvature p=nc-/2.

Hence, M is a locally symmetric space.

(i) If ¢<0, then E(x)=0 at each point xE M, that is, M is totally geodesic in M,

hence also is a locally symmetric space.

(i) If ¢=0, then k(x)=0, or 2 at each point xE M.

Proor. (i) From (4.12), we see that k(x) is constant on M. If k(x)==0,
2n, then, there exist zero characteristic root and nonzero characteristic root of A.
Now, let 2; be a zero characteristic root and 1; be a nonzero one.

Then, from (4.12), we get 2=c/4.

However, then from (4.13), we have

WRQAR—c/8)=—(c/4)2%0,

This is a contradiction.
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Thus, we see that k(x)=0, or 2» at each point x& M. If k(x)=2n, then, from
(3.4.), we have

S(X, V)=—c/2g(X, VD+(n+1)c/28(X, VD=nc/22(X, V).

That is, S(X, Y)=nc/2g(X, Y), for all tangent vectors X and Y to M.
Therefore, M is an Einstein space of Ricci curvature p= nc/2.

(ii) and (jii) are evident.

On the other hand, B. Smyth [4]., has proved the following theorem.

THEOREM 4.2. If n=2, then
(i) Pr(C) and the complex quadric Q= are the only complex hypersurfaces of Pr+1(C)
which are complete and Einstein,
(ii) Dr(resp. C*) is the only simply-connected complex hypersurface of Dr+l (resp.
Cn+Y) which is complete and Einstein.

Thus, from Theorem 4.1. and Theorem 4.2., we have the following

THEOREM 4.3, If n=2, then
(i) let M be a complete complex hypersurface of Pr+1(C) which satisfies the condi-
tion (*), then M is Pr(C), or Qn.
(i) let M be a simply-connected complete complex hypersurface of D+ which satisfies
the condition (*), then M is D».

Remark. If c¢c30 and n=2, then we can show that the condition (*) is equivalent
to the condition, R(X, Y)S=0.
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