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1. Introduction

A Riemannian manifold®® is called locally flat if its Riemann-Christoffel curvature
tensor R vanishes identically, and it is called locally conformally flat if its Weyl con-
formal curvature tensor C vanishes identically when dimension > 4. In the following,
the Ricci tensor of a Riemannian manifold will be denoted by S, and the Ricci endomor-
phism will be denoted by Q: for all tangent vector fields X and Y one has S X, Y
=<QX, Y >, where <, > is the Riemannian metric. A Kaehler manifold is said to be
Bochner flat or is said to be a Bochner—Kaehler manifold if its Bochner curvature tensor
B vanishes identically. We recall that the Bochner curvature tensor of a Kaehler mani-
fold was introduced as a complex version of the Weyl conformal curvature tensor of a
Riemannian manifold. For results on Bochner-Kaehler manifolds, we refer to M. Kon
[8], M. Matsumoto and S. Tanno [9], S. Tachibana and R. S. Liu [18], S. Yamaguchi
and S. Sato [25].

R. L. Bishop and S. I. Goldberg [1] and K. Sekigawa and H. Takagi [16], classified
the locally conformally flat spaces which satisfy the curvature condition R.S =0, or
equivalently R.Q=0, where the first tensor acts on the second one as a derivation. Con-
cerning curvature conditions on Kaehler manifolds, we recall the following results.

Tueorem A. (K. Yano [26]). A locally conformally flat Kaehler manifold of complex
dimension n=3 is locally flat.

TueoreMm B. (H. Takagi and Y. Watanabe [19]). A Bochner-Kaehler manifold of
complex dimension n=>2 satisfies the curvature condition R+Q=0 if and only if either i) M
is a space M™(c) of constant holomorphic sectional curvature c, or (ii) for some strictly posi-
tive real number c and some m, m' & N, with m-+m'=n, M is locally holomorphically iso-
metric to a product M (c) x M™'(—c). A Bochner-Kaehler manifold is semi-symmetric, i.e.
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it salisfies the curvature condition R-R=0, if and only if it is of type (i) or (ii).

In this paper, we study Bochner-Kaehler manifolds which satisfy one of the curva-
ture conditions Q+R=0, Q-C=0, C-Q=0, R-C=0, C+R=0or C-C=0. More precisely, we
will prove the following results.

THEOREM 1. A Bochner-Kaehler manifold M of complex dimension n =2 satisfies R-C
=0 if and only if n=2 or M is one of the manifolds from Theorem B.

THEOREM 2. For a Bochner-Kaehler manifold M of complex dimension n= 2, the fol-
lowing assertions are equivalent:

( 1) QR=0,

(ii) Q-C=0,

(iii) C.C=0,

(iv) C.R=0,

(v) C=0,

(vi) M is locally flat or n =2 and for some strictly positive real number c, M is locally
holomorphically isometric to a product M(c) X M(—c), where M(c), respectively M(—c),
denotes a complex 1-dimensional space of constant Gauss curvature c, respectively —c.

ReEMARK. See S. Tanno [21] for #=2. Furthermore, we see from Theorem F and
Theorem 3 of [9] that a Bochner-Kaehler manifold M of complex dimension » =2 and
with Levi Civita connection V satisfies VC =0 if and only if M is one of the manifolds
from Theorem B.

THEOREM 3. A Bochner-Kaehler manifold M of complex dimension n = 2 satisfies C-Q
=0 if and only if either 1) M is a space M"(c) of constant holomorphic sectional curvature c,
or (ii) n is even, n=2m, and for some strictly positive real number ¢, M is locally holomor-
phically isometric to a product M™ (c) X M™(—c).

The following theorem was proven by B. Y. Chen, A. Derdzinski and J. P. Bour-
guignon.

THEOREM C. Let M be a (complex) 2-dimensional compact Bochner-Kaehler manifold.
Then M is locally symmetric, and hence a space M?(c) of constant holomorphic sectional cur-
vature c & Ry .

Thus, from Theorem 1 and Theorem C, it follows that a compact Bochner-Kaehler
manifold of complex dimension n>2 satisfying the condition R-C=0 is a space M"(c) of
constant holomorphic sectional curvature c & Rf .
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For literature on Riemannian manifolds, on hypersurfaces of real space forms and
on complex hypersurfaces of complex space forms which satisfy the type of curvature
conditions studied in this paper, we refer to Z. 1. Szab6 [17], D. E. Blair, P. Verheyen and
L. Verstraelen [2], J. Deprez [4] [5], ]J. Deprez, P. Verheyen and L. Verstraelen [6] [71],
Y. Matsuyama [10], I. Mogi and H. Nakagawa [11], K. Nomizu (12], P. ]J. Ryan [13]
(14] [15], S. Tanno and T. Takahashi [22], T. Takahashi [20], P. Verheyen and L. Ver-
straelen [23] [24], etc.

2. Basic formulas

Let (M, <, >, J) be a Kaehler manifold of complex dimension #z with complex struc-
ture /, Kaehler metric <, >, Levi Civita connection V, Riemann-Christoffel curvature
tensor R, Ricci endomorphism @ and scalar curvature z. In the following, we will delete
the complex structure and the metric in the notation. For vectors X and Y tangent to
M at a point p of M, let X A Y denote the endomorphism ToM—>TpM:Z—> (X N Y)Z:
=<Y,Z>X—- <X,Z>Y. The Weyl conformal curvature tensor C of M is defined by

2.1 C(X, Y):=R(X, Y>—Tn1—1—)(QX/\ Y+XN\QY)+—

and the Bochner curvature tensor B of M is defined by

(2.2) B(X, Y):=R(X, Y)——Z(—nl_rz—y(QX/\YJrX/\QYJrQJX/\]Y

T
(n—1)(2n—1) XNY,

TIXAQJY —2QJX, Y>J—-2<JX, Y>QI)
XNYHJXNTY-2]JX, Y>)),

T
B TCESIICES AR

for all vectors X and Y tangent to M at the same point. The following properties are
well-known:

R(JX,JY)=R(X,Y),  R(X,Y)J=JR(X,Y),
(2.3) Q/=JQ,

CUX,JY)=—JC(X, Y)J.

Moreover, it is easy to verify the following equalities:
(XAY,ZAW]I=<Y,Z>XA\NW+<X,W>YAZ

— <X, Z>YNW—<Y, W>XNZ

LXAYI=JIXAY+HXATY,
[RQL X ANYI=QIX NY+X N QJY.

In the sequel, we assume that M is a Bockner-Kaehler manifold, i.e., B=0, or equivalently

— 1 ‘
R(X, Y)—W(QX/\ Y+X NQY+QIX NJY+]X NQJY
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—2<QIX, Y >]-2<JX,Y>QJ)
T
—'—m (X/\ Y+]X/\IY—2 <]X, Y>])

The endomorphisms R(X, Y), C(X, Y) and Q of TM act as derivations on the algebra
of tensor fields of M. For instance:

(Q-R)(Z, VI)W=Q(R(Z, V)W)—R(QZ, V)W—R(Z, QV)W
—R(Z, V)W

=[Q, R(Z, V)IW—R(QZ, V)W—R(Z, QV)W,
and ‘
(R(X,Y)QZ=R(X, YXQZ)—-QR(X, Y)2)

=[R(X, Y), Q1Z,

for all vectors X, Y, Z, V, W tangent to M at the same point. By R.C=0,..., we will
always mean that R(X, Y).C=0,..., for all X, Y. The derivations R- and C. commute
with contractions. For every tensor T  on M, we have that R(X, Y) - T=VxVyT
~VyVxT—Vrx, y1T. This implies that a locally symmetric space (i.e. a Riemannian
manifold for which VR=0) satisfies the condition R-R=0, that a Ricci parallel space (i.e.
a Riemannian manifold for which vQ=0) satisfies R-Q=0, etc.

For every point p in M, Q is a symmetric endomorphism of TpM. Furthermore, if X
is an eigenvector of Q acting on T,M, then, by (2. 3), also /X is an eigenvector of @ with

the same eigenvalue as X. Thus, we can choose an orthonormal basis {e;, ..., en, €%, ...,
e s} for TpM such that e;x=Je;, and such that
Qe;=1;e;,
(2.5)
Qeix=12;e;x,
for some real numbers 4;, ( & (1, 2,..., n}). In particular, we then have:

(2.6) fzzi;;':l 2.
Using (2.1), (2.4) and (2.5), we obtain that
R(ei, ej)=aij(ei /\ ej+eix/\ejx),  (i#]),
Re;, ejx)=aij(ei /\ ejx—eix /\ e;)+cijJ—

n+2 o,

2.7 Clei, ej)=(aij+bijei /\ ej+aijeix /\ ejx,  (i#]),
Clei, ejx)=(aij+bijei /\ ejx—aij eix /\ ej+ci;jJ— ,,‘:’Lfg QJ,
Cleix, ejx)=aijei /\ ej+(aij+bijeix /\ ejx, (i 1),

oo 2t D) Gt 2)—7
i dn+1)(n+2) °
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o =—Cn—1) (Ai+2)+<
2.7 bij= 2(n—1) (2n——]1) ’

i —2nADAi+T 5
Y 2n+1) n+2) 7

foralli j&=1(1,2,..., n},

Next, we compute the numbers 2;, @;;, b;;, c;; and = for the manifolds M appearing in
Theorem B. For a Kaehler manifold M of constant holomorphic sectional curvature
¢ € R, the tensor R is given by

R(X, Y>=§<X/\ Y+JXNJY—-2<]JX, Y >]).

With respect to an orthonormal basis {ej, . . ., e,, eyx, ..., exx} for Tp M, p & M, one easily
finds that
22_ n_2}_1 c,
t=n(n+1c,
a;j —Z",
. ntl
T L
e — C .
= ey %

For a product manifold M =M™ (c)x M™'(—c) of a Kaehler manifold M™(c) of constant
holomorphic curvature ¢ € Rf and a Kaehler manifold M”'(—c) of constant holomorphic
curvature —c, the tensor R is given by

R(X, Y):%(X/\ Y+JX NJY—2<JX, Y >]),
R(X, Y)=0,
R(X', Y") =—§<X' AYHIXANTY' —2<JX', Y' >]),

for all vectors X, Y tangent to M™(c) and X', Y’ tangent to M™'(—c). Let p=(p1, p2)

EM™(c)x M™' (—c), (m+m'=n), and choose an orthonormal basis {ej, ..., en, Cmity o v s
€ns €1x; - - ., exx} for TpM such that Tp,M™ (c) is spanned by {ey, . .., em, €%, ..., ems) and
Tp, M™ (—c) bY {ems1s - - - » ny €omsp%y « -+ » enx}. Then, foralli, j & {1,...,m}and x, y
& {m-+1, ..., n}, one finds that

A= m+1l. ., __m+1
5 o 2

t=(m—m')(m+m'+1)c,

¢,

N =0 _
Aij= = Aix=V, Qxy = —

<
4 4’
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o —m®—2mm'—m'2—3m'+1
29 i i —T) @mF e —1) ©

b 3(m—m') .
Y 4(m+m'—1) Cm+2m'—1) 7’

b m'24+-2mm’' +m2+3m—1
xy

o mEIm—1)Cm+em —1) ©’

m' +1 m+1

G Tt m 12 T Ymtm 2 ¢

For later use, we now give a necessary and sufficient condition for a Bochner-Kaehler
manifold to satisfy the condition R-@=0. First, using (2. 3), we observe that R.Q=0 if
and only if

(R(e;, €)*Q)er=0
and

(R(ei, ejx)*Q)er=0
forall i, 7,k <(1,2,...,n). Furthermore, (2.7) implies that

(Rei, e;)*Qer=aij(0r; (Ap—A;)ei—0pi (Ap—4j)e;)
and

(R(ei, ejx)+Qer=—a;; {Ori(Ap— Ai)eix+0ri(Ap—4;)e %) .

Examining all possible choices for ¢, j, k= (1, 2, . . . ,n}, we thus conclude that M satisfies
R-Q=0 if and only if M satisfies the condition

(%) Vijie(l,2,..., niaij(2i—4;)=0.

3. Proof of Theorem 1
By (2. 3), we find that M satisfies R-C=0 if and only if
(R(ei, €j)+CXer, e)=0,
(R(ei, ejx)+C)(er, e1)=0,

(R(ei, ej)+CXex, e1x)=0
and
(R(ei, ejx)*C)(ek, erx)=0,

forall i j, k[ <(1,2,...,n). From (2.7), we have
3.1) (R(ei, e;)*CXer, en)=ai;{3i1 [(@ari+br)—(arj+brj)]e;/\ ex
' +0r [(@ar+br)—(air+bin)] e /\ e
—0ik [(@ri+br)—(aji+bj)] ej N\ e
—8j1 [(arit+bri)—(ari+bri)] ei /\ er
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+0it(@ri—arj) e /\ erx
+0jr(ari—aineix /\ erx
—Oir(ari—ajesx /\ e
—0j1(ari—ari) eix /\ epx},

(3.2) (R(eiy ejx)C) (er, e)=ai; {01 [(ari+br)—(@in+bir)leix /\ ex
— 0 [(@ri+brr)—(au+bi)] eix /\ e
+0i1 [(@ri+br)—(aje+bjr) ] ejx /\ er
—0ir [(@ri+br)—(aji+bjn] ejx /\ e
—08 1(ari—air)ei /\ erx
+0jr(ari—ain)e: /\ erx
—Ou(ari—ajr)e; /\ erx
+oir(@ari—ajne; /\ erx
+(0icip—0jrcii+0jicir—0irciD]},

(3.3) (R (ei, €j)+C) (ep, erx)=ai; {(—0d;; [(@ri+br)—(ain+bir)] eix /\ er
—0jk(ari—ai)ei /\ e
+0i [(@ri+br)—(ajr+bjn)] ejx /\ er
+oir(ari—ajex /\ el
+0ji(ari—air)ei /\ erx
+0jk [(@ri+br)—(aii+bi)] ei /\ erx
—0u(ari—ajr)e; /\ erx

—0ik [(@ri+br)—(aji+bj)] ej /\ erx

ot S (i 2) (ein A\ € —ei A €0)

+0ircji+0iicir—0jrcu—3djcin)]},
and
(3.4) (R(ei, €jx)+ C) (en, erx)=aij{—8;1 [(@ri+br)—(air+bir)] e /\ er
—0jr(ari—aine; /\ e
—0is [(@ri+br)—(aje+bjr)] ej /\ ex
—dir(@ri—aje; /\ el

—0j1(ari—air) eix /\ erx
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—0p [(@ri+br)— (@i +bi1) ] eix /\ erx
—0;1(@ri—ajr)ejx /\ erx

—0ip [(@ri+br)—(ajit b0 ] ejx /\ erx

-+ 8k,(2,-~—2,-)(ei/\ej—i-ei*/\ej*)},

1
n+2

foralls 7,k 1 €(1,2,...,nt. Using (3.1), we obtain that
(R(ei, ;)-C) (er, €i)ejx=aij(ari—arj)e;

for all mutually distinct 4, 7, k& {1, 2,...,n}. This implies that M satisfies condition
(k) of § 2if R-C=0 and » > 3. Conversely, the manifolds of Theorem B are locally sym-
metric, and so they satisfy R+R=0. Moreover, they also satisfy R+Q=0, such that for
these manifolds we also have R.C=0. For =2, one easily verifies, using (3. 1), 3. 2),
(3.3)and (3. 4) for all ¢, j, k, [ =(1, 2}, that R-C=0. This proves Theorem 1.

4. Proof of Theorem 2

The implications (v) = (i) and (v) = (iv) are trivial. The implication (iv)> (iii) holds
since the derivation C(X, Y). commutes with contractions. The implication (vi) > (v)
follows easily. Therefore, it is sufficient to prove the implications (ii)=>(i), (i)=(iv), and
(iii)= (vi).

If M satisfies Q@-C=0, it follows from

(Q+C) (ei, ej)eix=2a;j Aiejx

that, for all distinct ¢, j &(1, 2, ..., n}, we have

(4. 1) a;i;2;=0.

From (2. 3) we derive that Q+R=0 if and only if
(Q+R) (ei, ;) er=0

and
(Q+R) (ei, ejx)er=0,

foralli j,kc{1,2,...,n. On the other hand, (2. 7) implies that
(Q+R)(ei, ej)er=ai;j{—0;r(A;+ ) ei+3ip(Ai+ Ap) €}

and
(Q+R) (e, ejx)er=a;; {01 (A;+ Ag) €ix+0ir (i + Ap) € jx)
(00— Lo 0120) Uit-20)enm,
foralli, j, kE(1, 2,...,n). Examining all possible choices of indices, we find that M

D
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satisfies Q+R=0 if and only if
(%) Vi,ie{d,2,...,n}, z’q&j:a,-jZ,-:O.

Consequently, by (4. 1) the implication (ii)= (i) holds good. Furthermore, it is easy to see
that M satisfies (x) if Q< R=0. From (2.8) and (%x) it follows that a space of constant
curvature satisfies Q+R=0 only if its curvature is zero. Next, if for instance for m=>2 a
space M (¢c)x M™'(—c) satisfies Q-R=0, then A4;¢12=0, which contradicts (2. 9). This
proves the implication (ii)= (vi). Finally, we prove that (iii) implies (vi). From (2.7),
we obtain that

(4.2) (C(eiy €j)+C) (e, e)=(R(ei, €;)+C) (ex, €1)
+0ij{—0j [(@ri+br)—(@irt+bir)] €i /\ er
+0jk [(@ri+br)—(aii+bi)l ei /\ e
+0i1 [(ari+br)—(@ir+bjr) ] €j /\ er
—0ix L(@ri+br)—(aji+bj]ej /\ e}
and

(4.3) (Clei, %)+ C) (er, en)=(R (ei, ejx)-C) (ex, 1)
+0ij {01 [(@ri+br)—(@jetbjr)] ejx /\ e
—0ip [(@ri+br)—(aji+bj)] ejx /\ e
—0j1apiei /\ epx+0jrariei /\ erx
—Oirajie; /\ erx+tdiajre; /\ exx

F(—=0ircii+dicip)]

L 0ir =30, QT ),

foralls 7,k I &{1,2, ..., n. This implies that

(4.4) (Cleis €j)+C) (ex, i) epx=a;j(air—ajr) e x
for all mutually distinct indices 4, j, 2k € {1, 2,..., n}). Now, suppose that M satisfies the
condition C.C=0. Then (4. 4) yields that M satisfies (x) whenever # > 3. Consequently
either n=2 or M is one of the manifolds from Theorem B. Moreover, from Theorem 1,
we know that R.C=0, which by (4. 3) implies that

Ai
(C(eiy ex)+C) (i, ej)ei=b;; < aij—cj;i+ _717:2_> eix

for all distinct 4, j {1, 2,..., n}. Thus we find that

Ai
(4.5) bij <a,'j——6‘jj+ m)ZO,
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and

2.
(4. 6) bi; <aij—()ii+ n~+{2 >=0

by interchanging the indices 7 and j. Adding (4. 5) and (4. 6), and using (2. 7), we obtain
that

4.7) aijbij=0
for all distinct 4,  &(1, 2, ..., n}. From (2. 6), (2. 7) and (4. 7), we see that a 2-dimen-
sional Bochner-Kaehler manifold satisfies C-C=0 only if 2,+2,=0. Consequently, such
a space satisfies (). From (2. 8) and (4. 7), it is clear that a space form M”(c¢), (c & R),
n =2, satisfies C-C =0 only when ¢=0. On the other hand, a space M™(c)x M™' (—c),
(c € Rf"), with for instance m > 2, does not satisfy C-C=0, since for such a space, by
(2.9), @a12b12 # 0. This proves the desired implication.
5. Proof of Theorem 3
From (2. 3) we know that M satisfies C-Q=0 if and only if
(Clei, ej)+ Q) er=0,
(C(ei, ejx)+*Q)er=0,
and
(Clei, €;)+Q) epx=0,
foralli, 5, k=(1,2,...,n. From (2.7) we have
(Clei, €j)*Q)er=—0r(aij+bij) (Ai—Ap)e;
+0ip(aij+bij) (A;— ) ej,
(Clei, ejx)+Q)er=0;,a;;(Ai—Ar)eix
+0ir(aij+bij) (;—2Ar) ejx,

and
(Clei, €;)+Q) erx=—0pa;;(Ai—Ap) eix
+0iraij(A;—Ar)ejx,
foralli j,kE(1,2,...,n). This implies that C.-Q=0 if and only if
aij(Ai—2;)=0
and
bij(4i—24;)=0,
for all distinct 4,  &(1, 2, ..., n}. Therefore it is clear that C-Q@=0 implies (k).

I
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Conversely, from (2. 8) and (2. 9), one can see that M”(¢) satisfies C-Q=0 for all c =R,

and that M”™(¢c)x M™' (—c), where ¢ & Ry and m, m' & N,, satisfies C-Q =0 if and only if

m=m'.
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