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1. Introduction

In [1] and [2], W. F. Pohl and E. A. Feldman have considered higher order
tangent bundles of a smooth manifold M and the higher order non-singular im-
mersion of M into euclidean spaces. Subsequently, H. Suzuki obtained some
higher order non-immersion theorems for real projective spaces in [3] (Theorem
7. 1) etc.) and for complex projective spaces in [4] (the case of p=2 in Theorem
7. 2) etc.) by the calculations of Stiefel-Whitney classes of the higher order tangent
bundles of these spaces and the other reasons. The purpose of this paper is to
show a higher order non-immersion theorem for complex projective spaces and
Dold manifolds, using the methods which are similar to [3], [4].

In §2, we will prepare brief definitions, general results etc. of higher order
tangent bundle, higher order non-singular immersion and the others. In §3, we
will prove the main theorem, Theorem 7, of this paper which is stated together
with the case of real projective spaces.

The author wishes to express his thanks to Prof. K. Aoki, Prof. T. Kaneko
and T. Watabe for their kind encouragements, and to Prof. H. Suzuki for his

valuable suggestions.
2. Preliminaries

Let M be an n-dimensional smooth manifold and (x;,---,x») be the local coordinate

of M. Let zp(M)x (x&M) be the real vector space spanned by {(m-ika?‘)x; 1<k
11°°"0Ak

=p, lgilg---gikgn} and tp(M)= UA}'p(MDx. Then we have that (M) is a sm-
x€

ooth v(#n, p)-vector bundle over M where v(n, p)zn—l—(”;—l)—l—---+(”+£_1)=(n;p )
—1. 7p(M) is called the p-th order tangent bundle of M (See [1] pl89).

Let f be a smooth map of M into the m-dimensional euclidean space R”. Let
fp: ts(M)—>7p(Rm) be the p-th order differential of f (See [1] pl90) and Dj:
7i(Rm)—>7j_1(Rm) (j=2, 3,---,p) be the vector bundle homomorphisms which are
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defined by
ce s a]

Y Oxiy-0%i;
where v;_1E7;1(R™) (See [2] pl176). Then D,---Dpfp: to(M)—>1(Rm)=7(Rm) is a
vector bundle homomorphism covering f. If Dj---Dyfp is of maximal rank (=min
{v(m, p), m}) on each fibre, we say that f is a p-th order non-singular immersion
and denote that f: McpR” (See [3] p270). We have (See [1] p217):

Dj(wj—1+Xai,- d)=vj-1,

THEOREM 1. Let n>1. Then M < pRvu0Ytn, and if p>1, M S pRvn ) n,

Throughout this paper, we identify a vector bundle over M with its class in
KO(M). Let Oi: KO(M)—>KO(M) (i=0,1,---) be the symmetric i-th power ope-
rations which have the following properties (See [3] p272):

Pl1. 0%=1,
P2, Olx=zx, '
P3. Oi(x+y)=13, 00y for x, yEKOM.

We have (See [2] Theorem 2.1, [3] p273):
THEOREM 2. The sequence

0 — 75 (M) — 7p(M) — 0Pc(M) — 0

is a split exact sequence.

In general, if x is an n-vector bundle, Oi(x) is an ("+l§—1)—vector bundle (Cf.
[2] p173).

Let M be an n-dimensional compact connected smooth manifold and w?(M),
we(M), w*,(M) and w#; (M) be total, dual total, i-dimensional and dual i-dimen-
sional Stiefel-Whitney class of zp(M), respectively. We have the following
theorems which are the sources of our results.

TueoreMm 3. ([3] Lemma 2.2) tp(M)=0(z(M)+1)—1.

TueoreM 4. ([3] Theorem 1.1) If wt;(M)==0, then M cannot be immersed into
Ry 0Xtk without singularities of order p; M EpRvu0>te (0=<k<i). If w?;(M)==0, then
MEpRvonp+k (—i<k=<0).

Finally, we prepare some lemmas which serve to compute w?(M). Let x and
y be n- and n’-vector bundle, respectively, and

w(x)=14+w (X)) + - +wn(x)=M7;(A+1)
WD =1+, + -+ wn' () =My (L+5")
be formal factorizations of total Stiefel-Whitney classes of x and y. We have:
LemMa 1.

1D wlx-y)=Iigisn, 15jsn’'A+Ei+1i)).
2) ([2] Lemma 3.24) w(O?(x))=Ihgiis " sipgn(1+ iyt - +1tip)).
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LemMmA 2. Let p and r be positive integers. Then
Oﬁ(rxD = 2p(§pllx . .Oisx’
where the sum 2p is taken for the positive integers iy,---is (s=1) such that iy+---+is=p.

We can prove Lemma 2 by the induction on 7.
LemmMma 3. In Lemma 2, we have

AL M G ) o G
In particular, if n=1, then m(j):(’ +§“1) and if n=2, then z:,{(g) T _1(ik+1)}
=(21'+p—1) '
. p. .
3. Non-immersion theorem and its proof

Let RPm, CPx and P(m,n) be m-dimensional real, n-dimensional complex pro-
jective space and Dold manifold of type (m,»), respectively. In this section we
will prove the higher order non-immersion theorem for RPm, CP» and P(m, n).

From Theorem 3, it follows:

THEOREM 5.

1) (3] p274) 7p(RPm)=0?((m+1)&)—1,

2) ([4] Theorem 1.1) tp(CPn)=0¢((n+1)N)—0?"1((n+1)D—1,

3) c»(P(m, n))=zf_OOi(mE)-orf((n+1>v)-—>3f_‘:o:'(me)-Oﬂ-l—f((n+1)v>—1,

where & in 1) is the canonical line bundle over RPm, 7 in 2) is the realization of the
canonical line bundle over CPn, and £,7 in 3) are the bundles which are defined in [5]
Proposition 1.4: i*¢=(¢ in 1)), %"= in 2)) where i: RPm— P(m,n), j: CPx— P(m,
n) are inclusions.

Proor of 3). By Theorem 1.5 in [5], z(P(m, n))PEP2=(m+1)EP (n+1)7.

Hence, by Theorem 3 and P3, we have
tp (P(my, n))=0r(m&+(n+1)7—1)—1
=0?(mé +(n+1)D)—0r"(mé +(n+1)1D~—1,
Thus, Theorem 5.3) follows from P3. (q. e. d.)

Using Theorem 5 and Lemmas, we obtain:
THEOREM 6.
1 (for even p)
1)) wP(RPm)::{ ™35
A+a) (for odd p).
- _%(%H»f)
A+p8) 3¢~ (for even p)
_!,_(2n+ﬁ+1)
a+p% ? 7 (for odd p).
3 wt(P(mn))=A~+c)A(1+c+d)B,
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where a, B are the generators of HY(RPm; Z3), H2(CPx ; Z3), respectively ; c,d are the
classes which are defined in [5] p284: cEHY(P(mm);Z3), d=EH2(P(mmn) ; Zs), cm+tl
=dn*t1=0, Sq'(d)=cd, w(&)=14c, w(MD=1+c+d; and

Az—l'— (2n+.i+1)+(_1y,_1 m+2(p——z) -1 ,n+ ) (m-}—p—;— )

2 “ogeven ixp

B————Zo<odd tsp(2n+z+1)(m+p——z— )

Proor.
1) (Cf. [3] p274) Since w(§)=1+w1(§)=1+a, by Lemma 1, we have w(0i¢)=1+ia.
Hence,

w(0E -+ 0W) =1+ (Wpmiwda={L 8{; T is odd.

On the other hand, by Lemma 2, we have 0?((m+1)&)=" p(’”jl)()fle---o:'se.

Hence, from Theorem 5 and Lemma 3, it follows
w?(RPwm)=w(0?((m+1)&)) =M pw (01 - .oise)(m: D

{ (mﬂ)“l (for even p)

21+ D=+ 2 =1+ (for 0dd p).
2) (Cf. [4] p389) Let w(7)=14w(7)=1+B=A+01)(1+0;) be a formal factori-
zation of total Stiefel-Whitney class of 7 : o;+03;=0, g10,=8. By Lemma 1, we
have
1i+l=1 (for even i)

w 0"7)=”‘j-o(1+f01+(i-f)dz)={ i+1 i+1
{AQ+e)Q+e2)} 2 =QA+8)2 (for odd 7).

By induction on s, we obtain
{ (f 3jr is even)
s i
A+ =19 (3¢ vk is odd).
Here, note that 71(jx+1) is even, when >'jr is odd, since it exXists at least one &
such that jz is odd. Hence, from Lemmas 2 and 3, it follows

w(0ny...0isn) =

w01+ TN = ("t )03 7---0isn) = H (O 7 -~-0isn)C3 D
1 (for even ¢)
={<1+ﬁ) BACTDAGHDY 2 (4 53D (for odd o).

Thus, by Theorem 5, we have
w?(CPx»)=w(0?((n+1) 7 )Dw(0?1((n+1) 7))
{w(‘)‘”ccnm ) D (for even p)

w(0s((n+ D)=+ D (for odd p).
3) Since w(§)=1+c, similarly to 1), we have
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(m + 4—1)
1~ ¢ /=1 (for even ¢)
a+o D (for odd ¢).

Let w(7)=14+w(7)+w( 7)=14c+d=1+a1)(1+02) be a formal factorization
of w(7): o1+a,=c¢, 0162=d. By Lemma 1, we have

Q) w(O1(mé)) = {

U

. . 12 " (A+o1te)2=4c)?2 (for even i)
w(O‘ﬂ)=”‘i-oC1+ﬁ71+(i—j)02)={ i+ in
{A400DA+02)} 2=A+c+d)?2 (for odd 7).
By induction on s, we obtain
(2 w(0nn-..-0isn)

W Gr+1)-1) k+1)—1)

—a _I_C)Q(H(i

I Ge+1)

(TTGr+1)+1) . ..
¥ (if any jr is even)

(140 +02)‘}
}H(1k+1)=(1+0)

31Gr+1
}

1

1 {1-Q+o1+o)} (if 3jz is even and it exists at

, least one k& such that jr is odd)
{Q+eDA+02) =1+c+d) (if Xk is odd).

Note that H(jk+1)¥1 and 771(jx+1) in (2) are even. Hence, from Lemmas 2 and 3,
it follows

FIGR+1)

w(0«((n+ D) =w(S("F1)05 703 1) =Maaw (O 7 05 7)s

_{(1+C)" (for even ¢q)
LA +e+ B CTDTR _ Lok FCTED (for 0dd o).

Now, we must determine the value of above 4. Let

w(0e((n+1) 7)) =M (011 7 --0is 7)C' s D=12+(1+ay+as)h (for even q).
Then .

g+h=(2”+q‘1+1) (=fibre dimension of 0¢((rn+1) 7).
Next, we consider Z’q("j;l i17...04s1, where the sum YV, is taken for the positive

even numbers jj,---, js such tnat j;+4---+js=¢. Then, we have ZIq(”_:l)= (";‘ 'g‘)
2

and from the first expression in (2), it follows

g—h=(n;'g‘).

= HO O )
Here, note that (2"+qq+1):t(""_lgj‘g‘) is even, because(?”+qé+1)z(”'_g‘%) (mod 2).

Thus,

Hence,
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3) w(0i(n+1) 7))
1 {(2“:“)'*‘(”%%)} . (1+01+02)§ (@A —( ; 2 D} _(1_*_0)9 (@+ay— ("+ 7))

= " S (for even ¢q)
1A+ +e)) ¥ D= 4e4+ D (for odd o).

From (1) and (3), it follows
w(0i(mE)-0/((n+1) 1) |
',(1+01+02),} {(2n+ii+1)_(n%-—%)} (m4;i—1)=(1+c)§ {(2n-|-’_i+1)__(n—-_£-—:-)} (m-i;i—l)
F(Z I (AT Jar ity (mi-t (for even j, i)
{A+e) (A +o2)} i i /=A+c+d) : 7 (for even j, odd 1)

a+ol {(2"*,-"“)+(”2‘_;)} D (for odd j, even i)

. 1}(2”_“_,_1)(,”4,,_1) + i(2"+z+1)(m+1—1)
(@+etadteto) =QA+etd) (for odd j, ©)

L[ FHEHDEEDITCEICYD (or even iy
@ _{(1+c+d)*(2"+'“7(m“—1) (for odd ).

Hence, by Theorem 5 and (4), we have
wp(P(m, n))
=115; - (OP=i(m§) - 0 ((n+1) 7)) N5 (OP~1~i(mg)-0i(n+1) 7))

o COFE DI D o B DD

— 7 41 —-i/n T m —_ _ i m p_;_
ey o DL WDy ey i DS

Computing the power numbers of (1+c)i and (1+c+d) in above, we obtain the
required results:

2A =20geven isq (zn-l-ii+1)+(_1)p—1 ﬂl+2(p—z) 1 (n+ )} m+p z—- )

: 2B—Z]o<add :gp(2"+'+l)(m+p —i- 2) (q. e. dD

From Theorem 6, we can get the maximal integers i, j such that w#;#0,
w?;+0 Thus, by Theorem 4, we will obtain our non-immersion theorem.
THEOREM 7.

1) ([3] Theorem 1.2) When p is odd, let

atm, py=max i10<izm, ("3")20 (mod 2),
]

sCm, y=mazx (i10<i<m, (3T~ D)20 (mod 2)).
i
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If k is an integer such that —d(m, p)<k<s(m, p), then RPmSE pRvim,p)+k,
2) (Cf. [4] Theorem 1.5) Let

dyp=max (i|0<i=n, (W;:lp),“"l)s:*o (mod 2)},
k 1

74P
da, p=max (i|0<i<n, (5(2 +{)+1))$0 (mod 2)}.
i

When p is even, if k is an integer such that —2d1,p<k<2d2;p_1, and when p is odd, if k
is an integer such that —2d,,p<k<2di,p+10 then CPnSEpRy@n p)tk,
3) Let

!
by=maz (i|0<i=a+2pm+2n, Sosramintnno 1 ) CE—F IS TrTAT =0 (mod D,

. . A—l+a—y 2t—B)!
by=max {i|0<i=a+28<m+2n, Zosrsmin(a,zt—B—ﬁ)( a—r (Zt—BE—ﬁ——T))!T!ﬁ!"i'O

(mod 2)},
where A and B are ones in Theorem 6, t is an integer such that 2t >max{m,n, B—1}.
If k is an integer such that —b,<k<bs, then P(m,n)E pRyim+2n,p)+k.
Proor.
2) When p is even, by Theorem 6.2), we have

wr(CP= -+, wpcPH=+ ) HH,
Hence,

max (i|0<i<n, w?yu(CPn)=0} —max (i|0<i<n, (*Czi'{ff )20 (mod 2)) =dz -1
1

masx (il 0<isn, wtx(CPw)+0) =max (i[0<izn, (}F1)20 (mod 2)) =du »
4

Thus, the first half of Theorem 7.2) follows directly from Theorem 4. The latter
half of Theorem 7.2) follows also by similar reasons.
3) By Theorem 6.3),

w?(P(m, n))=1+c)A4A+c+d)5,

w?(P(m, n))=1+c)"AQ+c+d)"B=14c)"A(l+c+d)*~B (mod 2),
where 2¢:>max {m,n, B—1}: (Q+4c+d)*=1+c*+d*=1 (mod 2), 2!—B=0. Hence,
the coefficient of c2d# in the expansion of w?(P(m,n)) is equal to Do<rsmin(asB—8) ( a‘_‘l_ T)

B— ﬁf;’)'T' FIE and the coefficient of cedé in the expansion of w?(P(m, n)) is

— — 2t—B)
equal to Dlo<r<min (a,z,_B_ﬁ)(A i'_l‘? T) = é_ﬁf%!n 31 Thus, Theorem 7.3)

follows similarly to the proof of 2) from Theorem 4. (q. e. d.)
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