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1. Introduction

Let $\xi$ be a $(k+1)$-plane bundle over a connected smooth manifold $M^{n}$ and $B(\xi)$

the total space of the associated sphere bundle of $\xi$ . $B(\xi)$ may be considered as a
differentiable manifold. In this note, we shall prove the following

THEOREM. Let $B(\xi)$ be as above and $B(\xi)_{0}$ denote $B(\xi)-\{x\}$ , where $x$ is a point
Of $B(\xi)$ . Then $B(\xi)_{0}$ can be submersed in $R^{k}$ .

This is dual in the sence of [1] to the result, which is easily proved (see [6]);

Let $B(\xi)$ be the total space of the sphere bundle associated to a $(k+1)$-plane bundle
over $M^{n}$ . Then $B(\xi)$ can be immersed in $R^{2n+k}$.

As application of the theorem, we consider submersion of $B(\xi)_{0}$ , where $\xi$ is a
plane bundle over sphere, or real projective space.

The authors wish to thank Professors K. Aoki and T. Watabe for their encou-
ragement and many valuable suggestions.

2. Notations and preliminary lemmas

In what follows, the word “differentiable” will mean “of class $C^{\infty}$ . A differen $\cdot$

tiable map of $M^{n}$ in $RP$ is called a submersion if its differential has maximal rank
at each point of $M$ (we suppose $n\geqq p$). We will write $M^{n}\subseteq R^{p}$ when $M$ is sub $\cdot$

mersed in $R^{p}$ . A. Phillips has proved the following restt in [11.

THEOREM 2. 1. If $M^{n}$ is open ($M$ has no compact component), then the gradient
map $\nabla$ : Sub $(M^{n}. R^{p})\rightarrow SectTpM$ is a weak homotopy equivalence, where Sub $(M^{n}$.
$R^{p})$ is the space of submersions of $M$ in $R^{p}$ with $C^{1}$-topology, $TpM$ is the bundle of
p-frames tangent to $M$ and Sect $TpM$ is the space of sections of the bundle with the
compact open topology.

$\nabla$ is defined as follows. If $f_{1}$ , $fp$ are the $p$ coordinates of $f$. let $\nabla f(x)$ be
p-frames $\nabla fi(x)\ldots\ldots.,$ $\nabla fp(x)$ . By the theorem, the problem of submersion is
reduced to the problem of the existence of cross-section of tangent bundle of $M$.
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Further we shall need the following lemmas.

LEMMA 2. 2 Let $M^{n}$ be an n-manifold with $H^{n}(M;Z)=0$ and $\xi i$ k-plane bundles
ever $M^{n}(k\geqq n)$. $i=1,2$ . Then $\xi_{1}$ is stably equivalent to $\xi_{2}$ if and only if $\xi_{1}$ is equival $\cdot$

$ent$ to $\xi_{2}$ .

PROOF. The if-part is trivial. We may assyme that $\xi_{1}\oplus\epsilon^{1}$ is equivalent to
$\xi\Omega+\epsilon^{1}$. We identify them and denote it by $\xi^{k+1}$ . Let $(\xi)$ be the associated sphere
bundle of $\xi$ and Si $(i=1,2)$ its non-zero cross –sections. Define two bundle mono-
orphisms $u$. $ v:\epsilon^{1}\rightarrow\xi$ by the formulas;

$u(b. a)=aS_{1}(b)$ and $v(b, a)=aS_{2}(b)$ for $(b, a)\in E(\epsilon^{1})$ .
A homotopy of monomorphisms is determined by a cross-section of $(\xi)\times I=(\xi\times I)$

over $M\times[0.1]$ , where $S|M\times 0$ corresponds to $u$ and $S|M\times 1$ to $v$. Since $H^{n+1}(M$

$\times I,$ $M\times\{0,1\}$ ; $\pi_{n}(S^{n}))$ vanishes by assumption, we have a prolongation of $S$ to $M$

$\times I$ as a cross-section of $\xi\times I$. This $croae\cdot sectionS^{*}$ determines a monomorphism
$w:\epsilon^{1}\rightarrow\xi\times I$. Since coker $w|M\times O$ is isomorphic to coker $u$ and coker $w|M\times 1$ is
isomorphic to coker $v$, there is an isomorphism between coker $u$ and coker $v$. Thus
we have proved that $\xi_{1}$ is isomorphic to $\xi_{2}$ .

LEMMA 2.3 Let $\xi$ be $(k+1)$-plane bundle $\alpha zer$ an n-manzfold $M^{n}$ and $B(\xi)$ the
associated sphere bundle. Then we have $\tau(B(\xi))\oplus\epsilon^{1}=\pi^{*}(\tau(M)\oplus\xi)$ , where $\tau(M)$ denotes
the tangent bundle of $M$ and $\pi;B(\xi)\rightarrow M$ is the proiection map.

PROOF. Let $\xi=$ ($E.$ P. $M$) be a plane bundle and $\wedge\xi$ the bundle along the fibres.
As is wel known, we have $\tau(E)=P^{*}(\tau(M))\oplus\xi\wedge$.
We can prove that the sequence;

$0\rightarrow P^{*}(\xi)\rightarrow\tau(E)\rightarrow P^{*}\tau(M)\rightarrow 0$ (2.1)

is exact and hence we have $\wedge\xi=P^{*}(\xi)$ . For each point $x\in M$, we have an inclusion
$E_{l}$($=ie$ fibre of $\xi$ at $x$) $\rightarrow E$ and hence a natural inclusion $\tau(E_{x})\rightarrow r(E)$ . It
follows from definition that the total space of $ P^{*}\xi$ consists of pairs of vectors $(v, w)$

lyin$g$ over the same base point. in other words, the fibre of $x$ is $E_{x}xE_{x}$ . Since $E_{x}$

is a euclidean space, $E_{x}\times E_{x}$ is naturally identified with $\tau(E)_{X}$ . Hence we have a
$bi\dot{p}$ction $(P^{*}\xi)_{l}\rightarrow\tau(E)_{x}$ for each $x$. It follows from this that $ P^{*}\xi$ and $\wedge\xi$ are equi-
valent. The exactness of the sequence (2.1) implies that $\tau(E)=P^{*}(\tau(M)\oplus\xi)$ .
Thus we have $\tau(B)\oplus\epsilon^{1}=\pi^{*}(\tau(M)\oplus\xi)$ .

3. lthe proof of Theorem

We shall prove the theorem in Introduction.

THEOREM 3.1 Let $\xi$ be a $(k+1)$-plane bundle over $M^{\hslash}$ and $B(\xi)$ the total space of
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the associated k-sphere bundle of $\xi$ . Then we have $B(\xi)_{0}\subseteq R^{k}$, where $B(\xi)_{0}$ denotes
$B(\xi)-\{x\}$ for some point $oJB(\xi)$ .

PROOF. Let $\pi;B(\xi)\rightarrow M^{n}$ be the projection. By lemma 2. 3, we have

$\tau(B)\oplus\epsilon^{1}=\pi^{*}(\tau(M)\oplus\xi)$ .
We denote $\tau(M)\oplus\xi$ by $\zeta$ . Obstructions to the existence of $(k+1)$ linearly independ-
ent $cross\cdot sections$ of $\zeta$ lie in $H^{j+1}(M^{n} ; \{\pi;(V_{\hslash+k\cdot\vdash 1}, k+1)\})$ , where $\{\pi;(V_{n+k+1}, k+1)\}$

denotes the bundle of coeffiecients. Since $H^{i+1}(M^{n} ; \{\pi;(V_{\hslash+k+1}, k+1)\})$ vanishes for
$i<n$, we have $\zeta=\epsilon^{k\vdash 1}\oplus\eta\prime\prime$ and $\tau(B(\xi))\oplus\epsilon^{1}=\epsilon^{k+1}\oplus\eta’$, where $\eta\prime_{=\pi^{*\eta\prime\prime}}$ . Using lemma
2. 2, we have $\tau(B(\xi)_{0})=\epsilon^{k}+\eta$, where $\eta=\eta’|B(\xi)_{0}$ .
We have completed the proof of Theorem 3. 1.

4. Sphere bundles over spheres

In this section, we shall consider submersion of the total spaces of sphere
bundles over spheres. Let $\xi$ be a $(k+1)$-plane bundle over $S^{n}$ and $B(\xi)$ the total
space of the associated sphere bundle with projection $\pi$ . We obtain the folowing

THEOREM 4. 1 (i) If $n$ is congruent to 3, 5, 6 or 7 mod 8, then $B(\xi)_{0}\subseteq R^{n+k}$ .
(ii) If $n$ is congruent to 1 mod 8 and greater then 8, then $B(\xi)_{0}\subseteq R^{k+3}$ .
(iii) If $n$ is congruent to 2 mod 8 and greater then 17, then $B(\xi)_{0}\subseteq R^{k+6}$ .
(iv) If $n$ is divisible by 8 and not equal to 4 or 8, then $B(\xi)_{0}\subseteq R^{k+1}$ .

PROOF. We denote $\tau(S^{n})\oplus\xi$ by $\zeta$ . Since $\pi_{\hslash-1}(SO)=0$ for $n=3,5,6$ or 7 $mod 8$,
the result of (i) holds. The obstruction to the existence of $(k+4)$ linearly inde $\cdot$

pendent cross-sections of $\zeta$ is an element of $H^{n}(S^{n} ; x_{n-1}(V_{n+k+1,+4}k))$ . Since
$\pi_{8^{S}}(V_{8^{S}+k+2.k+4})=0$ for $s\geqq 1$ (see [2]), we obtain the result of (ii). Similarly we
obtain result of (iii) using the fact $\pi_{8s+1}(V_{8s+k+3^{k}+7})=0$ for $s\geqq 2$ . In order to
prove (iv), we use the result in [3] ; the $n$-th Stiefel-Whitney class $w_{n}(C)$ of $\zeta$

vanishes for $n\neq 4.8$ . Thus we have proved Theorem 4.1.
We next consider $k$-sphere bundles over $S^{n}$ for $n\leqq 4$ . We use the following

notation. By the bundle classification theorem, the equivalence classes of $k$-sphere
bundle over $S^{n}$ are in one to one correspondence with elements of $\pi_{\hslash-1}(SO(k+1))$ .
$B_{m}^{(2k)}$ denotes the total space of the $k$-sphere bundle over $ S\#$ which corresponds to
the element $m$ of $x_{n-1}(SO(k+1))$ .

THEOREM 4.2 (i) $(B_{m}(2,l))_{0}\subseteq R^{k}(k\geqq 2)$ and $(B_{0}(2,k))_{0}\subseteq Rk+1$ . This is best
possible.
(ii) $(B_{m}(4,\iota))_{0}\subseteq R^{k*1}tm$ is even and $k\geqq 4$ .
(iii) $(B_{\hslash}(4,l))_{0}\subseteq R^{\iota}$ if $m$ is odd and $k\geqq 4$ . This is best possible.

PROOF. (i) In this cace, we can choose the associated bundle of $\theta\oplus\epsilon^{k-1}$ as $(\xi)$,
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where $\theta$ is the canonical 2 plane bundle over $S^{2}=CP_{1}$ . Since $\theta$ has the total Chern
class $c(\theta)=1+a$, where $a$ is a generator of $H^{2}(S^{2})$ and $w_{2}(\xi)=amod 2$ . Submersi-
bility follows from Thoerm 3. 1. Since $w_{2}(B_{m}^{(2,k)})_{0}\neq 0$, this is best possible.
(iii) This is a direct consequence of Theorm 3. 1. We shall prove (ii). Let $\xi_{m^{(4,k)}}$

be the bundle with characteristic map $i(ma)$ , where $i$ is the inclusion:
$SO(4)\rightarrow SO(k+1)(k\geqq 5)$ and $\sigma$ is the map $S^{3}\rightarrow SO(4)$ given by $\sigma(u)v=uv$, where
$u$ and $v$ denote quaternions with norm 1. By a result of [5], we have $o(\xi_{n\iota^{(4,k)}})/\backslash $

$=\pm m\alpha$ . where $\alpha$ is a generator of $H^{4}(S^{4})$ and $ o(\xi_{m^{(4k)}},)\wedge$ is defined as follows; Let
$\wedge\xi_{m^{(4k)}}$, be the associated principal bundle of $\xi_{m}(4k)$ . The restriction of it to the 3-
skelton of $S^{4}$ has a cross section. Then $o(\xi_{m}^{\backslash }’(4k))$ is the obstruction to extending
the cross section over $S^{4}$. Moreover we have $ w_{4}(\xi_{m}^{(4,k)})=P^{*}O(\xi_{m}^{(4,k)})\wedge$ . Hence we
have $w(\xi_{m}^{(4,k)})=0$ if and only if $m$ is even. This proves (ii). Finally we prove
the best possibility of (iii). This is a direct consequence of the fact that $w_{4}(B_{m}(4,k))$

$\neq 0$. which follows from that $w_{4}(B_{m}(4k))=\pi^{*}(w_{4}(\xi_{m}^{(4\iota)})$ and that $\pi^{*}$ is an isomo $\cdot$

phism.

5. Sphere bundles over real brojective spaces

In this section, we shall consider submersion of total spaces of sphere bundles
over real projective space $P_{n}(n\leqq 4)$ . Let $B($ $)$ and $B($ $)_{0}$ be similar as above and
$L$ the canonical line bundle over $P_{n}$ . We quote from (4] the results of the classi-
fication of vector bundles over $P_{n}$.

(5.1) -sphere bundles over $P_{2}(k\geqq 1)$ .
We obtain the following results.

(i) $B(\epsilon^{\hslash+1})_{0}\subseteq R^{k}$ .
Since $w_{2}(B(\epsilon^{k+1})_{0})\neq 0$, this is best possible.

(ii) $B(L\oplus\epsilon^{k})_{0}\subseteq R^{k+1}$ .
By lemma 2.3, we have $\tau(B(L\oplus\epsilon^{k}))\oplus\epsilon^{\prime}=\pi^{*}(\tau(P_{2})\oplus L\oplus\epsilon^{k})$ . We denote $\tau(P_{2})\oplus L$

$\oplus e^{k}$ by C. The obstruction to the existence of $(k+2)$ linearly independent $cr\infty$.
sections of $\zeta$ is $w_{2}(\zeta)\in H^{2}(P_{2}i\pi_{1}(V_{l+3}.\iota_{+2}))$ . Since $w(C)=(1+a)^{4}=1$ , we have $w_{2}(\zeta)$

$=0$, where $\alpha$ is a generator of $H^{1}(P_{2};Z_{2})$ . This proves (ii).

(iil) $B(2L\oplus e^{k-1})_{0}\subseteq R^{k+1}(k\geqq 2)$ .
This follows from Theom 3.1. This result is best possible. In fact, we have
$w(B(2L\oplus e^{k-1}))=\pi^{*}(1+\alpha)^{6}$. Since $\pi^{*}$ is an isomorphism by the exactness of the
Gysin sequence. Thus we have $w_{1}(B(2L\oplus e^{k-1}))\neq 0$. The inclusion map $i:B(2L$

$\oplus\epsilon^{k-1})_{0}\rightarrow B(2L\oplus\epsilon^{k-1})$ induces an isomorphism $i^{*}$ : $H^{1}(B;Z_{2})\rightarrow H^{1}(B_{0}; Z_{2})$ .
Thus we have $m(B(2L\oplus\epsilon^{l-1})_{0})\neq 0$ . This implies the best possibility of (iii).
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(iv) $B(3L\oplus\epsilon^{k-2})_{0}\subseteq R^{k}$ $(k\geqq 3)$ .
This is also best possible.

(5.2) $k$-sphere bundles over $P_{3}$ .

Since $P_{3}$ is paralelizable, we obtain the following results.

(i) $B(\epsilon^{k+1})_{0}\subseteq R^{k+3}$. $(k\geqq 1)$

(ii) $B(L\oplus\epsilon^{k})_{0}\subseteq R^{k+2}$ $(k\geqq 1)$ .
(iii) $B(2L\oplus\epsilon^{k+1})_{0}\subseteq R^{k+1}$ $(k\geqq 2)$ .
(iv) $B(3L\oplus\epsilon^{k-2})_{0}\subseteq R^{k}$ $(k\geqq 3)$ .
These are all best possible.

(5.3) $k$-sphere bundles over $P_{4}$ .
We obtain the folowing results.

(i) $B(\epsilon^{k+1})_{0}\subseteq R^{k}$

(ii) $B(L\oplus\epsilon^{k})_{0}\subseteq R^{k}$

(iii) $B(2L\oplus\epsilon^{k-1})_{0}\subseteq R^{k}$

$(k\geqq 1)$

$(k\geqq 1)$

$(k\geqq 2)$

These results follow from Theorem 3. 1 and are best possible.

(iv) $B(3L\oplus\epsilon^{k-2})_{0}\subseteq R^{k+1}$ $(k\geqq 3)$

This is proved as folows. We have $(B(3L\oplus\epsilon^{k-2}))\oplus\epsilon^{1}=\pi^{*}(\tau(P_{4})\oplus 3L\oplus\epsilon^{k-2})$ . We
denote $\tau(P_{4})\oplus 3L\oplus\epsilon^{k-2}$ by $\zeta$ . The obstruction to the existence of $k+2$ linearly
independent cross sections of $\zeta$ is $w_{4}(\zeta)\in H^{4}(P_{4}; \pi_{3}(Vkk))$ . Since we have $w(\zeta)$

$=(1+a)^{8},$ $w_{4}(\zeta)=0$ . This proves (iv).

Similarly we can prove the following results.

(v) $B(4L\oplus\epsilon^{k-3})_{0}\subseteq R^{k+1}$ and $\not\subset R^{k+1}$ $(k\geqq 4)$

(vi) $B(5L\oplus\epsilon^{k-4})_{0}\subseteq R^{\iota+1}$ and $\not\subset R^{k+3}$ $(k\geqq 5)$

(vii) $B(6L\oplus\epsilon^{k-5})_{0}\subseteq R^{k+1}$ $(k\geqq 6)$

(viii) $B(7L\oplus\epsilon^{k-6})_{0}\subseteq R^{k}$ $(k\geqq 7)$

The results of (vii) and (viii) are best possible.

6. Dold’s manifolds

In this section, we shall consider the submersion of Dold’s manifolds of type
$(n, 1)$ . We denote it by $P(n, 1)$ . $P(n. 1)$ is defined as follows. Let $S^{n}$ be the unit
sphere and $CP_{1}$ the complex l-dimensional projective space. Now $P(n, 1)$ is the
manifold obtained from $S^{n}\times CP_{1}$ by identifying $(x, z)$ with $(-x,\overline{z})$ . where $-x$

denotes the antipodal point of $x$ and $\overline{z}$ the conjugate of $z$ . It is obvious that $\rho:P(n$.
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$1)\rightarrow P_{n}$ defined by $\rho(x, z)=x$ is a fibre map. We denote this bundle by $\delta;\delta=\{P$

$(n, 1),$ $\delta,$ $P_{n},$ $CP_{1}$ , 0(1)}. We can prove that $P(n, 1)$ is the total space of the
associated sphere bundle of a vector bundle $\xi^{3}$, with cross section. According to
a result of [4], it is known that the stable class of $\xi$ is the stable class of $L$ if
$n>2$ . The Stiefel-Whitney class of $P(n. 1)$ is given by $w(P(n, 1))=\pi^{*}(w(P_{n})w(\xi))$

$=\pi^{*}(1+\alpha)^{n+2}$ , where $\pi$ is the projection of $\xi$ . Since $\xi$ has a non-zero cross section,
the homomorphism $\pi^{*}:$ $H^{*}(P_{n}; Z_{2})\rightarrow H^{*}(P(n, 1);Z_{2})$ is a monomorphism. The
inclusion map $i:P(n, 1)_{0}\rightarrow P(n, 1)$ induces an isomorphism $i^{*}:$ $H^{r}(P(n, 1);Z_{2})$

$\rightarrow H^{r}(P(n, 1)_{0}$ ; $Z_{2}$) for $r\leqq 2n$ . Thus we have $wi(P(n, 1)_{0})=(n+2)\alpha^{i}$. We define
$\sigma$ as folows;

$\sigma=mx$ { $i\leqq n;\left(\begin{array}{l}n+2\\i\end{array}\right)\neq 0$ md 2}.

We can prove the following

THEOREM 6. 1. $P(n, 1)_{0}\subseteq R^{2}$ and $\not\in R^{n+3-\sigma}(n>2)$ .
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