A note on the submersions of bundle spaces

By

Kazuo SAITO and Masato NAKAMURA

(Received June 20, 1968)

1. Introduction

Let ξ be a (k+1)-plane bundle over a connected smooth manifold M^n and $B(\xi)$ the total space of the associated sphere bundle of ξ . $B(\xi)$ may be considered as a differentiable manifold. In this note, we shall prove the following

THEOREM. Let $B(\xi)$ be as above and $B(\xi)_0$ denote $B(\xi)-\{x\}$, where x is a point of $B(\xi)$. Then $B(\xi)_0$ can be submersed in R^k .

This is dual in the sence of [1] to the result, which is easily proved (see [6]); Let $B(\xi)$ be the total space of the sphere bundle associated to a (k+1)-plane bundle over M^n . Then $B(\xi)$ can be immersed in R^{2n+k} .

As application of the theorem, we consider submersion of $B(\xi)_0$, where ξ is a plane bundle over sphere, or real projective space.

The authors wish to thank Professors K. Aoki and T. Watabe for their encouragement and many valuable suggestions.

2. Notations and preliminary lemmas

In what follows, the word "differentiable" will mean "of class C^{∞} ." A differentiable map of M^n in R^p is called a submersion if its differential has maximal rank at each point of M (we suppose $n \ge p$). We will write $M^n \subseteq R^p$ when M is submersed in R^p . A. Phillips has proved the following result in [1].

THEOREM 2.1. If M^n is open (M has no compact component), then the gradient map $\nabla \colon Sub$ (M^n , R^p) $\longrightarrow Sect$ T_pM is a weak homotopy equivalence, where Sub (M^n , R^p) is the space of submersions of M in R^p with C^1 -topology, T_pM is the bundle of p-frames tangent to M and Sect T_pM is the space of sections of the bundle with the compact open topology.

 ∇ is defined as follows. If f_1, \ldots, f_p are the p coordinates of f, let $\nabla f(x)$ be p-frames $\nabla f_1(x), \ldots, \nabla f_p(x)$. By the theorem, the problem of submersion is reduced to the problem of the existence of cross-section of tangent bundle of M.

Further we shall need the following lemmas.

LEMMA 2.2 Let M^n be an n-manifold with $H^n(M; Z) = 0$ and ξ_i k-plane bundles over M^n $(k \ge n)$, i = 1, 2. Then ξ_1 is stably equivalent to ξ_2 if and only if ξ_1 is equivalent to ξ_2 .

PROOF. The if-part is trivial. We may assyme that $\xi_1 \oplus \varepsilon^1$ is equivalent to $\xi_2 \oplus \varepsilon^1$. We identify them and denote it by ξ^{k+1} . Let (ξ) be the associated sphere bundle of ξ and S_i (i=1,2) its non-zero cross – sections. Define two bundle monoorphisms $u, v: \varepsilon^1 \longrightarrow \xi$ by the formulas;

$$u(b, a)=aS_1(b)$$
 and $v(b, a)=aS_2(b)$ for $(b, a)\in E(\varepsilon^1)$.

A homotopy of monomorphisms is determined by a cross-section of $(\xi) \times I = (\xi \times I)$ over $M \times \{0, 1\}$, where $S \mid M \times 0$ corresponds to u and $S \mid M \times 1$ to v. Since $H^{n+1}(M \times I, M \times \{0, 1\}; \pi_n(S^n))$ vanishes by assumption, we have a prolongation of S to $M \times I$ as a cross-section of $\xi \times I$. This cross-section S^* determines a monomorphism $w: \varepsilon^1 \longrightarrow \xi \times I$. Since coker $w \mid M \times 0$ is isomorphic to coker u and coker $w \mid M \times 1$ is isomorphic to coker v, there is an isomorphism between coker v and coker v. Thus we have proved that ξ_1 is isomorphic to ξ_2 .

LEMMA 2.3 Let ξ be (k+1)-plane bundle over an n-manifold M^n and $B(\xi)$ the associated sphere bundle. Then we have $\tau(B(\xi)) \oplus \varepsilon^1 = \pi^*(\tau(M) \oplus \xi)$, where $\tau(M)$ denotes the tangent bundle of M and $\pi: B(\xi) \to M$ is the projection map.

PROOF. Let $\xi = (E, P, M)$ be a plane bundle and $\widehat{\xi}$ the bundle along the fibres. As is well known, we have $\tau(E) = P^*(\tau(M)) \oplus \widehat{\xi}$. We can prove that the sequence;

$$0 \longrightarrow P^*(\xi) \longrightarrow \tau(E) \longrightarrow P^*\tau(M) \longrightarrow 0$$
 (2.1)

is exact and hence we have $\widehat{\xi} = P^*(\xi)$. For each point $x \in M$, we have an inclusion $E_x(=)$ the fibre of ξ at $x) \longrightarrow E$ and hence a natural inclusion $\tau(E_x) \longrightarrow \tau(E)$. It follows from definition that the total space of $P^*\xi$ consists of pairs of vectors (v, w) lying over the same base point, in other words, the fibre of x is $E_x \times E_x$. Since E_x is a euclidean space, $E_x \times E_x$ is naturally identified with $\tau(E)_x$. Hence we have a bijection $(P^*\xi)_x \longrightarrow \tau(E)_x$ for each x. It follows from this that $P^*\xi$ and $\widehat{\xi}$ are equivalent. The exactness of the sequence (2.1) implies that $\tau(E) = P^*(\tau(M) \oplus \xi)$. Thus we have $\tau(B) \oplus \varepsilon^1 = \pi^*(\tau(M) \oplus \xi)$.

3. The proof of Theorem

We shall prove the theorem in Introduction.

THEOREM 3.1 Let ξ be a (k+1)-plane bundle over M^n and $B(\xi)$ the total space of

the associated k-sphere bundle of ξ . Then we have $B(\xi)_0 \subseteq \mathbb{R}^k$, where $B(\xi)_0$ denotes $B(\xi) - \{x\}$ for some point of $B(\xi)$.

PROOF. Let $\pi: B(\xi) \to M^n$ be the projection. By lemma 2.3, we have $\tau(B) \bigoplus \varepsilon^1 = \pi^*(\tau(M) \bigoplus \xi)$.

We denote $\tau(M) \oplus \xi$ by ζ . Obstructions to the existence of (k+1) linearly independent cross-sections of ζ lie in $H^{i+1}(M^n; \{\pi_i(V_{n+k+1}, k+1)\})$, where $\{\pi_i(V_{n+k+1}, k+1)\}$ denotes the bundle of coefficients. Since $H^{i+1}(M^n; \{\pi_i(V_{n+k+1}, k+1)\})$ vanishes for i < n, we have $\zeta = \varepsilon^{k+1} \oplus \eta''$ and $\tau(B(\xi)) \oplus \varepsilon^1 = \varepsilon^{k+1} \oplus \eta'$, where $\eta' = \pi^* \eta''$. Using lemma 2.2, we have $\tau(B(\xi)_0) = \varepsilon^k + \eta$, where $\eta = \eta' | B(\xi)_0$.

We have completed the proof of Theorem 3.1.

4. Sphere bundles over spheres

In this section, we shall consider submersion of the total spaces of sphere bundles over spheres. Let ξ be a (k+1)-plane bundle over S^n and $B(\xi)$ the total space of the associated sphere bundle with projection π . We obtain the following

THEOREM 4.1 (i) If n is congruent to 3, 5, 6 or 7 mod 8, then $B(\xi)_0 \subseteq \mathbb{R}^{n+k}$.

- (ii) If n is congruent to 1 mod 8 and greater then 8, then $B(\xi)_0 \subseteq \mathbb{R}^{k+3}$.
- (iii) If n is congruent to 2 mod 8 and greater then 17, then $B(\xi)_0 \subseteq \mathbb{R}^{k+6}$.
- (iv) If n is divisible by 8 and not equal to 4 or 8, then $B(\xi)_0 \subseteq \mathbb{R}^{k+1}$.

PROOF. We denote $\tau(S^n) \oplus \xi$ by ζ . Since $\pi_{n-1}(SO) = 0$ for n = 3, 5, 6 or 7 mod 8, the result of (i) holds. The obstruction to the existence of (k+4) linearly independent cross-sections of ζ is an element of $H^n(S^n; \pi_{n-1}(V_{n+k+1,k+4}))$. Since $\pi_{8s}(V_{8s+k+2,k+4}) = 0$ for $s \ge 1$ (see [2]), we obtain the result of (ii). Similarly we obtain result of (iii) using the fact $\pi_{8s+1}(V_{8s+k+3,k+7}) = 0$ for $s \ge 2$. In order to prove (iv), we use the result in [3]; the n-th Stiefel-Whitney class $w_n(\zeta)$ of ζ vanishes for $n \ne 4$. 8. Thus we have proved Theorem 4.1.

We next consider k-sphere bundles over S^n for $n \le 4$. We use the following notation. By the bundle classification theorem, the equivalence classes of k-sphere bundle over S^n are in one to one correspondence with elements of $\pi_{n-1}(SO(k+1))$. $B_m^{(2,k)}$ denotes the total space of the k-sphere bundle over S^n which corresponds to the element m of $\pi_{n-1}(SO(k+1))$.

THEOREM 4.2 (i) $(B_m^{(2,k)})_0 \subseteq R^k (k \ge 2)$ and $(B_0^{(2,k)})_0 \subseteq R_{k+1}$. This is best possible.

- (ii) $(B_m^{(4,k)})_0 \subseteq R^{k+1}$ if m is even and $k \ge 4$.
- (iii) $(B_m^{(4,k)})_0 \subseteq \mathbb{R}^k$ if m is odd and $k \ge 4$. This is best possible.

PROOF. (i) In this cace, we can choose the associated bundle of $\theta \oplus \varepsilon^{k-1}$ as (ξ) ,

where θ is the canonical 2 plane bundle over $S^2 = CP_1$. Since θ has the total Chern class $c(\theta) = 1 + a$, where a is a generator of $H^2(S^2)$ and $w_2(\xi) = a \mod 2$. Submersibility follows from Thoerm 3.1. Since $w_2(B_m^{(2,k)})_0 \neq 0$, this is best possible.

(iii) This is a direct consequence of Theorm 3.1. We shall prove (ii). Let $\xi_m^{(4,k)}$ be the bundle with characteristic map $i(m\sigma)$, where i is the inclusion:

 $SO(4) \longrightarrow SO(k+1) (k \ge 5)$ and σ is the map $S^3 \longrightarrow SO(4)$ given by $\sigma(u)v = uv$, where u and v denote quaternions with norm 1. By a result of [5], we have $O(\widehat{\xi_m}^{(4,k)}) = \pm m\alpha$, where α is a generator of $H^4(S^4)$ and $O(\widehat{\xi_m}^{(4,k)})$ is defined as follows; Let $\widehat{\xi_m}^{(4,k)}$ be the associated principal bundle of $\widehat{\xi_m}^{(4,k)}$. The restriction of it to the 3-skelton of S^4 has a cross section. Then $O(\widehat{\xi_m}^{(4,k)})$ is the obstruction to extending the cross section over S^4 . Moreover we have $w_4(\widehat{\xi_m}^{(4,k)}) = P^*O(\widehat{\xi_m}^{(4,k)})$. Hence we have $w_4(\widehat{\xi_m}^{(4,k)}) = 0$ if and only if m is even. This proves (ii). Finally we prove the best possibility of (iii). This is a direct consequence of the fact that $w_4(B_m^{(4,k)}) = 0$, which follows from that $w_4(B_m^{(4,k)}) = \pi^*(w_4(\widehat{\xi_m}^{(4,k)}))$ and that π^* is an isomophism.

5. Sphere bundles over real brojective spaces

In this section, we shall consider submersion of total spaces of sphere bundles over real projective space $P_n(n \le 4)$. Let $B(\)$ and $B(\)_0$ be similar as above and L the canonical line bundle over P_n . We quote from (4) the results of the classification of vector bundles over P_n .

(5.1) k-sphere bundles over $P_2(k \ge 1)$. We obtain the following results.

(i) $B(\varepsilon^{k+1})_0 \subseteq R^k$.

Since $w_2(B(\varepsilon^{k+1})_0) \neq 0$, this is best possible.

(ii) $B(L \oplus \varepsilon^k)_0 \subseteq R^{k+1}$.

By lemma 2.3, we have $\tau(B(L \oplus \varepsilon^k)) \oplus \varepsilon' = \pi^*(\tau(P_2) \oplus L \oplus \varepsilon^k)$. We denote $\tau(P_2) \oplus L \oplus \varepsilon^k$ by ζ . The obstruction to the existence of (k+2) linearly independent cross-sections of ζ is $w_2(\zeta) \in H^2(P_2; \pi_1(V_{k+3,k+2}))$. Since $w(\zeta) = (1+\alpha)^4 = 1$, we have $w_2(\zeta) = 0$, where α is a generator of $H^1(P_2; Z_2)$. This proves (ii).

(iii) $B(2L \oplus \varepsilon^{k-1})_0 \subseteq R^{k+1}(k \ge 2)$.

This follows from Theorm 3.1. This result is best possible. In fact, we have $w(B(2L\oplus \epsilon^{k-1})) = \pi^*(1+\alpha)^5$. Since π^* is an isomorphism by the exactness of the Gysin sequence. Thus we have $w_1(B(2L\oplus \epsilon^{k-1})) \neq 0$. The inclusion map $i: B(2L\oplus \epsilon^{k-1})_0 \longrightarrow B(2L\oplus \epsilon^{k-1})$ induces an isomorphism $i^*: H^1(B; Z_2) \longrightarrow H^1(B_0; Z_2)$. Thus we have $w_1(B(2L\oplus \epsilon^{k-1})_0) \neq 0$. This implies the best possibility of (iii).

(iv)
$$B(3L \oplus \varepsilon^{k-2})_0 \subseteq R^k$$
 $(k \ge 3)$.

This is also best possible.

(5.2) k-sphere bundles over P_3 .

Since P_3 is paralelizable, we obtain the following results.

(i)
$$B(\varepsilon^{k+1})_0 \subseteq R^{k+3}$$
. $(k \ge 1)$

(ii)
$$B(L \oplus \varepsilon^k)_0 \subseteq R^{k+2}$$
 $(k \ge 1)$.

(iii)
$$B(2L \oplus \varepsilon^{k+1})_0 \subseteq R^{k+1}$$
 $(k \ge 2)$.

(iv)
$$B(3L \oplus \varepsilon^{k-2})_0 \subseteq \mathbb{R}^k$$
 $(k \ge 3)$.

These are all best possible.

(5.3) k-sphere bundles over P_4 .

We obtain the following results.

$$(i) \quad B(\varepsilon^{k+1})_0 \subseteq R^k \qquad (k \ge 1)$$

(ii)
$$B(L \oplus \varepsilon^k)_0 \subseteq R^k$$
 $(k \ge 1)$

(iii)
$$B(2L \oplus \varepsilon^{k-1})_0 \subseteq R^k$$
 $(k \ge 2)$

These results follow from Theorem 3.1 and are best possible.

(iv)
$$B(3L \oplus \varepsilon^{k-2})_0 \subseteq R^{k+1}$$
 $(k \ge 3)$

This is proved as follows. We have $(B(3L \oplus \varepsilon^{k-2})) \oplus \varepsilon^1 = \pi^*(\tau(P_4) \oplus 3L \oplus \varepsilon^{k-2})$. We denote $\tau(P_4) \oplus 3L \oplus \varepsilon^{k-2}$ by ζ . The obstruction to the existence of k+2 linearly independent cross sections of ζ is $w_4(\zeta) \in H^4(P_4; \pi_3(V_{k+5, k+2}))$. Since we have $w(\zeta) = (1+\alpha)^8$, $w_4(\zeta) = 0$. This proves (iv).

Similarly we can prove the following results.

(v)
$$B(4L \oplus \varepsilon^{k-3})_0 \subseteq R^{k+1}$$
 and $G = R^{k+1}$ $(k \ge 4)$

(vi)
$$B(5L \oplus \varepsilon^{k-4})_0 \subseteq R^{k+1}$$
 and $\nsubseteq R^{k+3}$ $(k \ge 5)$

(vii)
$$B(6L \oplus \varepsilon^{k-5})_0 \subseteq R^{k+1}$$
 $(k \ge 6)$

$$(viii) B(7L \oplus \varepsilon^{k-6})_0 \subseteq R^k \qquad (k \ge 7)$$

The results of (vii) and (viii) are best possible.

6. Dold's manifolds

In this section, we shall consider the submersion of Dold's manifolds of type (n, 1). We denote it by P(n, 1). P(n, 1) is defined as follows. Let S^n be the unit sphere and CP_1 the complex 1-dimensional projective space. Now P(n, 1) is the manifold obtained from $S^n \times CP_1$ by identifying (x, z) with $(-x, \bar{z})$, where -x denotes the antipodal point of x and \bar{z} the conjugate of z. It is obvious that $\rho: P(n, 1)$

1) $\longrightarrow P_n$ defined by $\rho(x, z) = x$ is a fibre map. We denote this bundle by δ ; $\delta = \{P(n, 1), \delta, P_n, CP_1, O(1)\}$. We can prove that P(n, 1) is the total space of the associated sphere bundle of a vector bundle ξ^3 , with cross section. According to a result of $\{4\}$, it is known that the stable class of ξ is the stable class of L if n > 2. The Stiefel-Whitney class of P(n, 1) is given by $w(P(n, 1)) = \pi^*(w(P_n)w(\xi)) = \pi^*(1+\alpha)^{n+2}$, where π is the projection of ξ . Since ξ has a non-zero cross section, the homomorphism $\pi^* \colon H^*(P_n; Z_2) \longrightarrow H^*(P(n, 1); Z_2)$ is a monomorphism. The inclusion map $i \colon P(n, 1)_0 \longrightarrow P(n, 1)$ induces an isomorphism $i^* \colon H^r(P(n, 1); Z_2) \longrightarrow H^r(P(n, 1)_0; Z_2)$ for $r \le 2n$. Thus we have $w_i(P(n, 1)_0) = {n+2 \choose i} \alpha^i$. We define σ as follows;

$$\sigma = \max\{i \leq n; \binom{n+2}{i} \neq 0 \mod 2\}.$$

We can prove the following

THEOREM 6.1. $P(n, 1)_0 \subseteq R^2$ and $\nsubseteq R^{n+3-\sigma}$ (n>2).

NIIGATA UNIVERSITY

References

- 1. A. PHILLIPS, Submersions of open manifolds, Topology (1967) 171-206
- 2. G. PAECHTER, On the group $\pi_r(V_m, k)$ I, Quart. J, Math. 7(1956)246-258
- 3. M. KERVAIRE, A note on obstructions and characteristic classes, Amer. J. Math. 81 (1959) 773-784
- 4. J. LEVINE, Spaces with involution and bundles over Pn, ibid. 85 (1963) 516-540
- 5. I. TAMURA, On Pontrjagin classes and homotopy type of manifolds, J. Math Soc. Japan 9 (1957)
- 6. T. WATABE, A note on the imbedablity and immersibility of the total spaces of sphere bundle over sphere, Sci. Rep. Niigata Univ. Ser A 2 (1965) 17-25