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1. Introduction ‘

Let M be a differentiable manifold, and f a differentiable map of M in a euclidean space
Bm, We say f an immersion if the differential df has a maximal rank at each pbint of
M and homeomorphic immersion an imbedding. We shall write MZBm or MSRE» when
there exists'an imbedding of M in B or an immersion of M in Rm, respsctively. Let Fbe
one of three basic fields R, C or @ and FP, the n-dimensional projective space over F.

1. M. James has obtained ah imbedding: FP, CR2dn—d+1 for every integer mz==l, where
d is the dimension of F over R. (70. '

In this paper we shall prove the following

THEOREM 1. Let n be any integer which vs not power of 2, than FP, CR2in—d,

This result overlaps with that of [6), (871 and (9. ‘

For the case F=C or ), we can also prove th: following theorems which give us an
information on the existence of imbedding of FP, in lower dimensional euclidean space,

TuEOREM 2. CP, CRin=3 {f CP, —xRin-5 and n=5.
~ Moreover if CP, —x=R4"-5 gnd n s odd, than OP,  Rin—4,

THEOREM 3. QP,CR8n~%k if QP, —ax=R8n—%k-1 omd k<n, wherz k 13 5 6, or 8.
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2. Imbeddings

Let V=F7»%1 be the right F-module and FP, the associated right projective space.
Thus we have a principal F*-bundle n: V-0—>FP,,, where F* is the multiplicative group
of non zero elements of F, and the associated right line bundle (fibre#, group F*
operating on F on the left), which we denote by L. We may also consider the left line
buhdle L*=Hom (L,F). This defines a real vector bundle & of dimension d, where d is
the dimension of F over R. It is well known that the total space of this bundle is FPy,4;
—a2, where » is a pOint’ of FR,. We denote this bundle by & The following lemma is
well known. '

(2. 1) Lemma. Let t be the tangent bundle of FP,. Than we hwe

tPy=(mn+1)¢§
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where y is the bundle with fibra the Lie algebra F of F* associzted to the principal bundle
m: V-0—FP, by tnhz adjoint represzntition. Moreover if F is commututiva, 3 is a tiivial
bundle.

Let £ and x be the bundles over FP, whose total space are denoted by E (x), E (p),
respectively. We call a map ¢: E (k) — E (u) a homeomorphism when it satisfies the
following properties

(1) g maps each fibre linearly into a fibre,

(2) g induces the identity map over FP,.
We call g an imbedding if it is one-one. It is clear that an imbedding g: k—x induces an
imbedding of E (k) into E (u).

We have the following

(2. 2) ProposITION. Let FP, be imbedded in Rm with normal vector bundle v.
If there exists an tmbadding of & into v, then FP,y1-2: cin bz imbedded in Rm.

Proor. The assumption implies that FP,4+1-2 can be imbedded in a tubular neighbo-
urhood of FP, in RBm. Thus FP,.1-2 is imbedded in Rm.

(2. 3) ProrosiTiON. Under tne sime assumption as (2.2) FP,4+q1 ¢an bz imbedded in
RBm+1 topologically.

Proof. In view of (2.2), we have an imbedding of FP,i1-z in Rm. Let Sdntd-1—
FPy+i1-2 be a sphere which is the boundary of ball in FP,+; containing 2. The propo-
sition follows by placing a cone on this sphe:e.

By a result of A. Haeflieger (3], we have

(2. 4) CoroLLARY. If the assumption of (2.3) s sitisfied, and if 2m>>3 (dn+d),
then FPyi1 cin be tmbedded in Bm+1 dif ferentiably.

Now we shall study veotor bundle over F'P, more closely.

Let £ and g be k-vector bundle and m-bundle over FP,, resp. and Hom (k, p) the
bundle defined bv Hom (xk, u)s = Hom (K, px) - group of linear transformations of
k =Rk into u =Rm. We suppose k<m. We denote the sub-bundle of Hom (x,u) with
fibre Lmpe -group of linear transformations of R* into R of rank k-by L (x,p). It is
necessary and sufficient for the existence of an imbedding of £ into p that L (x,u) has
a cross section. Since Ly has the Stiefel manifold V,,: as its deformation retract, the
primary obstruction for the existence of a cross section of L (k,pu) is an element of
Hm—k+l (FPp:{7tm-t (Vma)}), where {wm—r(Vmzr)} denotes the bundle of coefficients
with fibre @,m—2 (Vm,z) which is a product bundle when F is C or Q. We notice that if
k=1 then L (x, u) ia an(m—1)-sphere bundle.

The following example shows clearly how we apply (2.3). Consider the imbedding
FP,_1cR, which exists by a result of H. Whitney. Let v be the normal bundle, whose
dimension is dn. Since @; (Lana) =7 (Vana)=o0 for i<<d(n—1). L (& v) has a cross
section over F'P,_1. Thus by (2.3), FP, is imbedded topologically in R24(r-D+d+1 By
(2.4), if dn>2 (d-1), i. e. n=2, this imbedding is approximated by a differentiable one.

The exceptional case d=2 and n=I is slso true because FP=84d is imbedded in Rd+1.
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Thus we have an imbedding of FP, in R2dn—d+1 fore every integer n and d. This result

coincides with that of James’ mentioned in Introduction.

3. Immersions

We begin, in this section, with some general theorems about the bundle along the

fibres.
Let y=(E, n, B) be a fibre bundle and 7 the bundle along the fibres.

As is well known,

T(B)=n*{r(B)}D7

We consider the case # is a vector bundle, which we shall need in the sequel.

We can prove that the sequence
O—m*(p)—>t(E)—n*r(B)—0

is exact, in other words, % is equivalent with 7*(%).

For each point #&B, we have an inclusion
E, (fibre of » atx)—FE
and hence a natural inclusion
T(E)—t(E)

It follows from the definition that the total space of m*% consists of pair of vectors
(v, w) lying over the same base point #: in other words, the fibre of  is E,XZH,.
Since E, is a euclidean space, E,XFE, is naturally identified with 7(Z ). Hence

we have a bijection
(m*p)—>7(E D

for each «. It follows from this that zn*» and # are equivalent, or (3.1) is exact.
The exactness of (3.1) implies _

3. 2 T(E)=n*{r(B)D7}

We recall some results on resgular homotopy classes of immersions of a manifold in a
euclidean space Rm.

Th= following results have been proved by M. W. Hirsch in (8]

(3. 3) M be an n-manifold. Then the regular homotopy dusses of immersions of M in
Rm (m>>n) corresponds injectively with the homotopy classzs of cross sections of the bundle
associated to the tangent bundle of M with fibre Ve '

(3. 4) Two immersions of M in R2»+1 dre reguldrly homotopic.

(3. 5) Let M be a manifold of even dimension n. Then two immersions of M in k2»
are regularly homotopic ©f and only ¢f they have the sime normal class.

From (3.3), we have the following
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(3. 6) Lemma. If n is even, two immersions of CP, in Rin=1 are regularly homotopic.

Proor. The regular homotopy classes of immerisions of CP, in R4 -1 are in one-one
correspondence with the homotopy classes of cross sections of th: bundle associated
to the tangent bundle of CP, with fibre Vy,-12,. The obstructions to make two cross
sections homotopic lie in the group H27=1 (CR,: m2n—1(Van—12,))=0. and H2» (CP,;
7t2n (Van—-121)), which is zero for even n since m2n (Vin-12,)=0. if n is even C113.
Similarly we can prove

(8- 7) Lemma. Two immersions of QP, in R87—1 are reguiarly homotopic.

4. The proof of Theorem 1

We first recall some results on binomial ccefficients. Let a (n) be the number of
non-zero terms in the dyadic expansion of n;n=3n;2/ with n;=0, or 1, then ¢ (n)=
S'ne.

We have a well known

(4. 1) Lemma. (%) is not zero mod 2 if and only if a(k)+a(n—k)—a(n)=0.

Proor. Recall (% )=n!/k!(n—k)!). Since n!=2n—al» o(n), where o(n) is an odd
number. We see that '

(% )=2a®+a(n—0)—a(m)x X (an odd number)
Hence (%) is not zero mod 2——(%) is odd<-—a(k) +a(n—k)=a(n)

4. 2 (2”,;’L 1) = 0 mod 2+——n=2"—1 for some integer r.

4.3 GD x0 mod 2 —n=27—1 Jor somz integer r.

ProoF. Let nzii'; 27 11 >rp >+ >rs=0. Then a(n)=s, a(2n+1)=s+1. Hence(®”1)
* 0 mod 2<——a(n)+a(n+1)=a2n+1)——a(2n+1)=1—>n=27 —1. This implies (4.2).
The proof of.(4.3) is similar.

We consider first the case F=C, Q. ,

Let F'P, be imbedded in R247+d-1 with normal vector bundle v. We can show the
following ;

(4. 4) €& can be imbedded in vPe* whare k is large enough, in othar words, there exists
a (da+k—1) vector bundle & such thit vPek =EPF.

Proor. We consider the bundle Z (&v@Pe* ). Since the fibre of this bundle is
Lan+d—1+rd, there is no obstruction for the existence of a cross section of I (& vEeD).
Hence & can be imbedded in vPe".

Next we prove ' :
(4. 8) If n<2"—1, then E=kDek for some (dn—1) vector bundle x.
Proor. To prove this, it is sufficient to show that the bundle associated to &

with fibre Vgu—1+2% has a cross ssction over FP,. The only obstruction is an element
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Can & Hin (FP,: tagn-1(Van—1+re)). It is known that cqa is .the dn th Stiefel-Whitney

class wan (k) of k. By (4.4) we have -,'«

wan(O=C%Y o mod 2
where ¢ is a generator of H*(FP, : Z5). By (4.2), wan (k) is zero if and only if n>2”

—1. :
Combining (4.4) and (4.5), we have
(4. 6) viBek=E6EKkEek i f nx2"—

Hence there is an immersion of FP, in Rzdn+d-1l with normal vector bundle §&k. .

By (8.4), two immersions of FP, in R2dn+d-1 are regularly homotopic, hence v=§Ek.

~ Thus we have

(4. 7) v=£Dk if nx2,—

From (2.3), (2.4) and (4.7), there exists an imbedding of FP,+1 into R2dn+d This
completes the proof of Theorem 1. :

For the case F=R, see [4].

5. The proof of Theorem 2 and Theorem 3

We recall that the total space of the canonical d-vector bundle & over FP,-1 is FP,
—2. Let t/ be the tangent bundle of FP, —z, and 7 be the tangent bundle of FP, .
Then we have thz= following
(5. 1) Lemma. t/|FP,-1=tDH¢
. Rroor. Let ¢ be ths inclusion of FP,—1 in FP,—. Since w 1=1. t*r*=1.

By (8.2), we have t'=n*(rB8&)

Hence we have _k ’IFPn 1=t =7tPHE

Now let FP,-a bs immersed in B” with normal bundle ' and FP,, 1 1mbedded in BRm
with normal bundle v.

Then we have

(5. 2)  LEmmaA. y = VIFP,_1E¢
where the notation” = ’'means stably equivalent.

Proor.” We have
t@v=em=(T'@V) | FPpo1=v'| FP,_1DT®E

Hence : - yv=V|FP,1DE
Now we shall prove Theorem 2. Let CP, —2CR47~5 with normal bundle »' and CP»-1
CR4n—4 with nonmal bundle ». Then (5.2) implies

v = (VE&E)|CPu1DE=V |CP,_1DEEE
Since X)) =X |CP,_1PEEel )=0. (3.5) implies
v=y'|OPp1BETE!
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Hence & is imbedded in v as a sub-bundle. By (2.3) and (2.4) we have Theorem 2

The proof of Theorem 3 is completely similar.

As corollary of Theorem 3, we have

(5- 3) CoroLLARY. If n is integer greier than 9 such that a (n)=4, then QP, is not
tmmersible tn R8n—9

ProoF. By a result of Atiyah-Hirzebruch, we have

QP,4 R87-8 for n such that a(n)=4.

Theorem 3 implies that if QP,< R8%-9, then QP,CK8»—8. This completes the proof.
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