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1. Introduction

~ In this note we will consider the total space of an oriental sphere bundle over sphere.
The total space of such a bunble may be considered as a differentiable manifold. Thro-
ughout we will consider the total space as a differentiable manifold.

We will be concerned with the following two questions about the total space of a
sphere bundle over sphere.

1. COan it be tmbedded or immersed in Rm?

2. Cannot it be imbedded or immersed in Rm?

After preparations in Sections 2,3 and 4, we' give arswers  to "Question' 1 and 2 in
Section 5, and then examine particular cases in Section 6.

The authour wishes to express his hearty thanks to Prof. K. Aoki and Prof. T. Kaneko

for their kind discussions and valuable suggestions.

2. Notations and Terminologies

2. 1. In what follows, the word /" differentiable " will mean " of class C®”. A diffe-
rentiable map of a differentiable manifold M” in Euclidean space R is called an immersion
if its diffrential has the maximal rank n (n<Cm) at each point of M, and an immersion
which is one-one an imbedding.

We will write M &Rm, M E” when M is immersed in R”, imbedded in R™, respe-
ctively.

2. 2. Let é={E (&), me, S”, REtL, SO (k+1)} be a (k+1)-dimensional vector bundle
over S”, and (§)={B(&), pe, S",Sk, SO (k+1)} the associated k-sphere bundle. Let &%
denote trivial k-vector bundle.

By the bnndle classification theorem, the equivalence classes of k-sphere bundle over

n-sphere are in one one correspondence with elements of m,—1 (SO(k+1)).

Now we define bundle 55:' B as follows;

R = (BB, pim®,. 8", Sk, SO(k+1)}
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where Ef,:"k) corresponds to element m &m,—1 (SO(k+1)). If no confusion arises, we

write B(&), pe for Bﬁn’"'k), P S,:‘ k), respectively.

3. Preliminary lemmas

3. 1. First we will prove a lemma on the imbeddadility of a vector bundle over S*

in a vector bundle over S”.

Let & % be vector bundles over §” with dimension %k, | (we suppose £>>1). Then we
have

(3.1.1) Lemma. If l-k is greuer than n-1, then & can bz imbedded in 3 as a subbundle.
In other words, thera exists an (1-k) vector bundle ¢ over S" such thu

§D¢=y

Proor. Let Hom (&, %) be the bundle defined by Hom (&, %).=Hom (&, %.)---group of
linear transformations of &, into %, and L (& %) the sub-bundle of Hom (& ) with
fibre L(&;, %.)---group of linear transformations of maxmal rank % (k<cl). Then & can be
imbedded in % as a sub-bundle if and only if L (& %) has a cross section. Since =
(L (&, p))=m (V5,2 =0, for i<<l-%, lemma follows from the standard obstruction
theory.

3. 2. Following lemmas are basic for the proof of our results.

(3.2.1) Lemma. Lzt § bz a k-vactor bundle ovzr a differentisble manifold M. Suppose
M bz imbzdded in Rm with normil vzctor bundle v. If & ¢ bz imbedded in v os o sub-
dundle of v, then

E(&)cRBm

This lemma follows from the fact that the assumption implies that E (§) is imbedded
in F(v) and E (v) is imb2dded in B” as a tubular neighbourhood of M in Rm.

(3-2.2) Lemma. L2t & bz o k-vactor bundle ovzr a differentiasble manifold M. Than
we hivz

(i) EE)SRrktr BT Rrtktr—1

(i) E&)c B*HErr L Be)c RrHE”

The proof of (i). Let ¥ be the normal bundle of immersion; E (§)S&Rntk+r
We have

T(E(E))Ey=entktr
and T(EE)=nr¢! (MDD

Hence i T(B@)=pe! tUDBE=p¢! tM)DEC=1(BE)De’
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where ¢/ is induced by the inclusion 7z; BCE and E the bundle along the fibres.
Since ! T (E(E))Di! y=entktr
we have t(B(E))Tel@i! y=gntktr
Therefore B (§) can be immersed in R#+*+7 with normal bundle el@i! v. This implies
@@.
(i) is clear.
(3.2.3) Lemma. Let & be as in (3.2.2). Thnen we hwa

T(B(E)NDel=p¢! (c(IDHDE)
where T ( ) denotes the tangent bundle.

Proor. See [97.

3. 3. Now let us calculate the Stiefel-Whitney classss of a k-sphere bundle (§) over
the n-sphere S”.

Let £ be the associated principal SO (k+1)-bundle of & We may suppose k+1>n.
The restriction of E on the (n—1) skelton of §” has a cross section f. Let 0 (E, ) be
the obstruction to extending f over S*; 0 (E, J) €H” (8": wp—1 (SO (k+1)).

Let p denote the natural projection SO (k+1) — Vi+1,e+1-n+1, P+ the homomorphism
Tn—1 (30(k+1)) — wn—1 (Va+1k+t1-2+1) and p.s the induced homomrphisn H*(S”: 7,3
SOUk+1))—=H"(S" :wp-1(Vet1e+1-n+1)). Then we have

The following result has been proved in [47.
3.3.1) If k= nand n > 2,4 or 8 then w, (£)=0.

3. 4. We will calculate w,(&) when n=2,4 or 8.
3.4.1. Thke case n=2.

In this case we can choose the associated sphere bundle of § @e#—1 as (&), whare @ is
the canonical 2- vector bundle over 82 ; the canonical complex line bundle over CP;=_82
regarded as a real vector burdle. Since # has the total Chern class ¢ ()=1+¢a, where
@ is a generator of H2 (82: Z), wy (€) =a mod 2.

3.4.2. The case n =4.

Let 5(4;1’?) (k=4) be the bundle with characteristic map ¢ (no), where 7; SO (4)— SO(r)
(r=5), ¢: 83—-80 (4) given by
o(u)v=uv
where v and v denote quatenions with norm 1. By a result of (103, we have

0 (E (4,;’?)) =nay

where a4 is a generator of H4 (S%). Hence we have
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(8-4.2.1) wy (E4*)=0 if and only if n is even.

Let 55:,'1) be the bundle with characteristic map mpk+-na', where p;83—-S0 (3)c SO (4),
given by p(w)v=wvu-1. Then we have ‘
(3.4.2.2) wy (& S::i))zi-n. ag mod 2.

3.4.3. The case n=S8.

In this case we have the similar results.

wg(EBT)=n ag mod 2

wa(EB®) =+m ag mod 2 (k>8)

where ag is a generator of H3 (S8).
3. 5. Let us calculate the Stiefel-Whitney classes of B, using (3.2.3).
(3.2.3) shows
w(T(BE))=p*(w(&)

where p*; H*(S": Zp)—~H*(B(§) : Zp) is the homomorphism induced by p. If k> =, p*
is an isomorphism. Hence we have

(3.5.1) LemmMa. Lst € bz a (k+1)-vzctor bundle over the n-sphere 8" (k>n).
Then we hava

(i) wB=1ifn>x2 4, 8
(i) w (B@M)=1+a
(i) w (BE®Y=14a for m odd

=1 for m evan
Gv) w(BE&®Y=1+a for m odd
=1 for m even
(3.5.2) Lemma. w(BEFLY®)=1 for k=3.7
This follows from H” (B¥*Dy=7, for k=4.8.
Combining these and a result of J. Milnor, we have

w (B®) # 0if and only if (m, b m)=(2.2+1, d), (44+1, d) and 88+, d), where
! is nonnegative integer, d-is-an.odd integer.

4. Grothendieck operations on KO (8S»)

4. 1. We recall the definitian of the group KO(S"); KO(S™) is isomorphic to the

group of stable classes of real veetor bundles over .S”.' It is well known that KO(S")"
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is isomorphic to 7, (BSO), where BSO is the classifying space for stable rotation group
SO. The following table is also well known.

(4.1.1)

-n(modS)’O 1 2 3 4 5 6 7
K@(Sﬂ))zzzzzozo 0 o0

4. 2. Let 2 and ¢; be operations defined by R. Bott in [2]. There exists the

following relation between these operations
(4.2.D Gi— 1A+ - (—1ig.Ai =0.
Moreover we have
(4.2.2) Oi(a)=i"z for 2EKO(S™), n=2r
If x denotes a generator of KU (8*), then x2=0. fo? '-n,EO mod 4. Hence
Ai(x) =(—1)i;(r—Dy

4. 3. Next we will consider the r operation on KO (8") defined by F. Atiyah in
[131. 7i is defined by the following formula ’

Sriti = DA (L —) i

in other words,

ri=Al+ (D A2 oD B4 2D 2
Therefore, for n=4r
ri () =A1(2) + (i;l) (D1 227—121 (2) 4 +-eeeo + (f:%) (_1)if1izr—1,11(w)
Since A! (2,=2, we have
| ri(a)=a{l— (i;l) 22r—14 (i;1>32r—1_ ...... +(=1)i-1 :ﬁ:b@zr—l}

4.4. If n =1, 2 mod 8, i operations are determined by ri-operationson KO (P),
and if n £ 0, 1, 2, 4, mod 8 all yi operations are zero. -

5. Immersions and imbeddings
5. 1. First we prove the following
(5.1.1) THEOREM. Let & bz (k-+1) vactor bundle ovar the n-sphere S”. Then we have
B(&)Rentk+1 gnd B{(E)S=R2ntk,

ProoF. Let S§” be imbedded in R»+m with*normal vector:butidle v, H:m isdarge-enough;

£ can be imbedded in v as a sub-bundle, there-exists an (m-k-1) vector bundle % such
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that
EDy=v
Since w; (Vm—t-1, m—k-1-») =0, for i>n,
p=CDem—k—1-n
where £ is an m-vector bundle over §% Thus we have

EPLPem—k—1-n—y,

We canfind an immersion of S” in R2n+%+1 with the  normal vector bundle &£@¢, and

suppose that this immersion is an imbedding. Hence £ can be imbedded in the normal
vector bundle of an imbedding of S” in R2ntk+1, By (3.2.1), (3.2.2), we have

B(&)CRen+k+1 and B(&)Rentk

In remainder of this section, we will show the general result can be improved in some
special cases.

5. 2. We prove, for even n,

(5.2.1) Lemma. If w,(€)=0. then B(§)C Ren+k and B(&)SR2n+k-1,

Proor. w,(§)=w,(y) is the only one obstruction to the existence of (m-k-1-n+1)
linearly independent cross sectiens of 3. If w,()=0. then & can be imbedded in .the
normal vector bundle of an imbedding of S” in R2r+%,

Now we consider some spacial cases.

5. 3. The case n=3, 5, 6, 7 mod 8.

In this case we can prove the following

(5.3.1) THEOREM. If k=n, then B(E)CTRn+k+1,

(632) TuroreM. If k <n—1, then B(§)C R2»+1 gnd B(§)SRen,

Proor. (53.1) follows from the fact that if k>n, then (&)=8"x Sk,

The proof of (5.3.2) is as follows; since § is stably trivial, £@e#n—*k=¢en+1 Hence £ can be
imbedded in the normal vector bundle €7+l of an imbeddng of S” in E2#+1, The result
follows from (3.2.1) and (3.2.2).

Moreover we have

(5.3.3) Turorem. For any kB(&)SR+++1,

This follows from that for any %, B(&) is stably parallelizable.

5. 4. The case n=1, 2 mod 8.

(3.4.1) THEOREM. () If n=1 mod 4, k>3 and n>3 and 4, then B(&)CR2r+k—2 gnd
B (&)= Rentk=3  (30) If n=2 mod 4k = 7 and n > 7, then B(§)CR2n+k-5 qnd B(£)C
R2n+k—6

PROOF. Let S” be imbeded in R#+» with normal bundle v. As in the proof of (5.1.1),
we have EDp=v
for some (m—k—1) vector bundle . The only obstruction to the existence of (m—k—1

+3-+n) linearly independent cross sections of 7 is an element of H” (S%: wp_1(Vy—r—1,
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m—k-1-n+3)) By the result of [6) for n=1 mod 4,
Tn-1(Vm—t—1,m—-1-n+3) =0.
Hence we have
p=em—k—T—n+3¢

where £ is an (n—3) vector bundle over S”.

Then we have

EDCPem—k—1-n+3=y

If ¥ = 3, we can find an imbedding of 8" in R2#+%k-2 with normal vector bundle E£P¢.
This implies £ can be imbedded in R22+%-2 Lemma (8.2.1) and (3.2.2) complete the proof
of (i). The proof of (ii) is similar. '

5. 5. The case n=0 mod 4.

(8.2.1) and (3.3.1) give the following

(6.5.1) TuEOREM. If n=0 mod 4, and n 3 4, 8, then B(§)CRn+k and CSRentk-1,
Thzorems in Sections 5. 3, 5. 4 and 5. 5 give a partil answer to puestion 1.

Next we will consider question 2,

5. 6. Let p be the homomorphism KO (8*) — KO (B(£)) -induiced by the prejection
p; B(&)—S. The following lemma is due to M. F. Atiyah.

(56.6.1) LeEmMma. Lat & bz non-stably trivial k-bundle over S, and p'! an isomorphism.
Then i f ri(—£)0,B(&)kRntk+i gnd sERn+k+i where &, denotes the stable class of §.

6. Some special cases

In this section we shall study k-sphere bundle over the n-sphere for n=4,

6. 1. The case n=2.

611, 1-sphere bundle'over S2

Since B(&) is an orientable manifold of dimension 3 for any m&n; (SO(1))), B(§) can
be imbedded in R5 with a trivial normal bundle (3), and hence B(&) can bz immersed in
R4,

6.1.2, k-sphere bundle over S2.

In this case it follows from (5.1.1) that B(Z;f) can de imbedded in R5+* and immersed

in -R4+k, Since ws (B(z;f))és(), there results are best possile.

6. 2. The case n=4,
6.21. 2-sphere bundle over S4,
First we recall some results on group nz (SO()) (r=3)

As is well known, we have

73(S0B) =2,  wy(SOM)=Z+2, w3(SO())=Z(r>5)
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Let v ; SO()—>SO(r+1) be natural inclusion. Then the generators
{as}, {as,B4}, {8,} (»r=5)
of w3(SO(3), m3(SO(4), 71'3(8’0(7‘)) respectively are given as follows;
az(wv=uvu-l, ay=Cz)x(@3), Bs(w)v=uv.
where % and v are quoternions with norm 1. And
B=(ty—D g+ (G x(By) (r=5)
()« (@) =-2835

It follows from these that £43 is not stably trivial for m30, Since its stable class is
2ma;, where 2 is a generator of KO(S”), p! is an iSsomorphism, and

72(2m2) =2ma(1—2)<0
13 (2ma) =2max (1—( % )2+ ( % )3)=0

we have B (&) ¢ R® and < R7.
That ws (§$%)=0 implies B(§)C R0 and SR

6.22 3-sphere bundle over S4,
We have

(1) B(Emo)R! and & R0 m0
(i) B(&)ER? and R
Proor. (i) follows from that Efﬁ"’), has a cross section,. E(&,,,0))cRW,

(ii) follows from ‘that &,,, is not stably trivial and r2(B(&,,,,)) 0.
Moreover we can prove the following
(1) By & R = n=2 or 2n=0 mod n.
Gv) By, < B2 and & R fof a ny m and n.
(v) B, & Rl gnd &= RY for n evzn,
(v1) By, R and &= R8 for any m
Proor. of (iii). Let KO(Bm,n) be the group of stable classes of real vector bundles

over By,,. Then the projection p;B,,,—S* induces the homomorphism
p' 3 KO(SH—>KOBym,n)
and {T(Bmsn)}:p! {Emm}'

where {7} denotes the stable class of ». It is known that the kernel of p/ consists of all
integlal multiples of the order of Hz (B,,,,: Z) (9). The stable class of &m.n is regarded
as the image of (ma;+nBy)En3(SO(4)) under the homomorphism (Zy—1)x+ (2) x; 73(SO4))
—3(80(r)) (r>=5). Since ' '
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(Tr—D s (T x(Mag+ 0By = (—2m—+n)B,

and the order of H3(B,,,) is n, p!' {,,}=0 if and only if n=2 or 2m=0 mod =,
P’ {&m.n} =0 implies that B,,, is stably parallelizable and hence B(£&)CR3,

6.23. k-sphere bundle over S4(k<4)

In this case we have
(i) B, —R8tk and & R7+k for m even
(i) B, CR¥*k gnd & R8+E for m odd.
The result of (ii) are best possible.
(i) is due to the fact wy(§,,)=0. Since wy(B,) =p* ws(&,), p* is an isomorphism and
w4(Em) =<0, wy(By)=<0, which implies ws(B,)x0. Hence B o RB8*%k and S R7+%k It is easy
to see B e R6+k and B € R5+* for even m=<0.
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