A remark on the embeddability of n-manifolds in (2n-2)-space

By

Tsuyoshi WATABE

(Received October 31, 1967)

1. Introduction

In this note, we shall prove the following

THEOREM 1. Let M be a closed, smooth simply-connected n-manifold whose homology groups are torsion free. Then the immersibility of M in R^{2n-3} ((2n-3)-dimensional Euclidean space) implies the embeddability of M in R^{2n-2} if $n \geq 7$.

This is a corollary to the following

THEOREM 2. Let M be a closed, smooth (n-k-1)-connected n-manifold whose homology groups are torsion free. If M is immersible in R^{n+k} with vanishing Euler class, $2k \ge n+3$ and $k \le n-2$, then M is embeddable in R^{n+k} .

We shall sketch an outline of our proof. Let M be immersed in \mathbb{R}^{n+k} with normal disk bundle ν . Then the total space E of ν is parallelizable manifold and contains M as a submanifold (the image of the zero cross section). Let E_0 be the total space of the restriction of ν to $M_0=M-\mathrm{int}\ D^n$. Then E_0 is also parallelizable manifold and contains M_0 as a submanifold. Note that bM_0 is embedded in bE_0 . We kill homotopy groups of E_0 and obtain a contractible manifold C in which M_0 is embedded and bM_0 in bC. We can show that bC is simply connected and hence C is an (n+k)-disk. Thus we have an embedding of M_0 in D^{n+k} . By attaching a cone on bM_0 in the complementary disk to D^{n+k} in S^{n+k} , we have a piecewise linear embedding of M in S^{n+k} . By a result of Haefliger, this is approximated by a differentiable embedding under a suitable assumption on n and k.

This note is motivated by the method of the proof of THEOREM 14 in Wall's paper "Classification Problems in Differential Topology. V On certain 6-manifolds." Invent Math., 335-374('66).

2. Statements of results

Throughout this section, M denotes a closed, smooth simply-connected n-ma-

18 T. Watabe

nifold whose homology groups are torsion free. Let ξ be a k-dimensional vector bundle over M and E the total space of the associated disk bundle and bE the total space of the associated sphere bundle. Let M_0 denote the complement of an embedded open n-disk D^n in M. We define E_0 as the total space of restriction of E to M_0 . We shall assume that E is parallelizable and the Euler class of ξ vanishes. By performing surgery on E, we can prove the following proposition:

Proposition 1. We can construct two sequences of parallelizable manifolds;

$$C_1 = E_0, C_2, \cdots, C_{k-2},$$

and

$$D_1=E$$
, D_2 ,, D_{k-2} ,

with the properties;

- (1) $C_h = C_{h-1} \cup (U_{i-1}^{rh-1} D^{h+1} \times D_i^{n+k-h-1})$ $D_h = D_{h-1} \cup C_h$
- (2) C_h and bC_{h-1} are h-connected and H_i $(C_h)=H_i(C_h)=H_i(C_{h-1})$ for $i \ge h+1$,
- (3) D_h and bD_h are h-connected and H_i $(D_h)=H_i$ (D_{h-1}) for $i \geq h+2$,
- (4) $H_{h+1}(C_h) = H_{h+1}(D_h)$

and

(5) bD_h is h-connected and H_{h+1} (bD_h) has no torsion,

where $2 \le h \le k-2$. Moreover M embeds in D_h and (M_0, bM_0) in (C_h, bC_h) .

We construct C_h and D_h inductively. From (5), we can choose maps $f_i: S^{h+1} \to bD_h$ $(i=1, 2, \dots, r_h)$ representing basis of H_{h+1} (bD_h) . If $n+k-1\geq 2$ (h+1)+1, we may assume that f_i 's are embeddings with trivial normal bundles and have disjoint images. It is easy to show that f_i (S^{h+1}) can be pushed into $bD_h \cap C_h$. By attaching handles $D^{h+2} \times D_i n^{+k-h-2}$ to C_h with attaching maps f_i , we construct $C_{h+1} = C_h \cup \bigcup_{i=1}^{r_h} D^{h+2} \times D_i n^{+k-h-2}$.)

It is known that C_{h+1} is a smooth manifold Moreover C_{h+1} is parallelizable. Define D_{k+1} by $D_h \cup C_{h+1}$, then D_{h+1} is also parallelizable manifold. Using the Mayer-Vietoris exact sequence, we can show that C_{h+1} and D_{h+1} satisfy the properties $(1)\sim(5)$

We can show the following

PROPOSITION 2. The (k-1)-th homology group of bD_{k-2} contains the infinite cyclic group generated by the fiber over the center of the disk which is to be removed from M to construct M_0 as a direct summand; H_{k-1} $(bD_{k-2})=Z \oplus G$.

By the same arguments as above, we can kill the group G and obtain the

following proposition;

Proposition 3. We can construct smooth manifolds C_{k-1} and D_{k-1} with the properties;

- (1) C_{k-1} and bC_{k-1} are (k-1)-connected and H_i $(C_{k-1}) = H_i$ (C_{k-2}) for $i \geq k$,
- (2) $H_i(D_{k-1})=H_i(D_{k-2})$ for $i \geq k+1$,

and

(3) bD_{k-1} is (k-2)-connected and H_{k-1} $(bD_{k-1})=Z$.

Since bD_{k-1} is (k-2)-connected, the Hurwicz homomorphism $H: \pi_k (bD_{k-1}) \to H_k (bD_{k-1})$ is an epimorphism. Note that $H_k (bD_{k-1})$ is free. By performing surgery on elements of $H_k (bD_{k-1})$, we can construct a smooth manifold C with the properties;

Proposition 4. C is k-connected and H_i (C) is isomorphic with H_i (M_0) for $i \ge k+1$. Moreover (M_0 , bM_0) is embeddable in (C, bC).

We shall apply the arguments above to the normal bundle ν of an immersion of M in \mathbb{R}^{n+k} , which is assumed to have vanishing Euler class. We can construct a smooth manifold C with the properties of proposition 4. The (n-k-1)-connectedness of M implies that all homotopy groups of C vanish. We can show that bC is simply-connected and hence C is an (n+k)-disk. Thus M_0 is embeddable in D^{n+k} and bM_0 in $bD^{n+k} = S^{n+k-1}$. The desired embedding of M in S^{n+k} is obtained by attaching a cone to $bM_0 = S^{n-1}$ in the complementary disk of C in S^{n+k} . This proves Theorem 2.

3. Surgery on a disk bundle

We use same notations in the preceding section. Moreover we assume that $k \le n-2$. By the assumptions, E, E_0 , bE and bE_0 are simply-connected and s-parallelizable, and their homology groups have no torsion. It is easy to prove the following lemma;

Lemma. Let f be an embedding of S^r in bE such that $f(S^r)$ does not meet the fibre over the center of D^n (the disk which is to removed from M to construct M_0). Then $f(S^r)$ can be pushed into $bE \cap E_0$. Hence if r < n-1, then we may assume that $f(S^r) \subset bE \cap E_0$.

We kill H_2 (bE). Since all elements are spherical, we can find maps f_i : $S^2 \longrightarrow bE$ (i=1...., r_2) which represent a base of H_2 (bE). If $n+k-1 \ge 5$, we may assume that f_i is are embeddings with trivial normal bundles and their images are disjoint. Let C_2 be the manifold obtained from E_0 by attaching handles $D^3 \times D_i^{n+k-3}$

20 T. Watabe

 $(i=1, \dots, r_2)$ to $E_0 \cap bE$ by the maps f_i . Note that C_2 is parallelizable manifold. We put $D_2 = E \cup C_2$. Using the Mayer-Vietoris exact sequence, we can immeadiately prove the properties $(2) \sim (5)$ of Proposition 1 for C_2 and D_2 .

Suppose that we have constructed manifolds $C_1=E_0$, C_2 ,..., C_h and $D_1=E$, D_2 ,..., D_h , with the properties $(1)\sim(5)$ in Proposition 1 for $2\leq h\leq k-3$. Since all elements of H_{h+1} (bD_h) are spherical, we can find maps $f_i: S^{h+1} \longrightarrow bD_h$ $(i=1, \dots, r_h)$ which represent a base of $H_{h+1}(bD_h)$, where $r_h=\text{rank}$ of H_{h+1} (bD_h) . Since n+k-1>h+k+1, we may assume that $f_i(S^{h+1}) \subset bD_{h-1}\cap C_h$ by the same argument of Lemma. Thus we can construct $C_{h+1}=C_h\cup(\cup_{i=1}r_hD^{h+2}\times D^{n+k-h-2})$ and $D_{h+1}=D_h\cup C_{h+1}$. It is easy to show (1), (2), (3) and (5). We prove (4). Consider the following commutative diagram;

$$H_{h+3}(D_{h+1}, D_h) \longrightarrow H_{h+2}(D_h) \longrightarrow H_{h+2}(D_{h+1}) \longrightarrow H_{h+2}(D_{h+1}, D_h) \longrightarrow H_{h+1}(D_h)$$
 $i_{-2} \uparrow \simeq i_{-1} \uparrow i_0 \uparrow i_1 \uparrow \simeq i_2 \uparrow \simeq$
 $H_{h+3}(C_{h+1}, C_h) \longrightarrow H_{h+2}(C_h) \longrightarrow H_{h+2}(C_{h+1}) \longrightarrow H_{h+2}(C_{h+1}, C_h) \longrightarrow H_{h+1}(C_h)$

By excision, $H_i(D_{h+1}, D_h) = H_i(C_{h+1}, C_h)$ for all i. From the following commutative pagarm, in which all homomorphisms are induced by inclusion and all homomorphisms except i_{-1} are isomorphisms, it follows that i_{-1} is an isomorphism.

$$H_{h+2}(D_h) \longleftarrow H_{h+2}(D_{h-1}) \longleftarrow \cdots \longleftarrow H_{h+2}(E)$$
 $i_{-1} \uparrow \qquad \qquad \uparrow \simeq$
 $H_{h+2}(C_h) \longleftarrow H_{h+2}(C_{h-1}) \longleftarrow \cdots \longleftarrow H_{h+2}(E_0)$

By 5-lemma, we have $H_{h+2}(D_{h+1})=H_{h+2}(C_{h+1})$ (note that i_2 is an isomorphism). This completes the proof of Proposition 1.

We shall prove Proposition 2. Write $Y = bD_{k-2} \cap C_{k-2}$, and $Y = bC_{k-2} - S^{n-1} \times D^k = bD_{k-2} - D^n \times S^{k-1}$. Consider the Mayer-Vietoris exact sequence;

$$0 \longrightarrow H_k(Y) \longrightarrow H_k(bC_{k-2}) \longrightarrow H_{k-1}(S^{n-1} \times S^{k-1}) \longrightarrow H_{k-1}(Y) \longrightarrow H_{k-1}(bC_{k-2}) \longrightarrow 0.$$

Since $H_k(bC_{k-2})$ is free, $H_k(Y)$ is also free and has the same rank as $H_k(bC_{k-2})$. Hence we have an exact sequence;

$$0 \longrightarrow H_{k-1}(S^{n-1} \times S^{k-1}) \longrightarrow H_{k-1}(Y) \longrightarrow H_{k-1}(bC_{k-2}) \longrightarrow 0.$$

Since $H_{k-1}(bC_{k-2})$ is free, we have $H_{k-1}(Y) = H_{k-1}(S^{n-1} \times S^{k-1}) \oplus H^{k-1}(bC_{k-2})$. From the Mayer-Vietoris exact sequence;

$$0 \longrightarrow H_{k-1}(S^{n-1} \times S^{k-1}) \longrightarrow H_{k-1}(Y) \oplus H_{k-1}(D^n \times S^{k-1}) \longrightarrow H_{k-1}(bD_{k-2}) \longrightarrow 0,$$

and the fact that $H_{k-1}(bD_{k-2})$ is free, we have $H_{k-1}(bD_{k-2})=Z \oplus G$, where Z is generated by the fibre over the center of the disk and G is isomorphic with $H_{k-1}(bC_{k-2})$. This completes the proof of Proposition 2. By selecting embeddings $f_i: S^{k-1} \longrightarrow bD_{k-2} \cap C_{k-2}$ with trivial normal bundles, which represent a base of G, we

construct smooth manifolds C_{k-1} and D_{k-1} as before. We shall prove Proposition 3. It is not difficult to show (1) and (2). Write $Y=bD_{k-1}\cap C_{k-1}$. Applying the Mayer-Vietoris exact sequence to $bC_{k-1}=Y\cup S^{n-1}\times D^k$, we have H_{k-1} (Y)=Z (note tht $H_k(Y)\longrightarrow H_k(bC_{k-1})$ is an epimorphism). Since H_i (bD_{k-1} , Y)= H_i ($D^n\times S^{k-1}$, $S^{n-1}\times S^{k-1}$), we have $H_{k-1}(Y)=H_{k-1}(bD_{k-1})$ and hence $H_{k-1}(bD_{k-1})=Z$. This implies Proposition 3.

Finally we shall prove Proposition 4. Since $C = C_{k-1} \cup (\bigcup_{i=1}^{rk} D^{k+1} \times D_i^{n-1})$ by the Mayer-Vietoris exact sequence, we have $H_i(C) = 0$ for $i \le k-1$ and $H_i(C) = H_i(C_{k-1})$ for $i \ge k+2$. Consider the exact sequence;

$$0 \longrightarrow H_{k+1}(C_{k-1}) \longrightarrow H_{k+1}(C) \longrightarrow H_k(\bigcup_i S^k \times D_i^{n-1}) \xrightarrow{j_*} H_k(C_{k-1}) \longrightarrow H_k(C) \longrightarrow 0.$$

We show that j_* is an isomorphism. In fact, we consider the following commutative diagram;

$$H_{k} (bD_{k-1}) \xrightarrow{z} H_{k}(C_{k-1}) \xrightarrow{j_{*}} H_{k}(C_{k-1}) \xrightarrow{z} H_{k}(bD_{k-1} \cap C_{k-1}) \xrightarrow{j'_{*}} H_{k}(bC_{k-1}).$$

Since $H_i(bD_{k-1}, bD_{k-1} \cap C_{k-1}) = H_i(D^n \times S^{k-1}, S^{n-1} \times S^{k-1})$, if $k \le n-2$, i_* is an isomorphism. From the exact sequence;

$$0 \longrightarrow H_k(bD_{k-1} \cap C_{k-1}) \xrightarrow{\mathbf{j_*}} H_k(bC_{k-1}) \longrightarrow H_k(S^{n-1} \times D^k, S^{n-1} \times S^{k-1})$$
$$\longrightarrow H_{k-1}(bD_{k-1} \cap C_{k-1}) \longrightarrow 0,$$

it follows that j'_* is an isomorphism and hence j_* is an isomorphism. Therefore $H_k(C)=0$, and hence $H_i(C)=H_i(C_{k-1})$ for $i \ge k+1$.

4. Application

In this section, we shall prove Theorem 2 and hence Theorem 1. Let M be a closed, smooth simply-connected manifold whose homology groups have no torsion. Suppose that M be immersed in R^{n+k} with normal bundle ν whose Euler class vanishes. Applying the arguments in Section 3 to the associated disk bundle, we have a smooth manifold C with boundary with following properties;

- (1) (M_0, bM_0) is embeddable in (C, bC)
- (2) C is k-connected and $H_i(C)=H_i(M_0)$ for $i \ge k+1$, and
 - (3) bC is simply-connected.

If M is (n-k-1)-connected, then $H_i(C)=0$ for all i and hence C is an (n+k)-disk $(n+k\ge 6)$. We obtain a piecewise linear embedding of M in S^{n+k} by the method mentioned in Introduction. By a result of Haefliger, if $2k\ge n+3$, this embedding

22 T. Watabe

can be approximated by a differentiable one. Thus we have Theorem 2. It is easy to deduce Theorem 1 from Theorem 2.

NIIGATA UNIVERSITY